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Abstract—In this paper we apply the wavelet-Galerkin method
to some special types of Sturm-Liouville differential equation.
We use a scaling function that allows us to find the numerical
solutions of nonhomogeneous differential equation such as Van
der Pol equation.

I. INTRODUCTION

Wavelets have generated significant interest from both the-
oretical and applied researchers over the last few decades.
The concepts for understanding wavelets were provided by
Meyer, Mallat, Daubechies, and many others, [1], [2]. Since
then, the number of applications where wavelets have been
used has exploded. In areas such as time-series analysis,
approximation theory and numerical solutions of differential
equations, wavelets are recognized as powerful weapons not
just tools.

In general it is not always possible to obtain exact solution
of an arbitrary differential equation. This necessitates either
discretization of differential equations leading to numerical
(approximate) solutions, or their qualitative study which is
concerned with deduction of important properties of the solu-
tions without actually solving them. The Galerkin method is
one of the best known methods for finding numerical solutions
of ordinary and partial differential equations. Its simplicity
makes it perfect for many applications. The wavelet-Galerkin
method is an improvement over the standard Galerkin methods
by using a compactly supported orthogonal functional basis,
[4], [5], [6], [8]. The translates of a wavelet for all dilations
form an unconditional orthonormal basis of L2(R) and the
translates of a scaling function for all dilations form an
unconditional orthonormal bases for Vj ⊂ L2(R), which is
a great improvement over the standard polynomial basis or a
trigonometric basis which not necessary have to be uncondi-
tional. In many cases, the wavelets also provide better basis
of the approximation spaces than other basis in the following
sense. First, the representations of the differential operators
are almost diagonal on the wavelet bases, that improves the
conditioning of the discrete algebraic equations. Second, the
wavelet representations are effective in the adaptive procedures
so that the complexity of calculations can be reduced. Further-
more, when the solution has a certain singularity, its wavelet
representation can automatically capture the singularity.

In this paper we apply the wavelet-Galerkin method to some
special types of Sturm-Liouville differential equation. We use
a scaling function that allows us to find the numerical solutions
of nonhomogeneous differential equation such as Van der Pol
equation.

This article is organized as follows. Section II is of prelim-
inary character; we describe the spaces of functions that we
use throughout this paper; we also recall some basic wavelet
tools such as multiresolution analysis (MRA) and describe the
classical Galerkin method for numerical solving of ordinary
differential equations. In Section III we apply the wavelet-
Galerkin method to the one dimensional second order differen-
tial equation u′′(t) +αu(t) = f(t), t ∈ [0, 1], α is a constant,
with Dirichlet boundary conditions u(0) = u(1) = 0. We
solve a differential equation of this type, whose exact solution
is known and compute the absolute error of our numerical
solution. We also applied the wavelet-Galerkin method to the
differential equation of the form u′′(t) + g(t)u′(t) = f(t),
t ∈ [0, 1] with the same Dirichlet boundary conditions u(0) =
u(1) = 0, where g(t) and f(t) are a real-valued continuous
functions on [0, 1]. After that, we find a numerical solution
of the known Van der Pol equation which depends on one
parameter and which does not have analytic solution.

II. PRELIMINARIES AND NOTATIONS

A. Spaces of functions

L2(R) is the Hilbert space of square integrable functions
on R with the inner product

< f, g >=

∫
R

f(t)g(t)dt,

where g(t) is a complex conjugate of g(t). The Hilbert space
of square integrable functions on [0, 1] with the inner product

< f, g >=

∫ 1

0

f(t)g(t)dt,

is denoted by L2([0, 1]). The space of twice differentiable
functions on [0, 1] is denoted by C2([0, 1]).
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B. Galerkin method for ordinary differential equations

We consider the class of ordinary differential equations
(known as Sturm-Liouville equations) of the form

Lu(t) ≡ − d

dt

(
a(t)

du

dt

)
+ b(t)u(t) = f(t), 0 ≤ t ≤ 1 (1)

with Dirichlet boundary conditions

u(0) = u(1) = 0. (2)

Let a(t), b(t) and f(t) be a real-valued functions, such that
f(t) and b(t) are continuous functions and the function a(t)
has a continuous derivative on [0, 1].

