	INTERNATIONAL FINANCE eJOURNA
JKN I	Vol. 3, No. 120: Jul 19, 2011
ITTOW'S PREAMENTS LOOKY	Browse ALL abstracts for this journal
uks: Subscribe ~ Un Submit ~ Revis	subscribe Distribution Network Directors Advisory Board e Your Papers
able of Contents	2006. As at posting this material the exchange rate is what is changed:
Foreign Exchange I John E. Baiden, Cent	Determination in Ghana tral University College
Small Lessons fron Dino Martellato, Ca I	n the Recent Euro-Dollar Skirmishes Foscari University of Venice - Department of Economics
Global and Regiona Oral H. Williams, Inte Tahsin Saadi-Sedik,	Il Spillovers to GCC Equity Markets ernational Monetary Fund (IMF) International Monetary Fund (IMF)
Currency Jumps, Co Arjun Chatrath, Univ Ryan Dailing, Pyxis G Hong Miao, Colorado Sanjay Ramchander	ojumps and Trading Profits: Role of Macroeconomic Announcements ersity of Portland - Dr. Robert B. Pamplin, Jr. School of Business Administration ilobal Financial Services State University - Department of Finance & Real Estate
The Effects of Taiw	an Direct Investment of China on Taiwan
Lawrence Wang, aff	iliation not provided to SSRN
Forecasting FOREX Rajesh Mohnot, affili	Volatility in Turbulent Times ation not provided to SSRN
Analysis of Purchas Dushko Josheski, Un Cane Koteski, Univer	s ing Power Parity with Data for Macedonia iversity Goce Delcev rsity Goce Delcev
Evidence on the Pe Ilhan Meric, Rider Uni Christine Lentz, Ride Wayne Smeltz, Rider Gulser Meric, Rowan	rformance of Country Index Funds in Global Financial Crisis iversity rr University [•] University University - Accounting & Finance
The Effects of Shor	t-Term Interest Rates on Output, Price and Exchange Rates: Recent
Shuzhang Sun, Linco Christopher Gan, Lin Baiding Hu, Lincoln U	ln University (NZ) coln University (NZ) niversity (NZ)
Relationships Amor Change-Over Rates	ng Foreign Institutional Investments, Stock Returns and Currency s in India
Subrata Kumar Mitra	a, Institute of Management Technology (IMT)
TERNATIONAL	FINANCE eJOURNAL
'Foreign Exchange	Determination in Ghana" D
JOHN E. BAIDEN, Email: jbaidenus@y	Central University College rahoo.com
In Ghana, most of t (dollar) always exc There has been cor especially the US d for dollar most of th	the time imports exceed exports, so the demand for foreign exchange eeds supply and this puts intense upward pressure on the exchange rate ntinuous depreciation of the cedi against most of the major currencies ollar, which is largely use for commercial transactions. Since the demand ne time exceeding supply, International dollar values seldom have impacts

Analysis of Purchasing power parity with data for Macedonia

Msc Dushko Josheski dusko.josevski@ugd.edu.mk Ph.D Cane Koteski cane.koteski@ugd.edu.mk

Abstract

This paper examines PPP parity theory with data for Macedonia. We test the empirical consensus in this literature that real exchange rates tend towards PPP in the very long run, also we use co-integration Engle-Granger method and error correction mechanism. The hypothesis we test that PPP theory holds in long run in the case of Macedonia, and this hypothesis is proven to be true.

Key words : PPP, Exchange rate, Co-integration, unit root, stationarity

Introduction

The theory of purchasing power parity (PPP) constitutes one of the basic elements of exchange rate determination. In the case of absolute PPP the exchange rate equals the relative price levels between the countries, whereas in the case of relative PPP the exchange rate movement equals the difference between the relative price level shifts (Boršič,Beko, Kavkler,).

The purchasing power parity theory uses long run equilibrium exchange rate of two currencies to equalize their purchasing power. This theory is developed by Gustav Kassel in 1920, and it is based on the law of one price. This theory states that commodity in two different locations should have same price, regardless of the locations (Zheng, 2009). While few economists take PPP seriously as short-term proposition, they believe in purchasing power parity as an anchor for long run exchange rate (Rogof, 1996). Empirical literature in this field has established consensus on a few facts. First, real exchange rates (nominal adjusted for inflation) tend towards purchasing power parity in the long run. This is the hypothesis we set here and we are going to test later with Macedonian data. Second, short run deviations from purchasing power parity are large and volatile. Balasa Samuelson effect also is one of the most well known channels through which real convergence leads to higher inflation rates.

According to this concept, higher productivity growth in the sector of tradable goods, contrary to non-tradable goods sector of one country, will lead to positive inflatory differential and will lead to real appreciation-through the price growth of non-tradable goods on the market(Bogoev,2008) .Following relative PPP, the movements in nominal exchange rates are expected to compensate for price level shifts. So, the real exchange rate should be constant over long-run and their time series should be stationary (Parikh and Wakerly 2000). This is part or a whole second hypothesis that we are testing here. Real exchange rates are calculated from nominal using CPI's:

$$RE_t = E_t (P_t^* / P_t)$$

where RE_t stands for the real exchange rate, E_t is the price of a foreign currency in units of the domestic currency, and P_t^* and P_t represent the foreign price index and the domestic price index(Boršič,Beko, Kavkler,). If we take logarithms of both sides we get

$$\text{Log}(\text{RE}_{t}) = \text{Log}(\text{E}_{t}) + \text{Log}(\text{P}_{t}) - \text{Log}(\text{P}_{t})$$

With the log-log arrangement of the equation we can estimate the elasticities, while with first difference the relative growth of the variables. On the next graph it is plotted natural logarithm of exchange rate variable.

