Skip to main content

Advertisement

Log in

The impact of chronic kidney disease on prognosis in acute stroke: unraveling the pathophysiology and clinical complexity for optimal management

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Chronic kidney disease (CKD) significantly increases stroke risk and severity, posing challenges in both acute management and long-term outcomes. CKD contributes to cerebrovascular pathology through systemic inflammation, oxidative stress, endothelial dysfunction, vascular calcification, impaired cerebral autoregulation, and a prothrombotic state, all of which exacerbate stroke risk and outcomes.

Methods

This review synthesizes evidence from peer-reviewed literature to elucidate the pathophysiological mechanisms linking CKD and stroke. It evaluates the efficacy and safety of acute reperfusion therapies—intravenous thrombolysis and endovascular thrombectomy—in CKD patients with acute ischemic stroke. Considerations, such as renal function, drug dosage adjustments, and the risk of contrast-induced nephropathy, are critically analyzed. Evidence-based recommendations and research priorities are drawn from an analysis of current practices and existing knowledge gaps.

Results

CKD influences stroke outcomes through systemic and local pathophysiological changes, necessitating tailored therapeutic approaches. Reperfusion therapies are effective in CKD patients but require careful monitoring of renal function to mitigate risks, such as contrast-induced nephropathy and thrombolytic complications. The bidirectional relationship between stroke and CKD highlights the need for integrated management strategies to address both conditions. Early detection and optimized management of CKD significantly reduce stroke-related morbidity and mortality.

Conclusion

Optimizing stroke care in CKD patients requires a comprehensive understanding of their pathophysiology and clinical management challenges. This article provides evidence-based recommendations, emphasizing individualized treatment decisions and coordinated care. It underscores the importance of integrating renal considerations into stroke treatment protocols and highlights the need for future research to refine therapeutic strategies, address knowledge gaps, and consider tailored interventions to improve outcomes and quality of life for this high-risk population.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The original contributions presented in the study are included in the article, and further inquiries can be directed to the corresponding author.

References

  1. Kelly DM, Ademi Z, Doehner W, Lip GYH, Mark P, Toyoda K, et al. Chronic kidney disease and cerebrovascular disease: consensus and guidance from a KDIGO controversies conference. Stroke. 2021;52(7):e328–46.

    Article  CAS  PubMed  Google Scholar 

  2. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World stroke organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17(1):18–29. https://doi.org/10.1177/17474930211065917.

    Article  PubMed  Google Scholar 

  3. Lee M, Saver JL, Chang KH, Liao HW, Chang SC, Ovbiagele B. Low glomerular filtration rate and risk of stroke: meta-analysis. BMJ. 2010. https://doi.org/10.1136/bmj.c4249.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nayak-Rao S, Shenoy MP. Stroke in patients with chronic kidney disease…: how do we approach and manage it? Ind J Nephrol. 2017;27(3):167–71. https://doi.org/10.4103/0971-4065.202405.

    Article  CAS  Google Scholar 

  5. Rajesh K, Spring K, Beran R, Bhaskar S. Chronic kidney disease prevalence and clinical outcomes in anterior circulation acute ischemic stroke patients with reperfusion therapy: a meta-analysis. Nephrology. 2023. https://doi.org/10.1111/nep.14251.

    Article  PubMed  Google Scholar 

  6. Kelly D, Rothwell PM. Disentangling the multiple links between renal dysfunction and cerebrovascular disease. J Neurol Neurosurg Psychiatry. 2020;91(1):88–97. https://doi.org/10.1136/jnnp-2019-320526.

    Article  PubMed  Google Scholar 

  7. Kumai Y, Kamouchi M, Hata J, Ago T, Kitayama J, Nakane H, et al. Proteinuria and clinical outcomes after ischemic stroke. Neurology. 2012;78(24):1909–15. https://doi.org/10.1212/WNL.0b013e318259e110.

    Article  CAS  PubMed  Google Scholar 

  8. Ninomiya T, Perkovic V, Verdon C, Barzi F, Cass A, Gallagher M, et al. Proteinuria and stroke: a meta-analysis of cohort studies. Am J Kidney Dis. 2009;53(3):417–25. https://doi.org/10.1053/j.ajkd.2008.08.032.

    Article  PubMed  Google Scholar 

  9. Masson P, Webster AC, Hong M, Turner R, Lindley RI, Craig JC. Chronic kidney disease and the risk of stroke: a systematic review and meta-analysis. Nephrol Dial Transplant. 2015;30(7):1162–9. https://doi.org/10.1093/ndt/gfv009.

    Article  CAS  PubMed  Google Scholar 

  10. Lee M, Saver JL, Chang KH, Ovbiagele B. Level of albuminuria and risk of stroke: systematic review and meta-analysis. Cerebrovasc Dis. 2010;30(5):464–9. https://doi.org/10.1159/000317069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miglinas M, Cesniene U, Janusaite MM, Vinikovas A. Cerebrovascular disease and cognition in chronic kidney disease patients. Front Cardiovasc Med. 2020;7:96. https://doi.org/10.3389/fcvm.2020.00096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Podkowińska A, Formanowicz D. Chronic kidney disease as oxidative stress- and inflammatory-mediated cardiovascular disease. Antioxidants (Basel). 2020. https://doi.org/10.3390/antiox9080752.

    Article  PubMed  Google Scholar 

  13. Kelly DM, Rothwell PM. Does chronic kidney disease predict stroke risk independent of blood pressure? Stroke. 2019;50(11):3085–92. https://doi.org/10.1161/STROKEAHA.119.025442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Shen F, Liu J, Yang GY. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke. Stroke Vasc Neurol. 2017;2(2):65–72. https://doi.org/10.1136/svn-2016-000045.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Inserra F, Forcada P, Castellaro A, Castellaro C. Chronic kidney disease and arterial stiffness: a two-way path. Front Med (Lausanne). 2021. https://doi.org/10.3389/fmed.2021.765924.

    Article  PubMed  Google Scholar 

  16. Zanoli L, Empana JP, Perier MC, Alivon M, Ketthab H, Castellino P, et al. Increased carotid stiffness and remodelling at early stages of chronic kidney disease. J Hypertens. 2019;37(6):1176–82. https://doi.org/10.1097/hjh.0000000000002007.

    Article  CAS  PubMed  Google Scholar 

  17. Laville SM, Gras-Champel V, Hamroun A, Moragny J, Lambert O, Metzger M, et al. Kidney function decline and serious adverse drug reactions in patients with CKD. Am J Kidney Dis. 2024;83(5):601-14.e1. https://doi.org/10.1053/j.ajkd.2023.09.012.

    Article  CAS  PubMed  Google Scholar 

  18. Jeon JW, Jeong HS, Choi DE, Ham YR, Na KR, Lee KW, et al. Prognostic relationships between microbleed, lacunar infarction, white matter lesion, and renal dysfunction in acute ischemic stroke survivors. J Stroke Cerebrovasc Dis. 2017;26(2):385–92. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.037.