For the Galerkin method, we suppose that {vj} is a com-
plete orthonormal system (orthonormal basis) for L2([0, 1]),
and that every vj is C2([0, 1]) function that satisfies

vj(0) = vj(1) = 0.

We select some finite set Λ of indices j and consider the
subspace

S = span{vj , j ∈ Λ},

i.e. the set of all finite linear combination of the elements {vj},
j ∈ Λ.

We look for an approximation us of the exact solution u of
the equation (1) in the form

us =
∑
k∈Λ

xkvk ∈ S (3)

where the coefficients xk, k ∈ Λ are unknown. Our criterion
for determining the coefficients xk is that us should behave
like the true solution u on the subspace S, i.e.

< Lus, vj >=< f, vj >, ∀j ∈ Λ. (4)

If we substitute the equation (3) in (4) we obtain∑
k∈Λ

〈Lvk, vj〉xk = 〈f, vj〉, ∀j ∈ Λ. (5)

Let X denote the vector (xk)k∈Λ and let Y be the vector
(yk)k∈Λ where yk = 〈f, vk〉. Let A = [aj,k]j,k∈Λ where
aj,k = 〈Lvk, vj〉. Thus, (5) is a linear system of equations∑

k∈Λ

aj,kxk = yj , j ∈ Λ, (6)

or

AX = Y. (7)

For each subset Λ we obtain an approximation us ∈ S to the
true solution u by solving the linear system (7) for X , and
then we determine us by equation (3).

C. Wavelets

Let ψa,b, a > 0, b ∈ R be a family of functions defined as
translation (or shifting) by a factor b and dilatation (or scaling)
by a factor a of a function ψ ∈ L2(R)

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
.

The function ψ (called a wavelet or a mother wavelet) is
assumed to satisfy the admissibility condition

Cψ =

∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω <∞,

where ψ̂(ω) is the Fourier transform of ψ(t). The admissibility
condition implies that

ψ̂(0) =

∫ ∞
−∞

ψ(t)dt = 0. (8)

One can prove that, if
∫ ∞
−∞

ψ(t)dt = 0 and
∫ ∞
−∞

(1 +

|t|α)|ψ(t)|dt <∞ for some α > 0, then Cψ <∞.
In most situations, it is usefully to restrict ψ to be well

localized both in time and frequency domains, i.e. ψ(t) and
its derivatives must decay very rapidly. For frequency local-
ization, ψ̂(ω) must decay sufficiently fast as |ω| → ∞ and
ψ̂(ω) must become flat in the neighborhood of ω = 0. The
flatness is associated with the number of vanishing moments
of ψ(t) since∫ ∞

−∞
tkψ(t)dt = 0 ⇔ ψ̂(k)(0) = 0 (9)

for k = 0, 1, ..., n. It means that larger number of vanishing
moments more is the flatness when ω is small.

D. Multiresolution analysis

The notion of multiresolution analysis (MRA) was intro-
duced in 1988/89 by Mallat and Meyer as a natural approach
to the wavelet orthonormal basis. One can easily obtain
a wavelet basis associated to the particular multiresolution
approximation as follows.

A multiresolution analysis of the space L2(R) consists of
a sequence of closed subspaces {Vj}∞j=−∞ (called approxima-
tion spaces) with the following properties:

1. Vj ⊂ Vj+1

2. ∪j∈ZVj = L2(R)
3. ∩j∈ZVj = {0}
4. f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1

5. f(t) ∈ Vj ⇔ f(t− k) ∈ Vj ,∀k ∈ Z
6. there exists a function φ (called scaling function or father

wavelet) such that φj,k(t) = 2j/2φ(2jt− k), k ∈ Z constitute
orthonormal basis for corresponding subspace Vj .