Relative instability of the exchange rate movements in transitional countries (Macedonia is in this group of countries) is in the literature explained by inherited macroeconomic imbalances in transition countries, mixed performance of chosen exchange rate arrangements, and the process of catching up with developed economies(Egert, et al 2006). As in neo-keynesian tradition exchange rate is one of the transmissions channels in the economy through which monetary policy can influence the inflation in the economy and the output gap (Besimi, 2006). Purchasing power parity (PPP) adjusted for the Balassa-Samuelson (BS) effect is expected to hold in the long-run in a small and open economy (Besimi, 2006).

Time series analysis for Purchasing power parity of Macedonia¹

One of the main tasks in time series analysis is to make conclusions about number of unit roots in a given time series. That way we are making conclusions whether time series is stationary or it has such a non stationary which is removed by differencing.

Most popular tests of unit root are D-F and ADF tests .Next table simulates the idea of the models

Autoregressive model AR(1)	Hypothesis		
	$H_0: \phi_1 = 1 \Rightarrow \text{unit root}$		
1. $X_t = \phi_0 + \phi_1 X_{t-1} + \varepsilon_t$			
	$H_1: \phi_1 < 1 \Rightarrow$ Stationary		
	$H_0: \phi_1 = 1 \Longrightarrow \text{unit root}$		
2. $X_t = \phi_0 + \phi_1 t + \phi_1 X_{t-1} + \varepsilon_t$	\Rightarrow Unit root with a drift		
	$H_1: \phi_1 < 1 \Rightarrow$ trend stationary		

Next we are estimating DW value from Model 1 like

$$\tau = \frac{\hat{\phi}_1 - 1}{s(\hat{\phi})}$$
 where $s(\hat{\phi})$ is the standard error of the coefficient (model with constant)

And from the second model (model with constant and a trend) $\tau_t = \frac{\hat{\phi}_1 - 1}{s(\hat{\phi})}$

Critical values for comparison we are determining for a given sample T

Type DF test	Level of significance 5 %	Level of significance 10 %
τ	$\tau^{t} = -2.8621 - 2.738/T$	$\tau^{t} = -2.5671 - 1.438/T - 4.48T^{2}$
$ au_t$	$\tau_t^{t} = -3.4126 - 4.039/T - 17.83T^2$	$\tau_t^{t} = -3.1279 - 2.418/T - 7.58T^2$

¹ See Appendix 1 definitions of the variables

In our analysis we use PPP one country's relative price / US price level and CPI indices, trade as percentage to GDP and Exchange rate (local currency relative to US dollar), and the first difference of the logarithms of these series approximates their growth rates.

Testing for unit roots

Graphic tests showed that LNPPP and DLNPPP are non-stationary; also ADF test showed that we cannot reject the null hypothesis of unit root, also LER and DLER are non-stationary and we cannot reject the null hypothesis of unit root. We use DF test because it has highest info criteria.²

Variables	The Dickey-		The Dickey-Fuller	
	Fuller test		regressions include	
Critical	regression		an intercept and a	
values	including	Critical values	linear trend	Critical values
	intercept but			
	not trend			
LPPP	0.038015	-3.0819	-1.4935	-3.7612
DLPPP	-2.6955	-3.1004	-2.6193	-3.7921
DDLPPP	-4.1615	-3.1223	-3.9436	-3.8288
decision	Non-stationarity, w	re cannot reject the	Non-stationarity, we canno	t reject the existence of unit
	existence of unit r	oot , and to achieve	root , and to achieve sta	ationarity we need second
	stationarity we nee	ed second difference	difference (DDLPPP), v	ariable DDLPPP is trend
	(DDLPPP) , var	riable DDLPPP is	stationary	
	stationary			
	, í			

Next, follows a graphical presentation of these variables

² See Appendix 2 Unit root testing

Co-integration Engle Granger method for Macedonia

Engle-Granger method for cointegration, implies a check if the residuals of the cointegrating regression are stationary³.

The estimated equation is:

$$DL\hat{E}R = 0.0086 - 0.41DLPPP$$

p= [.816] [.602]

Intercept is in the regression because it ensures that error term has zero mean and it is included for statistical purposes only. Dropping the intercept will result in upward biased t-statistics and will lead to incorrect conclusion that certain coefficients are statistically significant. A DLER variable is first difference of natural logarithm of exchange rate. If DLPPP or first difference of the log of relative inflation increases by 1% on average the ER will result in downward change (depreciation) by 0.41%. Unit root test of the residuals from this regression shows that estimated values have less negative value than critical values so that test shows that there exist no long run relationship between this variables .Estimated value -1.4920 is higher than critical value -4.1109 (see Appendix 3 Engle Granger co-integration method).

