Some inequality relations involving multivalent functions

Karamazova Gelova, Elena and Tuneski, Nikola (2016) Some inequality relations involving multivalent functions. Advances in Mathematics: Scientific Journal, 5 (1). pp. 45-50. ISSN 1857-8365

[thumbnail of AMSJ-2016-N1-8.pdf]
Preview
Text
AMSJ-2016-N1-8.pdf

Download (215kB) | Preview

Abstract

Let f(z) be a multivalent function, i.e., analytic on the unit disk and of the form f(z) = z^p + a_p+1z^p+1 +..., p = 2,3.... In this work we give sufficient
conditions (unfortunately not sharp) when the following implications hold:

|arg[ 1 +zf^(p+1)(z)/f^(p)(z)]|<(alpha pi)/2 (z in D)
implies
|arg z^f(p)(z)/f^(p-1)(z)<(beta_1 pi)/2 (z in D)

and

|arg zf^(p)(z)/f^(p-1)(z)<(beta_1 pi)/2 (z in D)
implies
|arg zf^(p-1)(z)/f(p-2)(z)<(beta_1 pi)/2 (z in D):

Item Type: Article
Subjects: Natural sciences > Matematics
Divisions: Faculty of Computer Science
Depositing User: Elena Karamazova Gelova
Date Deposited: 23 Sep 2016 11:09
Last Modified: 22 Jun 2022 08:25
URI: https://eprints.ugd.edu.mk/id/eprint/16287

Actions (login required)

View Item View Item