    Article  PubMed  Google Scholar 

  19. Liu Y, Lv P, Jin H, Cui W, Niu C, Zhao M, et al. Association between low estimated glomerular filtration rate and risk of cerebral small-vessel diseases: a meta-analysis. J Stroke Cerebrovasc Dis. 2016;25(3):710–6. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.11.016.

    Article  PubMed  Google Scholar 

  20. Peng Q, Sun W, Liu W, Liu R, Huang Y. Longitudinal relationship between chronic kidney disease and distribution of cerebral microbleeds in patients with ischemic stroke. J Neurol Sci. 2016;362:1–6. https://doi.org/10.1016/j.jns.2016.01.015.

    Article  PubMed  Google Scholar 

  21. Etgen T, Chonchol M, Förstl H, Sander D. Chronic kidney disease and cognitive impairment: a systematic review and meta-analysis. Am J Nephrol. 2012;35(5):474–82. https://doi.org/10.1159/000338135.

    Article  PubMed  Google Scholar 

  22. Weiner DE, Gaussoin SA, Nord J, Auchus AP, Chelune GJ, Chonchol M, et al. Cognitive function and kidney disease: baseline data from the systolic blood pressure intervention trial (SPRINT). Am J Kidney Dis. 2017;70(3):357–67. https://doi.org/10.1053/j.ajkd.2017.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi M, Hirawa N, Morita S, Yatsu K, Kobayashi Y, Yamamoto Y, et al. Silent brain infarction and rapid decline of kidney function in patients with CKD: a prospective cohort study. Am J Kidney Dis. 2010;56(3):468–76. https://doi.org/10.1053/j.ajkd.2010.03.018.

    Article  PubMed  Google Scholar 

  24. Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143(11):1157–72. https://doi.org/10.1161/circulationaha.120.050686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weiner DE, Scott TM, Giang LM, Agganis BT, Sorensen EP, Tighiouart H, et al. Cardiovascular disease and cognitive function in maintenance hemodialysis patients. Am J Kidney Dis. 2011;58(5):773–81. https://doi.org/10.1053/j.ajkd.2011.03.034.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nayak-Rao S, Shenoy MP. Stroke in patients with chronic kidney disease…: how do we approach and manage it? Indian J Nephrol. 2017;27(3):167–71. https://doi.org/10.4103/0971-4065.202405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Toyoda K, Fujii K, Fujimi S, Kumai Y, Tsuchimochi H, Ibayashi S, et al. Stroke in patients on maintenance hemodialysis: a 22-year single-center study. Am J Kidney Dis. 2005;45(6):1058–66. https://doi.org/10.1053/j.ajkd.2005.02.028.

    Article  PubMed  Google Scholar 

  28. Murray AM, Seliger S, Lakshminarayan K, Herzog CA, Solid CA. Incidence of stroke before and after dialysis initiation in older patients. J Am Soc Nephrol. 2013;24(7):1166–73. https://doi.org/10.1681/asn.2012080841.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Castro P, Azevedo E, Rocha I, Sorond F, Serrador JM. Chronic kidney disease and poor outcomes in ischemic stroke: is impaired cerebral autoregulation the missing link? BMC Neurol. 2018;18(1):21. https://doi.org/10.1186/s12883-018-1025-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. https://doi.org/10.1016/s1474-4422(10)70104-6.

    Article  PubMed  Google Scholar 

  31. Makin SD, Cook FA, Dennis MS, Wardlaw JM. Cerebral small vessel disease and renal function: systematic review and meta-analysis. Cerebrovasc Dis. 2015;39(1):39–52. https://doi.org/10.1159/000369777.

    Article  PubMed  Google Scholar 

  32. Akoudad S, Sedaghat S, Hofman A, Koudstaal PJ, van der Lugt A, Ikram MA, et al. Kidney function and cerebral small vessel disease in the general population. Int J Stroke. 2015;10(4):603–8. https://doi.org/10.1111/ijs.12465.

    Article  PubMed  Google Scholar 

  33. Yakushiji Y, Nanri Y, Hirotsu T, Nishihara M, Hara M, Nakajima J, et al. Marked cerebral atrophy is correlated with kidney dysfunction in nondisabled adults. Hypertens Res. 2010;33(12):1232–7. https://doi.org/10.1038/hr.2010.171.

    Article  PubMed  Google Scholar 

  34. Kourtidou C, Tziomalos K. Epidemiology and risk factors for stroke in chronic kidney disease: a narrative review. Biomedicines. 2023. https://doi.org/10.3390/biomedicines11092398.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sharma S, Farrington K, Kozarski R, Christopoulos C, Niespialowska-Steuden M, Moffat D, et al. Impaired thrombolysis: a novel cardiovascular risk factor in end-stage renal disease. Eur Heart J. 2012;34(5):354–63. https://doi.org/10.1093/eurheartj/ehs300.

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Liang M, Jiang C, Wang G, Li J, Zhang Y, et al. Impact of achieved blood pressure on renal function decline and first stroke in hypertensive patients with chronic kidney disease. Nephrol Dial Transplant. 2018;33(3):409–17. https://doi.org/10.1093/ndt/gfx267.

    Article  CAS  PubMed  Google Scholar 

  37. Kovesdy CP, Alrifai A, Gosmanova EO, Lu JL, Canada RB, Wall BM, et al. Age and outcomes associated with BP in patients with incident CKD. Clin J Am Soc Nephrol. 2016;11(5):821–31. https://doi.org/10.2215/cjn.08660815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelly DM, Rothwell PM. Does chronic kidney disease predict stroke risk independent of blood pressure?: a systematic review and meta-regression. Stroke. 2019;50(11):3085–92. https://doi.org/10.1161/strokeaha.119.025442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muntner P, Anderson A, Charleston J, Chen Z, Ford V, Makos G, et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2010;55(3):441–51. https://doi.org/10.1053/j.ajkd.2009.09.014.

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Ye Y, Chen Y, Zhang Y, Li S, Hu W, et al. Therapeutic targets for the anemia of predialysis chronic kidney disease: a meta-analysis of randomized, controlled trials. J Investig Med. 2019;67(6):1002–8. https://doi.org/10.1136/jim-2018-000915.

    Article  PubMed  Google Scholar 

  41. Chelluboina B, Vemuganti R. Chronic kidney disease in the pathogenesis of acute ischemic stroke. J Cereb Blood Flow Metabolism. 2019;39(10):1893–905. https://doi.org/10.1177/0271678x19866733.

    Article  CAS  Google Scholar 

  42. Huang Y, Wan C, Wu G. Acute kidney injury after a stroke: a PRISMA-compliant meta-analysis. Brain Behavior. 2020. https://doi.org/10.1002/brb3.1722.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao Q, Yan T, Chopp M, Venkat P, Chen J. Brain–kidney interaction: renal dysfunction following ischemic stroke. J Cereb Blood Flow Metab. 2020;40(2):246–62. https://doi.org/10.1177/0271678x19890931.

