PRODUCT OF THE GENERALIZED FUNCTIONS x-- k AND
δ(p)(x) IN COLOMBEAU ALGEBRA

Abstract

In this paper the product of the distributions ${{x_ - }^{ - k}}$ and ${\delta ^{\left( p \right)}}\left( x \right)$ is derived. The result is obtained in Colombeau algebra of generalized functions which contains the space of Schwartz distributions as a subspace and has a notion of 'association' that allows us to evaluate the results in terms of distributions.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 35
Issue: 1
Year: 2022

DOI: 10.12732/ijam.v35i1.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. Gsponer, A concise introduction to Colombeau generalized functions and their applications in classical electrodynamics, European Journal of Physics, 30, No 1 (2009), 109-126.
  2. [2] A.H. Zemanian, Distribution Theory and Transform Analysis, Dover (1965).
  3. [3] B. Damyanov, Results on Colombeau product of distributions, Commentationes Mathematicae Universitatis Carolinae, 38, No 4 (1997), 627-634.
  4. [4] B. Damyanov, Multiplication of Schwartz distributions and Colombeau generalized functions, Journal of Applied Analysis, 5, No 2 (1999), 249260.
  5. [5] B. Damyanov, Balanced Colombeau products of the distributions x−p ± and x−p, Czechoslovak Mathematical Journal, 55, No 1 (2005), 189-201.
  6. [6] B. Damyanov, Results on balanced products of the distributions xa ± in Colombeau algebra G (R), Integral Transforms and Special Functions, 17, No 9 (2006), 623-635.
  7. [7] B. Fisher, The product of distributions, The Quarterly Journal of Mathematics, 22, No 2 (1971), 291-298.
  8. [8] B. Fisher, On defining the product of distributions, Mathematische Nachrichten, 99, No 1 (1980), 239-249.
  9. [9] B.J. Tuneska, A. Takaci, E. Ozcag, On differential equations with nonstandard coefficients, Applicable Analysis and Discrete Mathematics, 1 (2007), 276-283.
  10. [10] B.J. Tuneska, T.A. Pacemska, Further results on Colombeau product of distributions, International Journal of Mathematics and Mathematical Sciences (2013); doi: 10.1155/2013/918905.
  11. [11] C.L. Zhi, B. Fisher, Several products of distributions on Rm, Proceedings of the Royal Society of London, London (1989), A426: 425-439.
  12. [12] E. Nigsch, C. Samman, Global algebras of nonlinear generalized functions with applications in general relativity, Sao Paulo Journal of Mathematical Sciences, 7, No 2 (2013), 143-171.
  13. [13] F. Farassat, Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics, NASA Technical Paper 3428.
  14. [14] I.M. Gelfand, G.E. Shilov, Generalized Functions, Academic Press, New York, USA (1964).
  15. [15] J.F. Colombeau, New Generalized Functions and Multiplication of Distributions, North Holland Math. Studies, 84 (1984).
  16. [16] J.F. Colombeau, Elementary Introduction New Generalized Functions, North Holland Math. Studies, 113 (1985).
  17. [17] J. Aragona, J.F. Colombeau, S.O. Juriaans, Nonlinear generalized functions and jump conditions for a standard one pressure liquid-gas model, Journal of Mathematical Analysis and Applications, 418, No 2 (2014), 964-977.
  18. [18] K. Ohgitani, M. Dowker, Burges equation with a passive scalar: dissipation anomaly and Colombeau calculus, Journal of Mathematical Physics, 51, No 3 (2010), 1-7.
  19. [19] M. Alimohammady, F. Fariba, Existence/uniqueness of solutions to heat equation in extended Colombeau algebra, Sahand Communications in Mathematical Analysis, 1, No 1 (2014), 21-28.
  20. [20] M. Miteva, B.J. Tuneska, Some results on Colombeau product of distributions, Advances in Mathematics: Scientific Journal, 1, No 2 (2012), 121-126.
  21. [21] M. Miteva, B.J. Tuneska, T.A. Pacemska, On products of distributions in Colombeau algebra, Mathematical Problems in Engineering (2014); doi: 10.1155/2014/910510.
  22. [22] M. Miteva, B.J. Tuneska, T.A. Pacemska, Colombeau products of distributions, SpringerPlus 5 (2016); doi: 10.1186/s40064-016-3742-8.
  23. [23] M. Miteva, B.J. Tuneska, T.A. Pacemska, Results on the Colombeau products of the distribution x−r−1/2 + with the distributions x−k−1/2 − and xk−1/2 − , Functional Analysis and its Applications, 52, No 1 (2018), 9-20.
  24. [24] M. Oberguggenberger, T. Todorov, An embedding of Schwartz distributions in the algebra of asymptotic functions, International Journal of Mathematics and Mathematical Science, 21, No 3 (1998), 417-428.
  25. [25] M. Stojanovic, Singular fractional evolution differential equations, Central Europian Journal of Physics, 11, No 10 (2013), 1337-1349.
  26. [26] R. Steinbauer, The ultrarelativistic Reissner-Nordstrom field in the Colombeau algebra, Journal of Mathematical Physics, 38, No 3 (1997), 1-8.
  27. [27] R. Steinbauer, J.A. Vickers, The use of generalized functions and distributions in general relativity, Classical and Quantum Gravity, 23, No 10 (2006).
  28. [28] U. Capar, Colombeau solutions of a nonlinear stochastic predator - pray equation, Turkish Journal of Mathematics, 34 (2013), 1048-1060.
  29. [29] V. Prusa, K.R. Rajagopal, On the response of physical systems governed by non-linear ordinary differential equations to step input, International Journal of Non-Linear Mechanics, 81 (2016), 207-221.