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Abstract—This paper presents an image deblurring method 

that finds application in a broad scientific field such as image 

deblurring. A method for image deblurring, based on the pseudo-

inverse matrix is applied for removal of blur in an image caused 

by linear motion. This method assumes that linear motion 

corresponds to an integer number of pixels. Compared to other 

classical methods, this method attains higher values of the 

Improvement in Signal to Noise Ratio (ISNR) and the Peak 

Signal to Noise Ratio (PSNR) parameter. The values for the 

Mean Square Error (MSE) is lower and computational time has 

been decreased considerably with respect to the other methods. 

The presented experimental results are implemented in 

MATLAB.  

Keywords—deblurring; image restoration; inverse matrix; 

matrix equation 

I.  INTRODUCTION 

Blurring is a form of bandwidth reduction of an ideal image 
owing to the imperfect image formation process [1-3]. It can be 
caused by relative motion between the camera and the original 
scene, or by an optical system that is out of focus. When aerial 
photographs are produced for remote sensing purposes, blurs 
are introduced by atmospheric turbulence, aberrations in the 
optical system, and relative motion between the camera and the 
ground. The field of image restoration is concerned with the 
reconstruction or estimation of the uncorrupted image from a 
blurred one. In the use of image restoration methods, the 
characteristics of the degrading system are assumed to be 
known a priori. The method, based on Moore-Penrose inverse 
matrix, is applied for the removal of blur in an image caused by 
linear motion. For comparison, we used two commonly used 
filters from the collection of least-squares filters, namely 
Wiener filter and the constrained least-squares filter [2]. Also 
we used in comparison the iterative nonlinear restoration based 
on the Lucy-Richardson algorithm [3].  

This paper is organized as follows. In the second section we 
present process of image formation and problem formulation. 
In Section 3 we describe a method for the restoration of the 
blurred image. We observe certain enhancement in the 
parameters: ISNR, MSE and PSNR, compared with other 

standard methods for image restoration, which is confirmed by 
the numerical examples reported in the last section. 

II. IMAGE FORMATION PROCESS 

We assume that the blurring function acts as a convolution 

kernel or point-spread function ),( 21 nnh  and the image 

restoration methods that are described here fall under the class 
of linear spatially invariant restoration filters. It is also assumed 
that the statistical properties (mean and correlation function) of 
the image do not change spatially. Under these conditions the 
restoration process can be carried out by means of a linear filter 
of which the point-spread function (PSF) is spatially invariant. 

If we denote by ),( 21 nnf  the desired ideal spatially discrete 

image that does not contain any blur or noise, then the recorded 

image ),( 21 nng  is modeled as [2]: 
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The objective of the image restoration is to make an 

estimate ),( 21 nnf  of the ideal image, under the assumption 

that only the degraded image ),( 21 nng  and the blurring 

function ),( 21 nnh  are given. The problem can be summarized 

as follows: let H be a nm  real matrix. Equations of the form: 


nmnm HfgHfg  ;;,  

describe an underdetermined system of m simultaneous 
equations (one for each element of vector g) and 1 lmn  

unknowns (one for each element of vector f). Here the index l 
indicates horizontal linear motion blur in pixels. The problem 
of restoring an image that has been blurred by linear motion, 
usually results of camera panning or fast object motion, 
consists of solving the underdetermined system (2). A blurred 
image can be expressed as: 
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The elements of matrix H are defined as: lhi /1  for i=1, 

2,..., l. The objective is to estimate an original row per row f 

(contained in the vector Tf ), given each row of a blurred g 

(contained in the vector Tg ) and a priori knowledge of the 

degradation phenomenon H. We define the matrix F as the 

deterministic original image, its picture elements are ijF  for 

i=1,…, r and for j=1,…, n, the matrix G as the simulated 
blurred can be calculated as follows: 
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with 1 lmn , where l is the linear motion blur in pixels. 

Equation (4) can be written in matrix form of the process of 
horizontal blurring as: 

   TTT FHHFG   

Since there is an infinite number of exact solutions for f or 

F in the sense that satisfy the equation Hfg  or TFHG  , an 

additional criterion that find a sharp restored matrix is required. 

