Use of SEM/EDX methods for the analysis of ambient particulate matter adhering to the skin surface

Mirakovski, Dejan and Damevska, Katerina and Simeonovski, Viktor and Nikolovska, S. and Boev, Blazo and Petrov, A. and Sijakova-Ivanova, Tena and Zendelska, Afrodita and Hadzi-Nikolova, Marija and Boev, Ivan and Dimov, Gorgi and Darlenski, Razvigor and Kazandjieva, J. and Damevska, S. and Situm, M. (2022) Use of SEM/EDX methods for the analysis of ambient particulate matter adhering to the skin surface. Journal of the European Academy of Dermatology and Venereology. ISSN 1468-3083

[thumbnail of jdv18146-sup-0001-appendixs1.pdf] Text
jdv18146-sup-0001-appendixs1.pdf

Download (246kB)

Abstract

Background
The skin is exposed to numerous particulate and gaseous air pollutants. The ones that need particular attention are the particles that adhere to the skin surface, which can later cause direct skin damage. This study aimed to characterize air pollution (AP) particles adhered to the human skin by using scanning electron microscopy (SEM) combined with X-ray dispersive energy spectrometry (EDX).

Methods
Tape stripping was performed from six healthy volunteers exposed to urban AP to collect stratum corneum samples from the cheeks and forehead. The samples were analysed using SEM equipped with EDX system with a silicon drift detector at an accelerating voltage of 20 keV. After the preliminary examination, the particles were located and counted using 1000× magnification. Each particle was analysed, increasing magnification up to 5000× for precise dimension measurement and elemental composition analysis. At least 100 fields or a surface of approximately 1 mm2 were examined.

Results
Particles adhered to the skin were identified in all samples, with a particle load ranging from 729 to 4525. The average area and perimeter of all particles identified were 302 ± 260 μm2 and 51 ± 23 μm subsequently, while the equivalent circular diameter was, on average, 14 ± 6 μm. The particles were classified into ten groups based on morphology and elemental composition. Chlorides were the most numerous particle group (21.9%), followed by carbonaceous organic particles (20.3%), silicates (18%), carbonates (16.4%), metal-rich particles (14%), and a minor number of bioaerosols, quartz-like, and fly ash particles.

Conclusion
The SEM–EDX analysis provides evidence of the contamination of exposed skin to various airborne PM of natural or anthropogenic origin. This method may provide new insights into the link between exposure to AP and AP-induced skin damage.

Item Type: Article
Impact Factor Value: 6.166
Subjects: Medical and Health Sciences > Other medical sciences
Divisions: Faculty of Natural and Technical Sciences
Depositing User: Afrodita Zendelska
Date Deposited: 25 May 2022 07:32
Last Modified: 25 May 2022 07:32
URI: https://eprints.ugd.edu.mk/id/eprint/29759

Actions (login required)

View Item View Item