Let φ ∈ L2(R) be compactly supported scaling function of
MRA (the support of a function is the closure of the set of
points where the function is not zero-valued). Then,∫ ∞

−∞
φ(t)dt 6= 0, (10)
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and satisfies a dilation equation

φ(t) =
∑
k∈Z

akφ(2t− k) (11)

where ak are real coefficients and ak 6= 0 for only finitely
many k ∈ Z (the number of nonzero coefficients ak in the
series (11) is denoted by L). Since φj,k(t) = 2j/2φ(2jt− k),
j, k ∈ Z are orthonormal in L2(R), we have∫ ∞

−∞
φ(t− n)φ(t− k)dt = δk,n, (12)

where δn,k is the Kronecker delta function defined by

δn,k =

{
0, n 6= k
1, n = k

. (13)

If φ ∈ L2(R) is compactly supported scaling function of
MRA, one can construct the wavelet ψ such that ψj,k(t) =
2j/2φ(2jt − k), j, k ∈ Z constitute an orthonormal basis for
L2(R).

In 1988, Ingrid Daubechies defined scaling function as

φ(t) =

L−1∑
k=0

akφ(2t− k), (14)

where L is a positive even integer and denotes the genus
of the Daubechies wavelet. The functions generated with the
coefficients ak have support [0, L− 1] and (L2 − 1) vanishing
wavelet moments. The wavelet function ψ(x) is given by

ψ(t) =
1∑

k=2−L

(−1)ka1−kφ(2t− k). (15)

Daubechies wavelets are compactly supported functions and
therefore there are useful for representing the solution of
differential equation with boundary conditions. A complete
wavelet theory can be found in [1], [2], [7], [9], [11].

III. WAVELET-GALERKIN METHOD FOR ORDINARY
DIFFERENTIAL EQUATIONS

We will consider two special types of Sturm-Liouville
differential equation (1). The first one is of the form

u′′(t) + αu(t) = f(t), t ∈ [0, 1], (16)

with Dirichlet boundary conditions

u(0) = u(1) = 0, (17)

where α is a constant and f(t) is a continuous function
on [0, 1]. This equation is the one dimensional counterpart
of Helmholtz’s equation that arises in many problems of
electromagnetic radiation, seismology and acoustics.

Let the solution u(t) of the equation (16) be approximated
by its j-th level scaling function expansion on the interval
(0, 1)

uj(t) =
2j∑

k=1−L

ckφj,k(t), k ∈ Z, (18)

where φ is a scaling function of MRA and ck are unknown
coefficients that should be determined. It is clear that the larger
integer j is used, the more accurate solution is obtained.

The boundaries of the support of uj(t) given by (18) are
1− L

2j
and

L− 1 + 2j

2j
. Subsequently, the original boundaries

0 and 1 are now changed to fictitious boundaries, i.e. the
boundaries on both sides of 0 and 1 are extended by an

amount
L− 1

2j
without affecting the solution within [0, 1], so

the affected solution is within the intervals
[1− L

2j
, 0
]

and[
1,
L− 1 + 2j

2j

]
.

In this paper, we do not use the Daubechies scaling func-
tions (the explanation is given in Remark 1). We will work
with the function

φ(t) =


1
6 (2 + t)3, t ∈ [−2,−1]

1
6 (4− 6t2 − 3t3), t ∈ [−1, 0]
1
6 (4− 6t2 + 3t3), t ∈ [0, 1]

1
6 (2− t)3, t ∈ [1, 2]

0, t /∈ [−2, 2]

. (19)

This function satisfies the following dilatation equation

φ(t) =
1

8
φ(2t+2)+

1

2
φ(2t+1)+

3

4
φ(2t)+

1

2
φ(2t−1)+

1

8
φ(2t−2),

so we conclude that L = 5. We take j = 0 and look for the
solution u0 of differential equation (16) in the form

u0(t) =
1∑

k=−4

ckφ(t− k), t ∈ [0, 1]. (20)

Substitute (20) in (16) we get

d2

dt2

1∑
k=−4

ckφ(t− k) + α
1∑

k=−4

ckφ(t− k) = f(t). (21)

Without any loss of generality, let α = −1. Taking inner
product with φ(t− n), n ∈ {−4,−3,−2,−1, 0, 1} we have

1∑
k=−4

ck

∫ L−1+2j

2j

1−L

2j

φ′′(t− k)φ(t− n)dt−

−
1∑

k=−4

ck

∫ L−1+2j

2j

1−L

2j

φ(t− k)φ(t− n)dt =

=

∫ L−1+2j

2j

1−L

2j

f(t)φ(t− n)dt,

i.e.
1∑

k=−4

ckΩn−k −
1∑

k=−4

ckan,k = bn, (22)

n ∈ {−4,−3,−2,−1, 0, 1}, where

Ωn−k =

∫ 5

−4

φ
′′
(t− k)φ(t− n)dt, (23)

an,k =

∫ 5

−4

φ(t− k)φ(t− n)dt, (24)
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bn =

∫ 5

−4

f(t)φ(t− n)dt. (25)

