Karamazova Gelova, Elena and Tuneski, Nikola (2016) Some inequality relations involving multivalent functions. Advances in Mathematics: Scientific Journal, 5 (1). pp. 45-50. ISSN 1857-8365
Preview |
Text
AMSJ-2016-N1-8.pdf Download (215kB) | Preview |
Official URL: http://www.research-publication.com/index.php/amsj
Abstract
Let f(z) be a multivalent function, i.e., analytic on the unit disk and of the form f(z) = z^p + a_p+1z^p+1 +..., p = 2,3.... In this work we give sufficient
conditions (unfortunately not sharp) when the following implications hold:
|arg[ 1 +zf^(p+1)(z)/f^(p)(z)]|<(alpha pi)/2 (z in D)
implies
|arg z^f(p)(z)/f^(p-1)(z)<(beta_1 pi)/2 (z in D)
and
|arg zf^(p)(z)/f^(p-1)(z)<(beta_1 pi)/2 (z in D)
implies
|arg zf^(p-1)(z)/f(p-2)(z)<(beta_1 pi)/2 (z in D):
Item Type: | Article |
---|---|
Subjects: | Natural sciences > Matematics |
Divisions: | Faculty of Computer Science |
Depositing User: | Elena Karamazova Gelova |
Date Deposited: | 23 Sep 2016 11:09 |
Last Modified: | 22 Jun 2022 08:25 |
URI: | https://eprints.ugd.edu.mk/id/eprint/16287 |
Actions (login required)
View Item |