    Article  CAS  PubMed  Google Scholar 

  44. Zorrilla-Vaca A, Ziai W, Connolly ES Jr, Geocadin R, Thompson R, Rivera-Lara L. Acute kidney injury following acute ischemic stroke and intracerebral hemorrhage: a meta-analysis of prevalence rate and mortality risk. Cerebrovasc Dis. 2018;45(1–2):1–9. https://doi.org/10.1159/000479338.

    Article  PubMed  Google Scholar 

  45. Shrestha P, Thapa S, Shrestha S, Lohani S, Bk S, MacCormac O, et al. Renal impairment in stroke patients: A comparison between the haemorrhagic and ischemic variants. F1000Res 2017;6:1531. https://doi.org/10.12688/f1000research.12117.2.

  46. Tran PNT, Kusirisin P, Kaewdoungtien P, Phannajit J, Srisawat N. Higher blood pressure versus normotension targets to prevent acute kidney injury: a systematic review and meta-regression of randomized controlled trials. Crit Care. 2022;26(1):364. https://doi.org/10.1186/s13054-022-04236-1.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Villa G, Husain-Syed F, Saitta T, Degl’Innocenti D, Barbani F, Resta M, et al. Hemodynamic instability during acute kidney injury and acute renal replacement therapy: pathophysiology and clinical implications. Blood Purif. 2021;50(6):729–39. https://doi.org/10.1159/000513942.

    Article  CAS  PubMed  Google Scholar 

  48. Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J. Brain-heart interaction: cardiac complications after stroke. Circ Res. 2017;121(4):451–68. https://doi.org/10.1161/circresaha.117.311170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiong L, Tian G, Leung H, Soo YOY, Chen X, Ip VHL, et al. Autonomic dysfunction predicts clinical outcomes after acute ischemic stroke. Stroke. 2018;49(1):215–8. https://doi.org/10.1161/STROKEAHA.117.019312.

    Article  PubMed  Google Scholar 

  50. Hsieh CY, Lin HJ, Chen CH, Lai EC, Yang YK. Chronic kidney disease and stroke. Lancet Neurol. 2014;13(11):1071. https://doi.org/10.1016/s1474-4422(14)70199-1.

    Article  PubMed  Google Scholar 

  51. Prakash S, O’Hare AM. Interaction of aging and chronic kidney disease. Semin Nephrol. 2009;29(5):497–503. https://doi.org/10.1016/j.semnephrol.2009.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Aursulesei V, Costache II. Anticoagulation in chronic kidney disease: from guidelines to clinical practice. Clin Cardiol. 2019;42(8):774–82. https://doi.org/10.1002/clc.23196.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brodsky SV, Nadasdy T, Rovin BH, Satoskar AA, Nadasdy GM, Wu HM, et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney Int. 2011;80(2):181–9. https://doi.org/10.1038/ki.2011.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Limdi NA, Limdi MA, Cavallari L, Anderson AM, Crowley MR, Baird MF, et al. Warfarin dosing in patients with impaired kidney function. Am J Kidney Dis. 2010;56(5):823–31. https://doi.org/10.1053/j.ajkd.2010.05.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tollitt J, Odudu A, Flanagan E, Chinnadurai R, Smith C, Kalra PA. Impact of prior stroke on major clinical outcome in chronic kidney disease: the Salford kidney cohort study. BMC Nephrol. 2019;20(1):432. https://doi.org/10.1186/s12882-019-1614-5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Filipa Alexandre A, Stoelzel M, Kiran A, Garcia-Hernandez A, Morga A, Kalra PA. Clinical factors for predicting cardiovascular risk, need for renal replacement therapy, and mortality in patients with non-dialysis-dependent stage 3–5 chronic kidney disease from the Salford Kidney Study. J Nephrol. 2023;36(6):1639–49. https://doi.org/10.1007/s40620-023-01626-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92. https://doi.org/10.1016/s0140-6736(11)60739-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cherng Y-G, Lin C-S, Shih C-C, Hsu Y-H, Yeh C-C, Hu C-J, et al. Stroke risk and outcomes in patients with chronic kidney disease or end-stage renal disease: two nationwide studies. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0191155.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Findlay MD, Thomson PC, Fulton RL, Solbu MD, Jardine AG, Patel RK, et al. Risk factors of ischemic stroke and subsequent outcome in patients receiving hemodialysis. Stroke. 2015;46(9):2477–81. https://doi.org/10.1161/strokeaha.115.009095.

    Article  CAS  PubMed  Google Scholar 

  60. Berger I, Wu S, Masson P, Kelly PJ, Duthie FA, Whiteley W, et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 2016;14(1):206. https://doi.org/10.1186/s12916-016-0745-9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. KDIGO. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2024;105(4s):S117-314. https://doi.org/10.1016/j.kint.2023.10.018.

    Article  Google Scholar 

  62. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63(5):713–35. https://doi.org/10.1053/j.ajkd.2014.01.416.

    Article  PubMed  Google Scholar 

  63. Whittaker CF, Miklich MA, Patel RS, Fink JC. Medication safety principles and practice in CKD. Clin J Am Soc Nephrol. 2018;13(11):1738–46. https://doi.org/10.2215/cjn.00580118.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Makin S, Whiteley WN. Intensive blood pressure lowering in patients with renal impairment and lacunar stroke. J Am Heart Assoc. 2019. https://doi.org/10.1161/jaha.119.013637.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tipirneni S, Stanwell P, Weissert R, Bhaskar SMM. Prevalence and impact of cerebral microbleeds on clinical and safety outcomes in acute ischaemic stroke patients receiving reperfusion therapy: a systematic review and meta-analysis. Biomedicines. 2023;11:10. https://doi.org/10.3390/biomedicines11102865.

    Article  Google Scholar 

  66. Rastogi A, Weissert R, Bhaskar SMM. Emerging role of white matter lesions in cerebrovascular disease. Eur J Neurosci. 2021;54(4):5531–59. https://doi.org/10.1111/ejn.15379.

    Article  CAS  PubMed  Google Scholar 

  67. Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol. 2000;11(2):319–29. https://doi.org/10.1681/asn.V112319.

    Article  PubMed  Google Scholar 

  68. Smajlović D. Strokes in young adults: epidemiology and prevention. Vasc Health Risk Manag. 2015;11:157–64. https://doi.org/10.2147/vhrm.S53203.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cheung BM. The hypertension-diabetes continuum. J Cardiovasc Pharmacol. 2010;55(4):333–9. https://doi.org/10.1097/fjc.0b013e3181d26430.

    Article  CAS  PubMed  Google Scholar 

  70. Campese VM, Ku E, Park J. Sympathetic renal innervation and resistant hypertension. Int J Hypertens. 2011. https://doi.org/10.4061/2011/814354.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, Collins R, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377(13):1217–27. https://doi.org/10.1056/NEJMoa1706444.