We should note that we work only with the scaling function
φ and not the actual wavelet ψ. The problem can arise from
the formula (25) for the coefficients bn if f(t) is a polynomial
since the wavelet ψ has (L2 − 1) vanishing moments, (9). So,
according to (10), it is much more suitable to work with the
scaling function.

By using Dirichlet boundary conditions (17), we obtain the
next two equations

u0(0) =
1∑

k=−4

ckφ(−k) = 0, i.e.

c−4φ(4)+c−3φ(3)+c−2φ(2)+c−1φ(1)+c0φ(0)+c1φ(−1) = 0,
(26)

and

u0(1) =
1∑

k=−4

ckφ(1− k) = 0, i.e.

c−4φ(5)+c−3φ(4)+c−2φ(3)+c−1φ(2)+c0φ(1)+c1φ(0) = 0.
(27)

The equations (26) and (27) give the relation between the co-
efficients ck, k ∈ {−4,−3,−2,−1, 0, 1}. Now, we eliminate
the first and the last equation of a system (22) and in that
places equations (26) and (27) are included respectively. So,
we get the following matrix equation

TC = B, (28)

where

T =


φ(4) φ(3) φ(2)

Ω1 − a−3,−4 Ω0 − a−3,−3 Ω−1 − a−3,−2

Ω2 − a−2,−4 Ω1 − a−2,−3 Ω0 − a−2,−2

Ω3 − a−1,−4 Ω2 − a−1,−3 Ω1 − a−1,−2

Ω4 − a0,−4 Ω3 − a0,−3 Ω2 − a0,−2

φ(5) φ(4) φ(3)

φ(1) φ(0) φ(−1)
Ω−2 − a−3,−1 Ω−3 − a−3,0 Ω−4 − a−3,1

Ω−1 − a−2,−1 Ω−2 − a−2,0 Ω−3 − a−2,1

Ω0 − a−1,−1 Ω−1 − a−1,0 Ω−2 − a−1,1

Ω1 − a0,−1 Ω0 − a0,0 Ω−1 − a0,1
φ(2) φ(1) φ(0)


and

C =


c−4

c−3

c−2

c−1

c0
c1

 , B =


0
b−3

b−2

b−1

b0
0

 .

By Gaussian elimination algorithm we get the coefficients
ck, k ∈ {−4,−3,−2,−1, 0, 1} and the approximate solution
u0 using (20).

Remark 1. The authors of [6] used the Daubechies scaling
functions for the wavelet-Galerkin method. Because there are
no closed-form formulas for the Daubechies wavelets and
scaling functions, the element of the matrix B can not be
computed. Therefore, the wavelet-Galerkin method based on

the Daubechies scaling functions can be applied only to a
homogeneous differential equations when f(t) = 0. In that
case B is a null-matrix and an,k = δn,k since the scaling
functions φj,k, j, k ∈ Z are orthonormal. Our main goal is
application of this method to nonhomogeneous differential
equations, and therefore we use the function φ given by (19).
Example 1. Let us consider the differential equation

u
′′
(t)− u(t) = t− 1, 0 ≤ t ≤ 1, (29)

with Dirihlet boundary conditions u(0) = u(1) = 0.
The exact solution of this equation is

u(t) = − 1

1− e2
et +

e2

1− e2
e−t − t+ 1.

Using the formulas (23) and (25) we obtain the elements of
the matrix T and B respectivly.

T =


0 0 0

1
8 −

397
1680 − 2

3 −
1

252
1
8 −

397
1680

1
5 −

1
42

1
8 −

397
1680 − 2

3 −
151
630

1
120 −

1
5040

1
5 −

1
42

1
8 −

397
1680

0 1
120 −

1
5040

1
5 −

1
42

0 0 0

1
6

2
3

1
6

1
5 −

1
42

1
120 −

1
5040 0

1
8 −

397
1680

1
5 −

1
42

1
120 −

1
5040

− 2
3 −

599
1260

1
8 −

397
1680

1
5 −

1
42

1
8 −

397
1680 − 2

3 −
151
315

1
8 −

397
1680

0 1
6

2
3

 ,

BT =
[

0 − 7
60 −

19
15 −

28
15 − 1 0

]
.