Error correction mechanism⁴

The short run relationship between variables is captured by the coefficient of the independent variable, whereas the adjustment toward the long run equilibrium is given by the coefficients of the EC mechanism (Harris, Sollis, 2003). ECM use second differences of these variables as they appear to be stationary.

³ See Appendix 3 Engle Granger co-integration method

⁴ See Appendix 4 Error correction mechanism

$DDL\hat{E}R = -0.0052 + 0.297 DDLPPP + 0.50958 u_{t-1}$

p= [.860] [.653] [.088]

In the short run, 1% relative change will influence change in ER by 0.29%, while in the long run 50,95% of the disequilibrium in the last year between change in ER and inflation will be eliminated in the current year. Short run coefficient is insignificant while long run coefficient is significant. According to the next Table model is well specified.

Hypothesis	p-value of the test	Decision
H ₀ : No residual correlation	[.080]	Insufficient evidence to reject H_0 at 1, 5 % level of significance
H ₀ : Linear relationship between variables	[.906]	Insufficient evidence to reject H_0 at 1, 5 and 10% level of significance
H ₀ : Normality in residuals	[.703]	Insufficient evidence to reject H_0 at 1, 5 and 10% level of significance
H ₀ : Homoskedasticity	[.287]	Insufficient evidence to reject H_0 at 1, 5 and 10% level of significance

In order to test for parameter stability we perform CUSUM and CUSUMSQ plots are examined

According to CUSUM and CUSUM square there are no structural breaks.

As the variable DDLPPP is not statistically significant, this is consistent with Rogoff (1996), who states that PPP does not hold in long run. So we can rewrite the model and estimate as follows

$$DDL\hat{E}R = -0.0072 + 0.515u_{t-1}$$

p= [.798] [.072]

This model suggests that on average 51,5% of the departure of ER from its equilibrium level will be offset in the next period. In summary model provides some evidence of long run PPP. and trade % GDP.

Appendices

Appendix 1

PPP	Purchasing power parity conversion factor is the
	number of units of a country's currency required to buy
	the same amounts of goods and services in the domestic
	market as U.S. dollar would buy in the United States.
	This conversion factor is for GDP.
	Official exchange rate refers to the exchange rate
	determined by national authorities or to the rate
ER-	determined in the legally sanctioned exchange market. It
	is calculated as an annual average based on monthly
	averages (local currency units relative to the U.S. dollar
DIFR	First difference of the natural logarithm of the exchange
DEER	rate
DLPPP	First difference of the natural logarithm of Purchasing
	power parity
DDLER	Second difference of the natural logarithm of the
	exchange rate
DDLPP	Second of the natural logarithm of Purchasing power
	parity

Appendix 2 Unit root testing

Unit root testing for LPPP and DLPPP and DDLPPP

Unit root tests for variable LPPP

The Dickey-Fuller regressions include an intercept but not a trend

15 observations used in the estimation of all ADF regressions.

Sample period from 1997 to 2011

*****	*****	* * * * * * * * * * * * * * * * * * * *

	Test Statistic	LL	AIC	SBC	HQC
DF	.038015	34.6547	32.6547	31.9466	32.6622
ADF(1)	.067281	34.7091	31.7091	30.6471	31.7205

ADF(2) -.43206 35.3861 31.3861 29.9700 31.4012 35.4000 -.30587 30.4000 ADF(3) 28.6298 30.4188 ADF(4) -.77801 36.0766 30.0766 27.9525 30.0992 95% critical value for the augmented Dickey-Fuller statistic = -3.0819 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for variable LPPP

The Dickey-Fuller regressions include an intercept and a linear trend

15 observations used in the estimation of all ADF regressions.

Sample period from 1997 to 2011

	Test Statistic	LL	AIC	SBC	HQC
DF	-1.4935	36.1490	33.1490	32.0869	33.1603
ADF(1)	-1.7773	36.8930	32.8930	31.4769	32.9081
ADF(2)	-2.0534	37.9612	32.9612	31.1911	32.9801
ADF(3)	-1.9430	38.1421	32.1421	30.0180	32.1648
ADF(4)	-2.1416	39.0251	32.0251	29.5469	32.0515

95% critical value for the augmented Dickey-Fuller statistic = -3.7612 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