    Article  PubMed  Google Scholar 

  72. Bradley SA, Spring KJ, Beran RG, Chatzis D, Killingsworth MC, Bhaskar SMM. Role of diabetes in stroke: recent advances in pathophysiology and clinical management. Diabetes Metab Res Rev. 2022. https://doi.org/10.1002/dmrr.3495.

    Article  PubMed  Google Scholar 

  73. Thomas MC, Neuen BL, Twigg SM, Cooper ME, Badve SV. SGLT2 inhibitors for patients with type 2 diabetes and CKD: a narrative review. Endocr Connect. 2023. https://doi.org/10.1530/ec-23-0005.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Botdorf J, Chaudhary K, Whaley-Connell A. Hypertension in cardiovascular and kidney disease. Cardiorenal Med. 2011;1(3):183–92. https://doi.org/10.1159/000329927.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rizk DV, Warnock DG. Warfarin-related nephropathy: another newly recognized complication of an old drug. Kidney Int. 2011;80(2):131–3. https://doi.org/10.1038/ki.2011.85.

    Article  CAS  PubMed  Google Scholar 

  76. Limdi NA, Beasley TM, Baird MF, Goldstein JA, McGwin G, Arnett DK, et al. Kidney function influences warfarin responsiveness and hemorrhagic complications. J Am Soc Nephrol. 2009;20(4):912–21. https://doi.org/10.1681/asn.2008070802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baetz BE, Spinler SA. Dabigatran etexilate: an oral direct thrombin inhibitor for prophylaxis and treatment of thromboembolic diseases. Pharmacotherapy. 2008;28(11):1354–73. https://doi.org/10.1592/phco.28.11.1354.

    Article  CAS  PubMed  Google Scholar 

  78. Chan KE, Lazarus JM, Thadhani R, Hakim RM. Warfarin use associates with increased risk for stroke in hemodialysis patients with atrial fibrillation. J Am Soc Nephrol. 2009;20(10):2223–33. https://doi.org/10.1681/asn.2009030319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Agarwal MA, Potukuchi PK, Sumida K, Naseer A, Molnar MZ, George LK, et al. Clinical outcomes of warfarin initiation in advanced chronic kidney disease patients with incident atrial fibrillation. JACC Clin Electrophysiol. 2020;6(13):1658–68. https://doi.org/10.1016/j.jacep.2020.06.036.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brodsky SV, Satoskar A, Chen J, Nadasdy G, Eagen JW, Hamirani M, et al. Acute kidney injury during warfarin therapy associated with obstructive tubular red blood cell casts: a report of 9 cases. Am J Kidney Dis. 2009;54(6):1121–6. https://doi.org/10.1053/j.ajkd.2009.04.024.

    Article  PubMed  Google Scholar 

  81. Connolly SJ, Eikelboom J, Joyner C, Diener HC, Hart R, Golitsyn S, et al. Apixaban in patients with atrial fibrillation. N Engl J Med. 2011;364(9):806–17. https://doi.org/10.1056/NEJMoa1007432.

    Article  CAS  PubMed  Google Scholar 

  82. Banerjee C, Woller SC, Holm JR, Stevens SM, Lahey MJ. Atypical calciphylaxis in a patient receiving warfarin then resolving with cessation of warfarin and application of hyperbaric oxygen therapy. Clin Appl Thromb Hemost. 2010;16(3):345–50. https://doi.org/10.1177/1076029609355588.

    Article  PubMed  Google Scholar 

  83. Arafa A, Kawachi H, Matsumoto C, Teramoto M, Yasui Y, Kato Y, et al. The association between the estimated glomerular filtration rate and cognitive impairment: the Suita Study. Hypertens Res. 2024;47(3):672–6. https://doi.org/10.1038/s41440-023-01476-8.

    Article  PubMed  Google Scholar 

  84. Egashira S, Koga M, Toyoda K. Intravenous thrombolysis for acute ischemic stroke in patients with end-stage renal disease on hemodialysis: a narrative review. J Cardiovasc Dev Dis. 2022. https://doi.org/10.3390/jcdd9120446.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tariq N, Adil MM, Saeed F, Chaudhry SA, Qureshi AI. Outcomes of thrombolytic treatment for acute ischemic stroke in dialysis-dependent patients in the United States. J Stroke Cerebrovasc Dis. 2013;22(8):e354–9. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.03.016.

    Article  PubMed  Google Scholar 

  86. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, et al. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American heart association/American stroke association. Stroke. 2016;47(2):581–641. https://doi.org/10.1161/str.0000000000000086.

    Article  PubMed  Google Scholar 

  87. Carr SJ, Wang X, Olavarria VV, Lavados PM, Rodriguez JA, Kim JS, et al. Influence of renal impairment on outcome for thrombolysis-treated acute ischemic stroke: ENCHANTED (Enhanced Control of Hypertension and Thrombolysis Stroke Study) post hoc analysis. Stroke. 2017;48(9):2605–9. https://doi.org/10.1161/strokeaha.117.017808.

    Article  PubMed  Google Scholar 

  88. Wang Y, Wang X, Zhang X, Chen S, Sun Y, Liu W, et al. D1 receptor-mediated endogenous tPA upregulation contributes to blood-brain barrier injury after acute ischaemic stroke. J Cell Mol Med. 2020;24(16):9255–66. https://doi.org/10.1111/jcmm.15570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Urrutia VC, Faigle R, Zeiler SR, Marsh EB, Bahouth M, Cerdan Trevino M, et al. Safety of intravenous alteplase within 4.5 hours for patients awakening with stroke symptoms. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0197714.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Potla N, Ganti L. Tenecteplase vs alteplase for acute ischemic stroke: a systematic review. Int J Emerg Med. 2022. https://doi.org/10.1186/s12245-021-00399-w.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol. 2017;16(10):781–8. https://doi.org/10.1016/s1474-4422(17)30253-3.

    Article  CAS  PubMed  Google Scholar 

  92. Campbell BCV, Mitchell PJ, Churilov L, Yassi N, Kleinig TJ, Dowling RJ, et al. Tenecteplase versus alteplase before thrombectomy for ischemic stroke. N Engl J Med. 2018;378(17):1573–82. https://doi.org/10.1056/NEJMoa1716405.

    Article  CAS  PubMed  Google Scholar 

  93. Rønning OM, Logallo N, Thommessen B, Tobro H, Novotny V, Kvistad CE, et al. Tenecteplase versus alteplase between 3 and 4.5 hours in low national institutes of health stroke scale. Stroke. 2019;50(2):498–500. https://doi.org/10.1161/strokeaha.118.024223.

    Article  PubMed  Google Scholar 

  94. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochr Database Syst Rev. 2014. https://doi.org/10.1002/14651858.CD000213.pub3.

    Article  Google Scholar 

  95. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31. https://doi.org/10.1016/s0140-6736(16)00163-x.

    Article  PubMed  Google Scholar 

  96. Laible M, Möhlenbruch MA, Pfaff J, Jenetzky E, Ringleb PA, Bendszus M, et al. Influence of renal function on treatment results after stroke thrombectomy. Cerebrovasc Disord. 2017;44(5–6):351–8. https://doi.org/10.1159/000481147.