Using the Gaussian elimination algorithm we solve the
matrix equation TC = B and get

c−4 = − 2215101437733534
43246859986663 , c−3 = 499827906129216

43246859986663 ,

c−2 = − 463553467007022
43246859986663 , c−1 = 183867171805800

43246859986663 ,

c0 = − 49031245814880
43246859986663 , c1 = 12257811453720

43246859986663 .
So the approximate solution is

u0(t) = c−1φ(t+ 1) + c0φ(t) + c1φ(t− 1), t ∈ [0, 1].

TABLE I
COMPARISON OF RESULTS

Case t numerical solution u0 exact solution u absolute error
0 0 0 0

0.1 0.0276352 0.0265183 0.00111691
0.2 0.0453501 0.0442945 0.00105559
0.3 0.0545619 0.0545074 0.0000544741
0.4 0.0566876 0.0582599 0.00157229
0.5 0.0531447 0.0565906 0.0034459
0.6 0.0453501 0.0504834 0.00513329
0.7 0.0347212 0.0408782 0.00615698
0.8 0.0226751 0.0286795 0.00600449
0.9 0.0106289 0.0147663 0.00413736
1 0 0 0
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We now consider the differential equation of the form

u′′(t) + g(t)u′(t) = f(t), t ∈ [0, 1], (30)

with the same Dirichlet boundary conditions

u(0) = u(1) = 0, (31)

where g(t) and f(t) are continuous functions on [0, 1].
At the similar way, we want to find the approximate solution

of this equation of the form

u0(t) =
1∑

k=−4

ckφ(t− k), t ∈ [0, 1]. (32)

Substitute (32) in (30) we get

d2

dt2

1∑
k=−4

ckφ(t− k)+

+g(t)
d

dt

1∑
k=−4

ckφ(t− k) = f(t). (33)

Taking the inner product with φ(t − n), n ∈
{−4,−3,−2,−1, 0, 1} we obtain

1∑
k=−4

ckΩn−k +

1∑
k=−4

ckdn,k = bn, (34)

n ∈ {−4,−3,−2,−1, 0, 1}, where

Ωn−k =

∫ 5

−4

φ
′′
(t− k)φ(t− n)dt, (35)

dn,k =

∫ 5

−4

g(t)φ′(t− k)φ(t− n)dt, (36)

bn =

∫ 5

−4

f(t)φ(t− n)dt. (37)

We get the following matrix equation

TC = B, (38)

where

T =


φ(4) φ(3) φ(2)

Ω1 − d−3,−4 Ω0 − d−3,−3 Ω−1 − d−3,−2

Ω2 − d−2,−4 Ω1 − d−2,−3 Ω0 − d−2,−2

Ω3 − d−1,−4 Ω2 − d−1,−3 Ω1 − d−1,−2

Ω4 − d0,−4 Ω3 − d0,−3 Ω2 − d0,−2

φ(5) φ(4) φ(3)

φ(1) φ(0) φ(−1)
Ω−2 − d−3,−1 Ω−3 − d−3,0 Ω−4 − d−3,1

Ω−1 − d−2,−1 Ω−2 − d−2,0 Ω−3 − d−2,1

Ω0 − d−1,−1 Ω−1 − d−1,0 Ω−2 − d−1,1

Ω1 − d0,−1 Ω0 − d0,0 Ω−1 − d0,1

φ(2) φ(1) φ(0)


and

C =


c−4

c−3

c−2

c−1

c0
c1

 , B =


0
b−3

b−2

b−1

b0
0

 .