unit root tests for variable DLPPP

	Test Statistic	LL	AIC	SBC	HQC				
DF	-2.6955	32.3708	30.3708	29.7317	30.4300				
ADF(1)	-2.4205	32.4282	29.4282	28.4696	29.5169				
ADF(2)	-2.3438	32.5517	28.5517	27.2736	28.6700				
ADF(3)	-2.3351	32.9825	27.9825	26.3848	28.1304				
ADF(4)	-2.3262	33.4397	27.4397	25.5226	27.6172				
* * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * *				
95% cri	tical value for	the augmente	d Dickey-Fuller	statistic =	-3.1004				
LL = M	aximized log-li	celihood	AIC = Akaike I	nformation Cri	iterion				
SBC = S	chwarz Bayesian	Criterion	HQC = Hannan-Q	uinn Criterior	1				
	Uni	lt root tests	for variable D	LPPP					
The	Dickey-Fuller 1	regressions i	nclude an inter	cept and a lin	near trend				
******	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *				
14 obse	rvations used in	n the estimat	ion of all ADF	regressions.					
Sample	period from 1998	3 to 2011							
******	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *				
	Test Statistic	Test Statistic LL AIC SBC HQC							
DE									
DF.	-2.6193	32.4519	29.4519	28.4933	29.5406				
ADF(1)	-2.6193 -2.3274	32.4519 32.4853	29.4519 28.4853	28.4933 27.2072	29.5406 28.6036				
DF ADF(1) ADF(2)	-2.6193 -2.3274 -2.3348	32.4519 32.4853 32.8026	29.4519 28.4853 27.8026	28.4933 27.2072 26.2049	29.5406 28.6036 27.9505				
ADF(1) ADF(2) ADF(3)	-2.6193 -2.3274 -2.3348 -2.2049	32.4519 32.4853 32.8026 33.0317	29.4519 28.4853 27.8026 27.0317	28.4933 27.2072 26.2049 25.1145	29.5406 28.6036 27.9505 27.2092				
ADF(1) ADF(2) ADF(3) ADF(4)	-2.6193 -2.3274 -2.3348 -2.2049 -2.3271	32.4519 32.4853 32.8026 33.0317 33.8357	29.4519 28.4853 27.8026 27.0317 26.8357	28.4933 27.2072 26.2049 25.1145 24.5990	29.5406 28.6036 27.9505 27.2092 27.0428				
ADF(1) ADF(2) ADF(3) ADF(4)	-2.6193 -2.3274 -2.3348 -2.2049 -2.3271	32.4519 32.4853 32.8026 33.0317 33.8357	29.4519 28.4853 27.8026 27.0317 26.8357	28.4933 27.2072 26.2049 25.1145 24.5990	29.5406 28.6036 27.9505 27.2092 27.0428				
DF ADF(1) ADF(2) ADF(3) ADF(4) ********	-2.6193 -2.3274 -2.3348 -2.2049 -2.3271 ************************************	32.4519 32.4853 32.8026 33.0317 33.8357 ***********	29.4519 28.4853 27.8026 27.0317 26.8357 ************************************	28.4933 27.2072 26.2049 25.1145 24.5990	29.5406 28.6036 27.9505 27.2092 27.0428				
DF ADF(1) ADF(2) ADF(3) ADF(4) ******** 95% cri LL = M	-2.6193 -2.3274 -2.3348 -2.2049 -2.3271 ************************************	32.4519 32.4853 32.8026 33.0317 33.8357 the augmente celihood	29.4519 28.4853 27.8026 27.0317 26.8357 ************************************	28.4933 27.2072 26.2049 25.1145 24.5990 ***********************************	29.5406 28.6036 27.9505 27.2092 27.0428 -3.7921 iterion				
DF ADF(1) ADF(2) ADF(3) ADF(4) ********* 95% cri LL = M SBC = S	-2.6193 -2.3274 -2.3348 -2.2049 -2.3271 ************************************	32.4519 32.4853 32.8026 33.0317 33.8357 the augmente celihood Criterion	29.4519 28.4853 27.8026 27.0317 26.8357 ************************************	28.4933 27.2072 26.2049 25.1145 24.5990 ***********************************	29.5406 28.6036 27.9505 27.2092 27.0428 -3.7921 iterion				
DF ADF(1) ADF(2) ADF(3) ADF(4) ********* 95% cri LL = M SBC = S unit roo	-2.6193 -2.3274 -2.3348 -2.2049 -2.3271 ************************************	32.4519 32.4853 32.8026 33.0317 33.8357 the augmente celihood Criterion	29.4519 28.4853 27.8026 27.0317 26.8357 ************************************	28.4933 27.2072 26.2049 25.1145 24.5990 ***********************************	29.5406 28.6036 27.9505 27.2092 27.0428 -3.7921 iterion				
DF ADF(1) ADF(2) ADF(3) ADF(4) ********* 95% cri LL = M SBC = S unit roo Th	-2.6193 -2.3274 -2.3348 -2.2049 -2.3271 ************************************	32.4519 32.4853 32.8026 33.0317 33.8357 the augmente celihood Criterion table DDLPPP regressions	29.4519 28.4853 27.8026 27.0317 26.8357 ************************************	28.4933 27.2072 26.2049 25.1145 24.5990 ***********************************	29.5406 28.6036 27.9505 27.2092 27.0428 -3.7921 iterion h				

13 observations used in the estimation of all ADF regressions.

Sample period from 1999 to 2011

r	Test Statistic	LL	AIC	SBC	HQC
DF	-4.1615	26.9222	24.9222	24.3572	25.0383
ADF(1)	-3.0434	26.9389	23.9389	23.0915	24.1131
ADF(2)	-3.0498	27.3611	23.3611	22.2312	23.5933
ADF(3)	-2.9331	27.7655	22.7655	21.3531	23.0558
ADF(4)	-2.5782	28.0261	22.0261	20.3313	22.3745
* * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *
95% critical value for the augmented Dickey-Fuller statistic = -3.1223					
LL = Maximized log-likelihood AIC = Akaike Information Criterion					
SBC = So	chwarz Bayesian	Criterion	HQC = Hannan-Q	uinn Criterio	n

Unit root tests for variable DDLPPP

The Dickey-Fuller regressions include an intercept and a linear trend

13 observations used in the estimation of all ADF regressions.