    Article  Google Scholar 

  97. Fandler-Höfler S, Odler B, Kneihsl M, Wünsch G, Haidegger M, Poltrum B, et al. Acute and chronic kidney dysfunction and outcome after stroke thrombectomy. Transl Stroke Res. 2021;12(5):791–8. https://doi.org/10.1007/s12975-020-00881-2.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Osman M, Sulaiman S, Alqahtani F, Harris AH, Hohmann SF, Alkhouli M. Association of chronic kidney disease with in-hospital outcomes of endovascular stroke interventions. Cardiovasc Revasc Med. 2022;34:121–5. https://doi.org/10.1016/j.carrev.2021.01.021.

    Article  PubMed  Google Scholar 

  99. Laible M, Jenetzky E, Möhlenbruch MA, Neuberger U, Bendszus M, Ringleb PA, et al. Renal impairment is associated with intracerebral hemorrhage after mechanical thrombectomy in vertebrobasilar stroke. Cerebrovasc Disord. 2019;47(1–2):48–56. https://doi.org/10.1159/000497070.

    Article  Google Scholar 

  100. Laible M, Jenetzky E, Möhlenbruch MA, Bendszus M, Ringleb PA, Rizos T. The impact of post-contrast acute kidney injury on in-hospital mortality after endovascular thrombectomy in patients with acute ischemic stroke. Front Neurol. 2021. https://doi.org/10.3389/fneur.2021.665614.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yamamoto Y, Yamamoto N, Kanematsu Y, Kuroda K, Yamaguchi I, Miyamoto T, et al. High white blood cell count is a risk factor for contrast-induced nephropathy following mechanical thrombectomy for acute ischemic stroke. Cerebrovasc Dis Extra. 2020;10(2):59–65. https://doi.org/10.1159/000507918.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lee HG, Kim WK, Yeon JY, Kim JS, Kim KH, Jeon P, et al. Contrast-induced acute kidney injury after coil embolization for aneurysmal subarachnoid hemorrhage. Yonsei Med J. 2018;59(1):107–12. https://doi.org/10.3349/ymj.2018.59.1.107.

    Article  PubMed  Google Scholar 

  103. Yamamoto Y, Yamamoto N, Kanematsu Y, Kuroda K, Yamaguchi I, Miyamoto T, et al. High white blood cell count is a risk factor for contrast-induced nephropathy following mechanical thrombectomy for acute ischemic stroke. Cerebrovasc Disord. 2020;10(2):59–65. https://doi.org/10.1159/000507918.

    Article  Google Scholar 

  104. Yoo J, Hong JH, Lee SJ, Kim YW, Hong JM, Kim CH, et al. Acute kidney injury after endovascular treatment in patients with acute ischemic stroke. J Clin Med. 2020. https://doi.org/10.3390/jcm9051471.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Modi K, Padala SA, Gupta M. Contrast-Induced Nephropathy. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022

  106. de Havenon A, Yaghi S, Mistry EA, Delic A, Hohmann S, Shippey E, et al. Endovascular thrombectomy in acute ischemic stroke patients with COVID-19: prevalence, demographics, and outcomes. J Neurointerv Surg. 2020;12(11):1045–8. https://doi.org/10.1136/neurintsurg-2020-016777.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Global, Regional, and National Burden of Stroke and its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Neurology. 2021;20(10):795–820. https://doi.org/10.1016/s1474-4422(21)00252-0

  108. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American heart association/American stroke association. Stroke. 2021;52(7):e364–467. https://doi.org/10.1161/str.0000000000000375.

    Article  PubMed  Google Scholar 

  109. Chelluboina B, Vemuganti R. Chronic kidney disease in the pathogenesis of acute ischemic stroke. J Cereb Blood Flow Metab. 2019;39(10):1893–905. https://doi.org/10.1177/0271678x19866733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sprick JD, Jones T, Jeong J, DaCosta D, Park J. Dynamic cerebral autoregulation is intact in chronic kidney disease. 2022. Physiol Rep. https://doi.org/10.14814/phy2.15495.

  111. Jia X, Wang W, Wu B, Sun X. Intravenous thrombolysis for acute ischemic stroke with extended time window. China Medical Journal. 2021;134(22):2666–74. https://doi.org/10.1097/cm9.0000000000001781.

    Article  Google Scholar 

  112. Hankey GJ. Angiotensin-converting enzyme inhibitors for stroke prevention. Stroke. 2003;34(2):354–6. https://doi.org/10.1161/01.STR.0000054261.97525.4B.

    Article  PubMed  Google Scholar 

  113. Renner CJ, Kasner SE, Bath PM, Bahouth MN, Lees KR, Alexandrov A, et al. Stroke outcome related to initial volume status and diuretic use. J Am Heart Assoc. 2022. https://doi.org/10.1161/JAHA.122.026903.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yamada S, Tsuruya K, Taniguchi M, Tokumoto M, Fujisaki K, Hirakata H, et al. Association between serum phosphate levels and stroke risk in patients undergoing hemodialysis. Stroke. 2016;47(9):2189–96. https://doi.org/10.1161/STROKEAHA.116.013195.

    Article  CAS  PubMed  Google Scholar 

  115. Sato K, Konta Y, Furuta K, Kamizato K, Furukawa A, Ono A, et al. Prognostic factors for acute ischemic stroke in patients undergoing hemodialysis. Clin Exp Nephrol. 2022;26(3):286–93. https://doi.org/10.1007/s10157-021-02146-0.

    Article  PubMed  Google Scholar 

  116. Kvistad CE, Næss H, Helleberg BH, Idicula T, Hagberg G, Nordby LM, et al. Tenecteplase versus alteplase for the management of acute ischaemic stroke in Norway (NOR-TEST 2, part A): a phase 3, randomised, open-label, blinded endpoint, non-inferiority trial. Lancet Neurol. 2022;21(6):511–9. https://doi.org/10.1016/s1474-4422(22)00124-7.

    Article  CAS  PubMed  Google Scholar 

  117. Menon BK, Buck BH, Singh N, Deschaintre Y, Almekhlafi MA, Coutts SB, et al. Intravenous tenecteplase compared with alteplase for acute ischaemic stroke in Canada (AcT): a pragmatic, multicentre, open-label, registry-linked, randomised, controlled, non-inferiority trial. Lancet. 2022;400(10347):161–9. https://doi.org/10.1016/s0140-6736(22)01054-6.

    Article  CAS  PubMed  Google Scholar 

  118. Wang Y, Li S, Pan Y, Li H, Parsons MW, Campbell BCV, et al. Tenecteplase versus alteplase in acute ischaemic cerebrovascular events (TRACE-2): a phase 3, multicentre, open-label, randomised controlled, non-inferiority trial. Lancet. 2023;401(10377):645–54. https://doi.org/10.1016/s0140-6736(22)02600-9.