Example 2. Let us consider the Van Der Pol equation

u
′′
(t) + µ(t2 − 1)u

′
(t) = −t, 0 ≤ t ≤ 1, µ ∈ R (39)

with Dirihlet boundary conditions

u(0) = u(1) = 0. (40)

The Van der Pol [10] oscillator was originally proposed
by the Dutch electrical engineer and physicist Balthasar van
der Pol while he was working at Philips. Van der Pol found
stable oscillations, which he called relaxation-oscillations and
are now known as limit cycles, in electrical circuits employing
vacuum tubes. The Van der Pol equation has a long history of
being used in both the physical and biological sciences. The
equation has also been utilized in seismology to model the
two plates in a geological fault.

The goal here will be, in absence of the exact analytic
solution, to find numerical solution using the wavelet-Galerkin
method. In the limits or small or large values of the parameter
µ, the reduced equations are amenable to asymptotic analysis.
For the case of large values of the parameter µ (relaxation
oscillations) an analytic solution to the problem is provided
that is exact up to O(µ−2).

Two interesting regimes for the characteristics of the
unforced oscillator are:

1. When µ = 0, i.e. there is no damping function, the
equation becomes u

′′
(t) + t = 0. This is a form of the

simple harmonic oscillator and there is always conservation
of energy.

2. When µ > 0, the system will enter a limit cycle. Near
the origin u = du/dt = 0 the system is unstable, and far
from the origin the system is damped.

Using the formulas (35) and (37) we obtain the elements of
the matrix T and B respectively.

T =



0 0 0
1
8 −

16553µ
5040 − 2

3 + 1359µ
1120

1
8 + 8203µ

3360
1
5 −

353µ
630

1
8 −

1411µ
1120 − 2

3 + 302µ
315

1
120 −

23µ
3360

1
5 −

41µ
210

1
8 −

1361
10080

0 1
120 −

µ
672

1
5 + µ

70
0 0 0
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6

2
3

1
6

1
5 + 61µ

210
1

120 + µ
480 0

1
8 + 8507µ

10080
1
5 + µ

30
1

120 −
µ

1120

− 2
3 + 151µ

315
1
8 −

7µ
96

1
5 −

43µ
630

1
8 + 1039µ

3360 − 2
3

1
8 −

1039µ
3360

0 1
6

2
3

 ,

B =
[

0 113
40 2 1 0 0

]
.

By Gaussian elimination algorithm we solve the matrix
equation TC = B and obtain the coefficients ck, k ∈
{−4,−3,−2,−1, 0, 1} as functions of parametar µ.

c−4 = −p−4

q−4
,

where

p−4 = 252(8542300253760− 19415138950032µ+
13072514451716µ2 + 19758040532699µ3)

and

q−4 = −124122644448768+
1319754746705472µ− 3666921988214352µ2+
797356612349572µ3 + 1184632629273253µ4

.

The other coefficients ck, k ∈ {−3,−2,−1, 0, 1} are not given
here since their complexity. In a case when µ = 0.05, we
obtain c−1 = −2.15117, c0 = 0.573645, c1 = −0.143411 and
the approximate solution is

u0(t) = c−1φ(t+ 1)c0φ(t) + c1φ(t− 1), t ∈ (0, 1).

TABLE II
NUMERICAL SOLUTION u0 OF THE VAN DER POL EQUATION FOR

DIFFERENT VALUES OF PARAMETAR µ

Case µ=0.05 µ=0.1 µ=1
0 0 0 0

0.1 0.0838955 0.218264 0.240269
0.2 0.137675 0.358176 0.394288
0.3 0.16564 0.430931 0.474378
0.4 0.172093 0.44772 0.49286
0.5 0.161338 0.419738 0.462057
0.6 0.137675 0.358176 0.394288
0.7 0.105407 0.274229 0.301877
0.8 0,0688374 0.179088 0.197144
0.9 0.0322675 0.0839475 0.0924113
1 0 0 0

IV. CONCLUSION

As a result of an increased utilization of the wavelet
analysis to solving mathematical and engineering problems,
the numerical wavelet methods for differential and integral
equations are becoming increasingly important research field.
In this paper, we used multioresolution analysis and scaling
functions when studding the wavelet-Galerkin method and we
applied the method to some special types of Sturm-Liouville
differential equation. In example 1, we can see how this
method is applied to concrete differential equation (29), and
there we make comparison between the exact solution of this
equation and our numerical solution. Also, in example 2,

we found numerical solutions of nonhomogeneous differential
known as Van der Pol equation which does not have analytic
solution.
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