Sample period from 1999 to 2011

	Test Statistic	LL	AIC	SBC	HQC
DF	-3.9436	26.9228	23.9228	23.0753	24.0970
ADF(1)	-2.8401	26.9463	22.9463	21.8164	23.1786
ADF(2)	-2.8654	27.3955	22.3955	20.9831	22.6858
ADF(3)	-2.7506	27.7827	21.7827	20.0879	22.1311
ADF(4)	-2.3889	28.1503	21.1503	19.1730	21.5567
* * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * *

```
95% critical value for the augmented Dickey-Fuller statistic = -3.8288
LL = Maximized log-likelihood AIC = Akaike Information Criterion
SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion
```

Examining the level of integration of ER

Unit root testing for LER and DLER

	Jnit root tes	sts for variable	LER				
The Dickey-Fuller regressions include an intercept but not a trend							

10 observations used in the estimation of all ADF regressions.							
Sample period from 2000 to 2009							

Test Statistic	LL	AIC	SBC	HQC			
DF025494	10.5888	8.5888	8.2862	8.9207			
ADF(1) -1.1051	13.3583	10.3583	9.9044	10.8562			
ADF(2)92926	13.3738	9.3738	8.7686	10.0377			
ADF(3) -1.7243	15.4770	10.4770	9.7205	11.3068			
ADF(4) -1.9796	16.8237	10.8237	9.9160	11.8195			

95% critical value for	the augmente	ed Dickey-Fuller	statistic =	-3.2197			
<pre>LL = Maximized log-li)</pre>	celihood	AIC = Akaike I	nformation Cr:	iterion			
SBC = Schwarz Bayesian	Criterion	HQC = Hannan-Q	uinn Criterio	n –			
1							
τ	Jnit root tes	sts for variable	LER				
The Dickey-Fuller :	Jnit root tes regressions i	sts for variable include an inter	LER cept and a lim	near trend			
The Dickey-Fuller	Jnit root tes regressions i	sts for variable include an inter	LER cept and a lin	near trend			
The Dickey-Fuller a 	Unit root tes regressions i the estimat	ts for variable include an inter	LER cept and a lin ************************************	near trend			
The Dickey-Fuller : 	Jnit root tes regressions i the estimat the estimat	ts for variable include an inter	LER cept and a lin ************************************	near trend			
The Dickey-Fuller i 10 observations used in Sample period from 2000	Jnit root tes regressions i the estimat the estimat to 2009	sts for variable include an inter tion of all ADF	LER cept and a lin regressions.	near trend			
The Dickey-Fuller is 10 observations used in Sample period from 2000 Test Statistic	Unit root tes regressions i the estimat to 2009 LL	ats for variable include an inter tion of all ADF	LER cept and a lin regressions.	HQC			
The Dickey-Fuller of the second secon	Init root tes regressions i the estimat to 2009 LL 14.8938	ats for variable include an inter tion of all ADF AIC 11.8938	LER cept and a lin regressions. SEC 11.4399	HQC 12.3917			
The Dickey-Fuller of The Dickey-Fuller of The Dickey-Fuller of The Sample period from 2000 The Statistic DF -2.1771 ADF(1) -2.4716	Jnit root tes regressions is the estimate to to 2009 LL 14.8938 16.4990	ats for variable include an inter tion of all ADF AIC 11.8938 12.4990	LER cept and a lin regressions. SBC 11.4399 11.8938	HQC 12.3917 13.1629			
The Dickey-Fuller of 10 observations used in Sample period from 2000 Test Statistic DF -2.1771 ADF(1) -2.4716 ADF(2) -2.6698	Init root tes regressions in the estimate to to 2009 LL 14.8938 16.4990 18.2639	AIC 11.8938 12.4990 13.2639	LER cept and a lin regressions. SBC 11.4399 11.8938 12.5074	HQC 12.3917 13.1629 14.0937			
The Dickey-Fuller 1 The Dickey-Fuller 1 10 observations used in Sample period from 2000 Test Statistic DF -2.1771 ADF(1) -2.4716 ADF(2) -2.6698 ADF(3) -2.6948	Jnit root tes regressions i the estimate to to 2009 LL 14.8938 16.4990 18.2639 19.0103	AIC 11.8938 12.4990 13.2639 13.0103	LER cept and a lin regressions. SEC 11.4399 11.8938 12.5074 12.1025	Hear trend HQC 12.3917 13.1629 14.0937 14.0061			
The Dickey-Fuller 1 The Dickey-Fuller 1 10 observations used in Sample period from 2000 Test Statistic DF -2.1771 ADF(1) -2.4716 ADF(2) -2.6698 ADF(3) -2.6948 ADF(4) -2.3582	Jnit root tes regressions i the estimate to to 2009 LL 14.8938 16.4990 18.2639 19.0103 20.0806	AIC 11.8938 12.4990 13.0639 13.0006	LER cept and a lin regressions. SBC 11.4399 11.8938 12.5074 12.1025 12.0215	HQC 12.3917 13.1629 14.0937 14.0061 14.2424			
The Dickey-Fuller 1 10 observations used in Sample period from 2000 Test Statistic DF -2.1771 ADF(1) -2.4716 ADF(2) -2.6698 ADF(3) -2.6948 ADF(4) -2.3582	Jnit root tes regressions i the estimat to to 2009 LL 14.8938 16.4990 18.2639 19.0103 20.0806	AIC 11.8938 12.4990 13.2639 13.0103 13.0806	LER cept and a lin regressions. SBC 11.4399 11.8938 12.5074 12.1025 12.0215	HQC 12.3917 13.1629 14.0937 14.0061 14.2424			
The Dickey-Fuller is 10 observations used in Sample period from 2000 Test Statistic DF -2.1771 ADF(1) -2.4716 ADF(2) -2.6698 ADF(3) -2.6948 ADF(4) -2.3582 95% critical value for	Jnit root tes regressions in the estimate to 2009 LL 14.8938 16.4990 18.2639 19.0103 20.0806	AIC 11.8938 12.4990 13.2639 13.0103 13.0806	LER cept and a lin regressions. SBC 11.4399 11.8938 12.5074 12.1025 12.0215 statistic =	HQC 12.3917 13.1629 14.0937 14.0061 14.2424			
The Dickey-Fuller is The Dickey-Fuller is 10 observations used in Sample period from 2000 Test Statistic DF -2.1771 ADF(1) -2.4716 ADF(2) -2.6698 ADF(2) -2.6698 ADF(3) -2.6948 ADF(4) -2.3582 Statistical value for LL = Maximized log-lii	Init root tes regressions in the estimate to to 2009 LL 14.8938 16.4990 18.2639 19.0103 20.0806 the augmente celihood	AIC 11.8938 12.4990 13.2639 13.0103 13.0806 AIC AIC AIC AIC AIC AIC AIC AIC	LER cept and a lin regressions. SBC 11.4399 11.8938 12.5074 12.1025 12.0215 statistic = nformation Cr:	HQC 12.3917 13.1629 14.0937 14.0061 14.2424 -3.9949 iterion			