    Article  CAS  PubMed  Google Scholar 

  119. Xiong Y, Wang L, Li G, Yang KX, Hao M, Li S, et al. Tenecteplase versus alteplase for acute ischaemic stroke: a meta-analysis of phase III randomised trials. Stroke Vasc Neurol. 2023. https://doi.org/10.1136/svn-2023-002396.

    Article  PubMed Central  Google Scholar 

  120. Tomino Y, Hagiwara S, Gohda T. AGE-RAGE interaction and oxidative stress in obesity-related renal dysfunction. Kidney Int. 2011;80(2):133–5. https://doi.org/10.1038/ki.2011.86.

    Article  CAS  PubMed  Google Scholar 

  121. Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188(1):171–8. https://doi.org/10.1148/radiology.188.1.8511292.

    Article  CAS  PubMed  Google Scholar 

  122. Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348(6):491–9. https://doi.org/10.1056/NEJMoa021833.

    Article  CAS  PubMed  Google Scholar 

  123. Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med. 1990;89(5):615–20. https://doi.org/10.1016/0002-9343(90)90180-l.

    Article  CAS  PubMed  Google Scholar 

  124. Weber R, van Hal R, Stracke P, Hadisurya J, Nordmeyer H, Chapot R. Incidence of acute kidney injury after computed tomography angiography±computed tomography perfusion followed by thrombectomy in patients with stroke using a postprocedural hydration protocol. Am Coll Cardiol. 2020. https://doi.org/10.1161/jaha.119.014418.

    Article  Google Scholar 

  125. Abe M, Hatta T, Imamura Y, Sakurada T, Kaname S. Inpatient multidisciplinary care can prevent deterioration of renal function in patients with chronic kidney disease: a nationwide cohort study. Front Endocrinol (Lausanne). 2023;14:1180477. https://doi.org/10.3389/fendo.2023.1180477.

    Article  PubMed  Google Scholar 

  126. Lin E, Chertow GM, Yan B, Malcolm E, Goldhaber-Fiebert JD. Cost-effectiveness of multidisciplinary care in mild to moderate chronic kidney disease in the United States: a modeling study. PLoS Med. 2018. https://doi.org/10.1371/journal.pmed.1002532.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rahbar MH, Medrano M, Diaz-Garelli F, Gonzalez Villaman C, Saroukhani S, Kim S, et al. Younger age of stroke in low-middle income countries is related to healthcare access and quality. Ann Clin Transl Neurol. 2022;9(3):415–27. https://doi.org/10.1002/acn3.51507.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jung JM, Kim HJ, Ahn H, Ahn IM, Do Y, Choi JY, et al. Chronic kidney disease and intravenous thrombolysis in acute stroke: a systematic review and meta-analysis. J Neurol Sci. 2015;358(1–2):345–50. https://doi.org/10.1016/j.jns.2015.09.353.

    Article  PubMed  Google Scholar 

  129. Hao Z, Yang C, Liu M, Wu B. Renal dysfunction and thrombolytic therapy in patients with acute ischemic stroke: a systematic review and meta-analysis. Medicine (Baltimore). 2014. https://doi.org/10.1097/md.0000000000000286.

    Article  PubMed  Google Scholar 

  130. Konstantinou DM, Chatzizisis YS, Farmakis G, Styliadis I, Giannoglou GD. Cholesterol embolization syndrome following thrombolysis during acute myocardial infarction. Herz. 2012;37(2):231–3. https://doi.org/10.1007/s00059-011-3442-7.

    Article  CAS  PubMed  Google Scholar 

  131. Jansi Prema KS, Kurien AA. Atheroembolic renal disease: a case series. Indian J Nephrol. 2019;29(6):427–30. https://doi.org/10.4103/ijn.IJN_265_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stacul F, Adam A, Becker CR, Davidson C, Lameire N, McCullough PA, et al. Strategies to reduce the risk of contrast-induced nephropathy. Am J Cardiol. 2006;98(6a):59k–77k. https://doi.org/10.1016/j.amjcard.2006.01.024.

    Article  CAS  PubMed  Google Scholar 

  133. Obed M, Gabriel MM, Dumann E, Vollmer Barbosa C, Weißenborn K, Schmidt BMW. Risk of acute kidney injury after contrast-enhanced computerized tomography: a systematic review and meta-analysis of 21 propensity score-matched cohort studies. Eur Radiol. 2022;32(12):8432–42. https://doi.org/10.1007/s00330-022-08916-y.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chusiri S, Chutinet A, Suwanwela NC, Puttilerpong C. Incidence and risk factors of postcontrast acute kidney injury in patients with acute ischemic stroke. Stroke Res Treat. 2020;2020:7182826. https://doi.org/10.1155/2020/7182826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. de Aquino Moura KB, Behrens PMP, Pirolli R, Sauer A, Melamed D, Veronese FV, et al. Anticoagulant-related nephropathy: systematic review and meta-analysis. Clin Kidney J. 2019;12(3):400–7. https://doi.org/10.1093/ckj/sfy133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen S, Liao D, Yang M, Wang S. Anticoagulant-related nephropathy induced by direct-acting oral anticoagulants: clinical characteristics, treatments and outcomes. Thromb Res. 2023;222:20–3. https://doi.org/10.1016/j.thromres.2022.12.002.

    Article  CAS  PubMed  Google Scholar 

  137. Natale P, Palmer SC, Saglimbene VM, Ruospo M, Razavian M, Craig JC, et al. Antiplatelet agents for chronic kidney disease. Cochrane Database Syst Rev. 2022. https://doi.org/10.1002/14651858.CD008834.pub4.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lu JL, Shrestha P, Streja E, Kalantar-Zadeh K, Kovesdy CP. Association of long-term aspirin use with kidney disease progression. Front Med (Lausanne). 2023;10:1283385. https://doi.org/10.3389/fmed.2023.1283385.

    Article  PubMed  Google Scholar 

  139. Tanios BY, Itani HS, Zimmerman DL. Clopidogrel use in end-stage kidney disease. Semin Dial. 2015;28(3):276–81. https://doi.org/10.1111/sdi.12338.

    Article  PubMed  Google Scholar 

  140. Su X, Yan B, Wang L, Lv J, Cheng H, Chen Y. Effect of antiplatelet therapy on cardiovascular and kidney outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2019;20(1):309. https://doi.org/10.1186/s12882-019-1499-3.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hall ME, Rocco MV, Morgan TM, Hamilton CA, Jordan JH, Edwards MS, et al. Beta-blocker use is associated with higher renal tissue oxygenation in hypertensive patients suspected of renal artery stenosis. Cardiorenal Med. 2016;6(4):261–8. https://doi.org/10.1159/000445302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang Y, He D, Zhang W, Xing Y, Guo Y, Wang F, et al. ACE inhibitor benefit to kidney and cardiovascular outcomes for patients with non-dialysis chronic kidney disease stages 3–5: a network meta-analysis of randomised clinical trials. Drugs. 2020;80(8):797–811. https://doi.org/10.1007/s40265-020-01290-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wright J, Jackson T, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288(19):2421–31. https://doi.org/10.1001/jama.288.19.2421.

