Some inequality relations involving multivalent functions

Karamazova Gelova, Elena and Tuneski, Nikola (2016) Some inequality relations involving multivalent functions. In: 11th International Symposium Geometric Function Theory And Applications, 24-27 August, 2015, Ohrid, Republic of Macedonia.

[thumbnail of AMSJ-2016-N1-8.pdf]
Preview
Text
AMSJ-2016-N1-8.pdf

Download (215kB) | Preview

Abstract

Let f(z) be a multivalent function, i.e., analytic on the unit disk and of the form f(z)=z^p + a_p+1z^p+1 +...�, p=2,3,.... In this work we give su�fficient conditions (unfortunately not sharp) when the following implications hold:
�|arg �[1 +zf^(p+1)(z)/f^(p)(z)]|<�(alpha pi)/2 (z in D)
�implies
|arg zf^(p)(z)/f^(p-1)(z)|<(beta_1 pi)/2 (z in D)
and
|arg zf^(p)(z)/f^(p-1)(z)|<(beta_1 pi)�/2 (z in D)
�implies
|arg zf^(p-1)(z)/f^(p-2)(z)|<�(beta_2 pi)�/2 (z in D).

Item Type: Conference or Workshop Item (Paper)
Subjects: Natural sciences > Matematics
Divisions: Faculty of Computer Science
Depositing User: Elena Karamazova Gelova
Date Deposited: 26 Sep 2016 12:31
Last Modified: 22 Jun 2022 09:24
URI: https://eprints.ugd.edu.mk/id/eprint/16288

Actions (login required)

View Item View Item