Unit root tests for variable DLER							
The Dickey-Fuller regressions include an intercept but not a trend							

9 observations used in the estimation of all ADF regressions.							
Sample period from 2001 to 2009							
*********					************		
Te	st Statistic	LL	AIC	SBC	HQC		
DF	-1.5655	10.8647	8.8647	8.6675	9.2903		
ADF(1)	-1.6465	11.1942	8.1942	7.8983	8.8326		
ADF(2)	-1.3428	12.1052	8.1052	7.7108	8.9564		
ADF(3)	-1.2356	12.1842	7.1842	6.6911	8.2482		
ADF(4)	-1.3352	12.8284	6.8284	6.2367	8.1052		
*********					************		
95% criti	cal value for	the augmented	H Dickey-Fuller	statistic =	-3.2698		
LL = Max	imized log-li)	celihood	AIC = Akaike In	formation Cri	terion		
SBC = Sch	warz Bayesian	Criterion	HQC = Hannan-Qu	inn Criterion	L		
	τ	Jnit root test	s for variable	DLER			
The D	t ickey-Fuller	Jnit root test regressions in	s for variable clude an interc	DLER ept and a lin	ear trend		
The D	T ickey-Fuller :	Jnit root test regressions in	s for variable clude an interc	DLER ept and a lin	ear trend		
The D	ickey-Fuller : 	Jnit root test regressions in the estimatio	s for variable clude an interc on of all ADF re	DLER ept and a lin	ear trend		
The D observa Sample pe	ickey-Fuller : tions used in riod from 2003	Jnit root test regressions in the estimatic L to 2009	s for variable clude an interc on of all ADF re	DLER ept and a lin gressions.	ear trend		
The D observa Sample per	ickey-Fuller i tions used in riod from 2001	Jnit root test regressions in the estimatic L to 2009	s for variable clude an intercontent on of all ADF re	DLER ept and a lin gressions.	ear trend		
The D 9 observa Sample per 	ickey-Fuller i tions used in riod from 2001	Jnit root test regressions in the estimatic L to 2009 LL	s for variable aclude an interco on of all ADF re AIC	DLER ept and a lin gressions. SBC	ear trend		
The D observa Sample pe Te DF	tions used in riod from 2003 st Statistic -1.6463	Jnit root test regressions in the estimatic L to 2009 LL LL 11.2184	s for variable aclude an interconnon of all ADF re AIC 8.2184	DLER ept and a lin gressions. SBC 7.9225	ear trend HQC 8.8568		
The D. 9 observa Sample pe Te DF ADF(1)	tions used in riod from 2003 statistic -1.6463 -1.9597	Jnit root test regressions in the estimatic L to 2009 LL LL 11.2184 12.1092	aclude an interconnof all ADF re ALC 8.2184 8.1092	DLER ept and a lin gressions. SBC 7.9225 7.7147	ear trend 		
The D: 9 observat Sample pe: Te: DF ADF(1) ADF(2)	tions used in riod from 2003 st Statistic -1.6463 -1.9597 96081	Jnit root test regressions in the estimatic L to 2009 LL 11.2184 12.1092 12.2432	aclude an interconnof all ADF re ALC 8.2184 8.1092 7.2432	DLER ept and a lin gressions. SBC 7.9225 7.7147 6.7501	ear trend HQC 8.8568 8.9604 8.3072		
The D: 9 observat Sample pe: Te: DF ADF(1) ADF(2) ADF(3)	ickey-Fuller : tions used in riod from 2003 st Statistic -1.6463 -1.9597 96081 -1.1140	Jnit root test regressions in the estimatic L to 2009 LL 11.2184 12.1092 12.2432 12.9075	AIC 8.2184 8.1092 7.2432 6.9075	DLER ept and a lin gressions. SBC 7.9225 7.7147 6.7501 6.3158	HQC 8.8568 8.9604 8.1843		
The D: 9 observat Sample pe: Te: DF ADF(1) ADF(2) ADF(3) ADF(4)	ickey-Fuller : tions used in riod from 2003 st Statistic -1.6463 -1.9597 96081 -1.1140 -1.8433	Jnit root test regressions in the estimatic L to 2009 LL 11.2184 12.1092 12.2432 12.9075 15.8901	AIC 8.2184 8.1092 7.2432 6.9075 8.8901	DLER ept and a lin gressions. SBC 7.9225 7.7147 6.7501 6.3158 8.1999	HQC 8.8568 8.9604 8.3072 8.1843 10.3798		
The D: 9 observa Sample per Ter DF ADF(1) ADF(2) ADF(3) ADF(4)	ickey-Fuller : tions used in riod from 2003 st Statistic -1.6463 -1.9597 96081 -1.1140 -1.8433	Jnit root test regressions in the estimatic L to 2009 LL 11.2184 12.1092 12.2432 12.9075 15.8901	AIC 8.2184 8.1092 7.2432 6.9075 8.8901	DLER ept and a lin gressions. SBC 7.9225 7.7147 6.7501 6.3158 8.1999	HQC 8.8568 8.9604 8.3072 8.1843 10.3798		
The D: 9 observa Sample per Ter DF ADF(1) ADF(2) ADF(3) ADF(4) **********	ickey-Fuller : tions used in riod from 2003 st Statistic -1.6463 -1.9597 96081 -1.1140 -1.8433 cal value for	Jnit root test regressions in the estimatic L to 2009 LL 11.2184 12.1092 12.2432 12.9075 15.8901	AIC AIC 8.2184 8.1092 7.2432 6.9075 8.8901 Dickey-Fuller	DLER ept and a lin gressions. SBC 7.9225 7.7147 6.7501 6.3158 8.1999 statistic =	HQC 8.8568 8.9604 8.3072 8.1843 10.3798		
The D: 9 observa Sample per Ter DF ADF(1) ADF(2) ADF(3) ADF(4) ************************************	ickey-Fuller : tions used in riod from 2003 st Statistic -1.6463 -1.9597 96081 -1.1140 -1.8433 cal value for imized log-li)	Jnit root test regressions in the estimatic L to 2009 LL 11.2184 12.1092 12.2432 12.9075 15.8901 the augmented relihood	AIC AIC 8.2184 8.1092 7.2432 6.9075 8.8901 Dickey-Fuller AIC = Akaike In	DLER ept and a lin gressions. SBC 7.9225 7.7147 6.7501 6.3158 8.1999 statistic = formation Cri	HQC 8.8568 8.9604 8.3072 8.1843 10.3798		