    Article  CAS  PubMed  Google Scholar 

  144. Lin SY, Tang SC, Tsai LK, Yeh SJ, Shen LJ, Wu FL, et al. Incidence and risk factors for acute kidney injury following mannitol infusion in patients with acute stroke: a retrospective cohort study. Medicine (Baltimore). 2015. https://doi.org/10.1097/md.0000000000002032.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chen CF, Liu XF, Meng XZ, Jia HY. Comparative study of mannitol-induced acute kidney impairments in patients of different ages suffering from subarachnoid hemorrhage. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2007;19(12):727–30.

    CAS  PubMed  Google Scholar 

  146. Yamal JM, Martinez J, Osani MC, Du XL, Simpson LM, Davis BR. Mortality and morbidity among individuals with hypertension receiving a diuretic, ACE inhibitor, or calcium channel blocker: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2023. https://doi.org/10.1001/jamanetworkopen.2023.44998.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Selim M, Savitz S, Linfante I, Caplan L, Schlaug G. Effect of pre-stroke use of ACE inhibitors on ischemic stroke severity. BMC Neurol. 2005;5(1):10. https://doi.org/10.1186/1471-2377-5-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Di Napoli M, Papa F. Angiotensin-converting enzyme inhibitor use is associated with reduced plasma concentration of C-reactive protein in patients with first-ever ischemic stroke. Stroke. 2003;34(12):2922–9. https://doi.org/10.1161/01.Str.0000099124.84425.Bb.

    Article  PubMed  Google Scholar 

  149. Alosaimi M, Roos NAC, Alnakhli AM, Cleland J, Padmanabhan S. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in stroke prevention: a systematic review and meta-analysis involving 297,451 patients. J Hypertens. 2021. https://doi.org/10.1097/01.hjh.0000746472.35950.67.

    Article  Google Scholar 

  150. Pai P-Y, Muo C-H, Sung F-C, Ho H-C, Lee Y-T. Angiotensin receptor blockers (ARB) outperform angiotensin-converting enzyme (ACE) inhibitors on ischemic stroke prevention in patients with hypertension and diabetes: a real-world population study in Taiwan. Int J Cardiol. 2016;215:114–9. https://doi.org/10.1016/j.ijcard.2016.04.096.

    Article  PubMed  Google Scholar 

  151. Renner CJ, Kasner SE, Bath PM, Bahouth MN. Stroke outcome related to initial volume status and diuretic use. J Am Heart Assoc. 2022. https://doi.org/10.1161/jaha.122.026903.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Shih HM, Lin WC, Wang CH, Lin LC. Hypertensive patients using thiazide diuretics as primary stroke prevention make better functional outcome after isoutcomesstroke. J Stroke Cerebrovasc Dis. 2014;23(9):2414–8. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.05.021.

    Article  PubMed  Google Scholar 

  153. Kalantar-Zadeh K, Forfang D, Bakris G, Martin KJ, Moe SM, Sprague SM. Managing phosphate burden in patients receiving dialysis: beyond phosphate binders and diet. Kidney. 2023;4(11):1650–6.

    Article  Google Scholar 

  154. Brar SK, Perveen S, Chaudhry MR, AlBabtain S, Amreen S, Khan S. Erythropoietin-induced hypertension: a review of pathogenesis, treatment, and role of blood viscosity. Cureus. 2021. https://doi.org/10.7759/cureus.12804.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hung PH, Yeh CC, Hsiao CY, Muo CH, Hung KY, Tsai KJ. Erythropoietin use and the risk of stroke in patients on hemodialysis: a retrospective cohort study in Taiwan. J Am Heart Assoc. 2021. https://doi.org/10.1161/JAHA.120.019529.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Åberg ND, Stanne TM, Jood K, Schiöler L, Blomstrand C, Andreasson U, et al. Serum erythropoietin and outcome after ischaemic stroke: a prospective study. BMJ Open. 2016. https://doi.org/10.1136/bmjopen-2015-009827.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol. 2017;16(10):781–8. https://doi.org/10.1016/s1474-4422(17)30253-3.

    Article  CAS  PubMed  Google Scholar 

  158. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366(12):1099–107. https://doi.org/10.1056/NEJMoa1109842.

    Article  CAS  PubMed  Google Scholar 

  159. Taniyama Y. Management of hypertension for patients undergoing dialysis therapy. Renal Replac herapy. 2016;2(1):21. https://doi.org/10.1186/s41100-016-0034-2.

    Article  Google Scholar 

  160. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 2022; 400(10365):1788–801. https://doi.org/10.1016/s0140-6736(22)02074-8

  161. Mavrakanas TA, Tsoukas MA, Brophy JM, Sharma A, Gariani K. SGLT-2 inhibitors improve cardiovascular and renal outcomes in patients with CKD: a systematic review and meta-analysis. Sci Rep. 2023;13(1):15922. https://doi.org/10.1038/s41598-023-42989-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–22. https://doi.org/10.1016/s0140-6736(17)30057-0.

    Article  PubMed  Google Scholar 

  163. Gupta RK, Bang TJ. Prevention of Contrast-Induced Nephropathy (CIN) in interventional radiology practice. Semin Interv Radiol. 2010;27(4):348–59. https://doi.org/10.1055/s-0030-1267860.

    Article  CAS  Google Scholar 

  164. Bader BD, Berger ED, Heede MB, Silberbaur I, Duda S, Risler T, et al. What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin Nephrol. 2004;62(1):1–7. https://doi.org/10.5414/cnp62001.

    Article  CAS  PubMed  Google Scholar 

  165. Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383(9931):1814–23. https://doi.org/10.1016/s0140-6736(14)60689-9.

    Article  PubMed  Google Scholar 

  166. Sudarsky D, Nikolsky E. Contrast-induced nephropathy in interventional cardiology. Int J Nephrol Renovasc Dis. 2011;4:85–99. https://doi.org/10.2147/ijnrd.S21393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Balemans CE, Reichert LJ, van Schelven BI, van den Brand JA, Wetzels JF. Epidemiology of contrast material-induced nephropathy in the era of hydration. Radiology. 2012;263(3):706–13. https://doi.org/10.1148/radiol.12111667.

    Article  PubMed  Google Scholar 

  168. Schweiger MJ, Chambers CE, Davidson CJ, Zhang S, Blankenship J, Bhalla NP, et al. Prevention of contrast induced nephropathy: recommendations for the high-risk patient undergoing cardiovascular procedures. Catheter Cardiovasc Interv. 2007;69(1):135–40. https://doi.org/10.1002/ccd.20964.

    Article  PubMed  Google Scholar 

  169. Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, et al. Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American college of radiology and the national kidney foundation. Radiology. 2020;294(3):660–8. https://doi.org/10.1148/radiol.2019192094.