Unit root tests for variable DDLER The Dickey-Fuller regressions include an intercept but not a trend . 8 observations used in the estimation of all ADF regressions. Sample period from 2002 to 2009 . AIC Test Statistic LL SBC HOC st Statisold -2.7119 9.0586 -2.4390 9.5693 -2.0572 10.0098 -1.6897 10.2591 - 2553 11.0753 7.0586 6.5693 6.0098 6.9791 7.5944 DF 6.4502 5.8509 ADF(1) 7.3730 ADF(2) 7.0814 5.0605 ADF(3) 5.2591 6.5986 ADF(4) 5.0753 4.8370 6.6827 95% critical value for the augmented Dickey-Fuller statistic = -3.3353 LL = Maximized log-likelihood AIC = Akaike Information Criterion SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion Unit root tests for variable DDLER The Dickey-Fuller regressions include an intercept and a linear trend 8 observations used in the estimation of all ADF regressions. Sample period from 2002 to 2009 LL AIC 10.0513 7.0513 11.3654 7.3654 19.0285 14.0285 21.7816 15.7816 31.6970 24.6970 SBC Test Statistic HQC -2.8042 6.9321 7.2065 DF 7.8550 ADF(1) -2.94488.4370 ADF(2) -7.2936 13.8299 15.3680 ADF(3) -7.6439 15.0.2 24.4190 15.5433 17.3890 ADF(4) -16.1979 26.5723 95% critical value for the augmented Dickey-Fuller statistic = -4.1961LL = Maximized log-likelihood AIC = Akaike Information Criterion

Appendix 3

ENGLE GRANGER CO-INTEGRATION METHOD

Ordinary Least Squares Estimation Dependent variable is DLER 14 observations used for estimation from 1996 to 2009 Coefficient Standard Error Regressor T-Ratio[Prob] .036380 С .0086514 .23781[.816] DLPPP -.41005 .76646 -.53499[.602] .023295 R-Bar-Squared S.E. of Regression .11237 P -.058097F-stat. F(1, 12) .28621[.602] Mean of Dependent Variable -.0023328 S.D. of Dependent Variable .10924 Residual Sum of Squares 11.8171 .15153 Equation Log-likelihood Akaike Info. Criterion 9.8171 Schwarz Bayesian Criterion 9.1781 DW-statistic .96300