    Article  PubMed  Google Scholar 

  170. Somkereki C, Palfi R, Scridon A. Prevention of contrast-associated acute kidney injury in an era of increasingly complex interventional procedures. Front Med (Lausanne). 2023;10:1180861. https://doi.org/10.3389/fmed.2023.1180861.

    Article  PubMed  Google Scholar 

  171. AHRQ. Prevention of Contrast Media Induced Nephropathy. 2013

  172. Chavda V, Chaurasia B, Deora H, Umana GE. Chronic Kidney disease and stroke: a Bi-directional risk cascade and therapeutic update. Brain Disorders. 2021. https://doi.org/10.1016/j.dscb.2021.100017.

    Article  Google Scholar 

  173. Miglinas M, Cesniene U, Janusaite MM, Vinikovas A. Cerebrovascular disease and cognition in chronic kidney disease patients. Front Cardiovasc Med. 2020. https://doi.org/10.3389/fcvm.2020.00096.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zhao Q, Yan T, Chopp M, Venkat P, Chen J. Brain–kidney interaction: Renal dysfunction following ischemic stroke. J Cereb Blood Flow Metab. 2019;40(2):246–62. https://doi.org/10.1177/0271678X19890931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Assem M, Lando M, Grissi M, Kamel S, Massy ZA, Chillon JM, et al. The impact of uremic toxins on cerebrovascular and cognitive disorders. Toxins (Basel). 2018. https://doi.org/10.3390/toxins10070303.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Chen HF, Ho TF, Kuo YH, Chien JH. Association between anemia severity and ischemic stroke incidence: a retrospective cohort study. Int J Environ Res Public Health. 2023. https://doi.org/10.3390/ijerph20053849.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Joles JA, Koomans HA. Causes and consequences of increased sympathetic activity in renal disease. Hypertension. 2004;43(4):699–706. https://doi.org/10.1161/01.HYP.0000121881.77212.b1.

    Article  CAS  PubMed  Google Scholar 

  178. Kim HL. Arterial stiffness and hypertension. Clin Hypertens. 2023;29(1):31. https://doi.org/10.1186/s40885-023-00258-1.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol Physiol. 1999;26(7):563–5. https://doi.org/10.1046/j.1440-1681.1999.03081.x.

    Article  CAS  PubMed  Google Scholar 

  180. Nunns GR, Moore EE, Chapman MP, Moore HB, Stettler GR, Peltz E, et al. The hypercoagulability paradox of chronic kidney disease: the role of fibrinogen. Am J Surg. 2017;214(6):1215–8. https://doi.org/10.1016/j.amjsurg.2017.08.039.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Xie Z, Tong S, Chu X, Feng T, Geng M. Chronic kidney disease and cognitive impairment: the kidney-brain axis. Kidney Dis (Basel). 2022;8(4):275–85. https://doi.org/10.1159/000524475.

    Article  PubMed  Google Scholar 

  182. Zhao Q, Yan T, Chopp M, Venkat P, Chen J. Brain-kidney interaction: renal dysfunction following ischemic stroke. J Cereb Blood Flow Metab. 2020;40(2):246–62. https://doi.org/10.1177/0271678x19890931.

    Article  CAS  PubMed  Google Scholar 

  183. Boehme AK, Esenwa C, Elkind MS. Stroke risk factors, genetics, and prevention. Circ Res. 2017;120(3):472–95. https://doi.org/10.1161/circresaha.116.308398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kazancioğlu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl (2011). 2013;3(4):368–71. https://doi.org/10.1038/kisup.2013.79.

    Article  PubMed  Google Scholar 

  185. Critselis E, Lambers HH. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression. Nephrol Dial Transplant. 2015;31(2):249–54. https://doi.org/10.1093/ndt/gfv062.

    Article  CAS  PubMed  Google Scholar 

  186. Dudley A, Griffioen A. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26:1–35. https://doi.org/10.1007/s10456-023-09876-7.

    Article  Google Scholar 

  187. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, et al. Prevalence of Conventional Risk Factors in Patients With Coronary Heart Disease. JAMA. 2003;290(7):898–904. https://doi.org/10.1001/jama.290.7.898.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support received from the Grant-in-Aid for Scientific Research (KAKENHI) (PI: SMMB) by the Japan Society for the Promotion of Science (JSPS), Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT). Additionally, we extend our gratitude for the JSPS International Fellowship, supported by MEXT and the Australian Academy of Science, awarded to SMMB for 2023-25. SMMB reports leadership or fiduciary roles in various organizations, including the National Cerebral and Cardiovascular Center (Osaka, Japan) as Visiting Director (2023-25); Rotary District 9675 as District Chair for Diversity, Equity, and Inclusion; the Global Health and Migration Hub Community, Global Health Hub Germany (Berlin, Germany) as Chair, Founding Member, and Manager; and editorial board memberships at PLOS One, BMC Neurology, Frontiers in Neurology, Frontiers in Stroke, Frontiers in Public Health, Journal of Aging Research, and BMC Medical Research Methodology. Additionally, SMMB serves as a Member of the College of Reviewers for the Canadian Institutes of Health Research (CIHR), Government of Canada; Director of Research for the World Headache Society (Bengaluru, India); a member of the Scientific Review Committee at Cardiff University Biobank (Cardiff, UK); and as an Expert Adviser/Reviewer for the Cariplo Foundation (Milan, Italy); outside the submitted work. The funding body has no role in the study design, data collection, analysis, interpretation of findings, and manuscript preparation. The content is solely the authors' responsibility and does not necessarily represent the official views of the affiliated/funding organization/s.

Funding

The author acknowledges the financial support received from the Grant-in-Aid for Scientific Research (KAKENHI) (PI: SMMB) by the Japan Society for the Promotion of Science (JSPS), Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT). Additionally, we extend our gratitude to the JSPS International Fellowship, supported by MEXT, and the Australian Academy of Science, awarded to SMMB for the period 2023–25.

Author information

Authors and Affiliations

Authors

Contributions

SMMB conceived the study, contributed to the manuscript's planning, drafting, and revision, and supervised the students (KR and VU). SMMB encouraged KR to investigate and supervised the findings of this work. KR and SMMB wrote the first draft of this paper. All authors (KJ, KJS, IS, VP, MMM, GFMS, RGB, and SMMB) critically evaluated the draft and contributed to the revision of the manuscript. All authors approved the final draft of the manuscript.

Corresponding author

Correspondence to Sonu M. M. Bhaskar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

All analyses were based on previously published studies; thus, no ethical approval and patient consent are required.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, K., Spring, K.J., Smokovski, I. et al. The impact of chronic kidney disease on prognosis in acute stroke: unraveling the pathophysiology and clinical complexity for optimal management. Clin Exp Nephrol 29, 149–172 (2025). https://doi.org/10.1007/s10157-024-02556-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-024-02556-w

Keywords

Profiles

  1. Man Mohan Mehndiratta
  2. Sonu M. M. Bhaskar