Unit root tests for residuals Based on OLS regression of DLER on: DLPPP С 14 observations used for estimation from 1997 to 2010 LL AIC SBC HOC Test Statistic 8.8993 9.8993 8.8007 DF -1.4920 9,1121 10.2100 8.2100 8.0127 ADF(1) -1.6077 8.6356 10.4964 7.4964 7.2006 ADF(2) -1.2578 8.1348 10.6675 6.2731 7.5187 ADF(3) -1.25026.6675 -1.301011.0347 6.0347 5.5416 7.0987 ADF(4) 95% critical value for the Dickey-Fuller statistic = -4.1109AIC = Akaike Information Criterion LL = Maximized log-likelihood SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Unit root tests for residuals

Based on OLS regression of DLER on:

C DLPPP

14 observations used for estimation from 1996 to 2009

	Test Statistic	LL	AIC	SBC	HQC
DF	-1.4920	9.8993	8.8993	8.8007	9.1121
ADF(1)	-1.6077	10.2100	8.2100	8.0127	8.6356
ADF(2)	-1.2578	10.4964	7.4964	7.2006	8.1348
ADF(3)	-1.2502	10.6675	6.6675	6.2731	7.5187
ADF(4)	-1.3010	11.0347	6.0347	5.5416	7.0987
* * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	****	****	* * * * * * * * * * * *

95% critical value for the Dickey-Fuller statistic = -4.1109

LL = Maximized log-likelihood AIC = Akaike Information Criterion

SBC = Schwarz Bayesian Criterion HQC = Hannan-Quinn Criterion

Appendix 4

THE ERROR CORRECTION MODEL

Ordinary Least Squares Estimation Dependent variable is DDLER 13 observations used for estimation from 1997 to 2009 Regressor Coefficient Standard Error T-Ratio[Prob] -.0052652 .029085 -.18103[.860] С .64232 DDLPPP .29779 .46362[.653] U1 .50958 .26932 1.8921[.088] .28015 R-Bar-Squared R-Squared .13618 .10361 F-stat. F(2, 10) 1.9459[.193] S.E. of Regression Mean of Dependent Variable -.0051331 S.D. of Dependent Variable .11148 Residual Sum of Squares .10735 Equation Log-likelihood 12.7320 Akaike Info. Criterion 9.7320 Schwarz Bayesian Criterion 8.8845 DW-statistic 1.4022

```
Diagnostic Tests
*
  Test Statistics *
                   LM Version
                                     F Version
* A:Serial Correlation*CHSQ( 1)= 3.0750[.080]*F( 1, 9)= 2.7885[.129]*
       *
* B:Functional Form *CHSQ( 1)= .013922[.906]*F( 1, 9)= .0096486[.924]*
             *
* C:Normality
             *CHSQ( 2)= .70360[.703]*
                                 Not applicable
                                                  *
* D:Heteroscedasticity*CHSQ( 1)= 1.1319[.287]*F( 1, 11)= 1.0491[.328]*
A:Lagrange multiplier test of residual serial correlation
 B:Ramsey's RESET test using the square of the fitted values
 C:Based on a test of skewness and kurtosis of residuals
 D:Based on the regression of squared residuals on squared fitted values
```

References

 Besimi F., Pugh G. and N. Adnett , (Jan 2006), The Monetary Transmission Mechanism in Macedonia: Implications for Monetary Policy', Working Paper 02-2006, Centre for Research on Emerging Economies, IESR, Staffordshire University, UK,

- 2. Bogoev, J., Terzijan, B.S., Égert, B., Petrovska, M. (2008), Real Exchange Rate Dynamics in Macedonia: Old Wisdoms and New Insights, *Economics: The Open-Access, Open-Assessment E-Journal* Vol. 2, 2008-18
- 3. Borsic, Beko, Kavker, (2008), INVESTIGATING PURCHASING POWER PARITY IN CENTRAL AND EASTERN EUROPEAN COUNTRIES: A PANEL DATA APPROACH, University of Maribor, Faculty of Economics and Business
- 4. *Feenstra, C.Roberts*, (2004), *Advanced international trade: theory and evidence,* Princeton University Press
- 5. *Krugman, R.Paul, Obstfeld, Maurice* (2009), *International economics: Theory and Policy* ,Pearson Addison-Wesley
- 6. *Madura, Jeff, (2009),* International Financial Management, Cengage Learning, Tenth edition
- 7. **Manzur, M., Chan, F.,**(2010), Exchange rate volatility and purchasing power parity, *The International Journal of Banking and Finance*, Vol. 7. Number 1: 2010: 99-118
- 8. **Obstfeld, Maurice, Rogoff, S., Kenneth, (1998),** Foundations of international macroeconomics, The MIT Press, London, England
- 9. *Rogoff,S.,Kenneth, Husain,M.,Aasin,Mody Asholka, Brooks, Robin, Oomes, Nienke*, (2004), *Evolution and performance of exchange rate regimes*, International Monetary Fund, Washington

10. The World Bank database

11. World Economic Outlook (WEO) database