The process of blurring with vertical motion is with the 
form: 


rmrm HfgHfg  ;;,  

where 1 lmr , and l is linear vertical motion blur in 

pixels. The matrix H is Toeplitz matrix as the matrix given in 
(3), but with other dimensions. The matrix form of the process 
of vertical blurring of the images is: 


nrrmnm FHGHFG   ;;,  

Let us first consider a case where the blurring of the 
columns in the image is independent of the blurring of the rows 
- separable two-dimensional blur. When this is the case, then 

there exist two matrices cH and rH , such that we can express 

the relation between the original and blurred images as: 


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where 112  lmn , 121  lmr , 1l  is linear horizontal 

motion blur in pixels and 2l is linear vertical motion blur in 

pixels. 

III. METHOD FOR IMAGE DEBLURRING 

The notion of Moore-Penrose inverse (pseudoverse) matrix 
of square or rectangular pattern is introduced by H. Moore in 
1920 and again from R. Penrose in 1955, who was not aware of 
the work of Moore. Let T is real matrix with dimension nm  

and )(T  is the range of T. The relation of the form: 


mnm RbRTbTx   ,,  

are obtained in the analysis and modeling of many practical 
problems. It is known that when T is a singular matrix, its 
unique Moore-Penrose inverse matrix is defined.  In case when 
T is real matrix with dimension nm , Moore and Penrose 

proved that Moore-Penrose inverse matrix †T  is a unique 
matrix that satisfies the following four relations: 

 TTTT † ; 

 ††† TTTT  ; 

 †† )( TTTT T  ; 

 TTTT T †† )(  . 

We will use the following proposition from [5]: 

Let mnm RbRT   , , )(Tb   and we have a 

relationship bTx  , then we have ubT † , where u is the 

minimal norm solution and †T  is the Moore-Penrose inverse 
matrix of T.  

Since relation (2) has infinitely many exact solutions for f, 
we need an additional criterion for finding the necessary vector 
for restoration. The criterion that we use for the restoration of 
blurred image is the minimum distance between the measured 
data: 

 )ˆmin( gf   

where f̂  are the first m elements of the unknown image f, 

which is necessary to restore, with the following constraint: 

 .0 gHf  
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Following the above proposal, only one solution of the 

relation Hfg   minimizes the norm gHf  . If this solution 

is marked by f̂ , then for it is true: 

 gHf †ˆ   

Taking into account the relations of horizontal blurring (2) 
and (5), and relation (12) solution for the restored image is: 

 TT HGHGF )()(ˆ ††   

In the case of process of vertical blurring solution for the 
restored image, taking into account equations (6), (7) and (12), 
is: 

 GHF †ˆ   

When we have a separable two-dimensional blurring 
process, the restored image is given by: 

 T
rc HGHF )(ˆ ††  

IV. NUMERICAL RESULTS 

In this section we have tested the method based on Moore-
Penrose inverse matrix (or generalized inverse - GIM method) 
of images and present numerical results and compare with two 
standard methods for image restoration called least-squares 
filters: Wiener filter and constrained least-squares filter and the 
iterative method called Lucy-Richardson algorithm. The 
experiments have been performed using Matlab programming 
language on an Intel(R) Core(TM) i5 CPU M430 @ 2.27 GHz 
64/32-bit system with 4 GB of RAM memory running on the 
Windows 7 Ultimate Operating System. 

In image restoration the improvement in quality of the 
restored image over the recorded blurred one is measured by 
the signal-to-noise ratio (SNR) improvement [6].  
 The simplest and most widely used full-reference quality 
metric is the mean squared error (MSE) [6, 7], along with the 
related quantity of peak signal-to-noise ratio (PSNR). The 
advantages of MSE and PSNR are that they are very fast and 
easy to implement. With PSNR greater values indicate greater 
image similarity, while with MSE greater values indicate lower 
image similarity.  

A. Horizontal motion 

Fig. 1, Original Image, shows a deterministic original 
standard Matlab image Barbara. Fig. 1, Degraded Image, 
presents the degraded Camera image for l=30. Finally, from 
Fig. 1, GIM Restored Image, Wiener Restored Image, 
Constrained LS Restored Image and Lucy-Richardson 
Restored Image, it is clearly seen that the details of the original 
image have been recovered. 

Original Image             Degraded Image                     GIM Restored Image 

 
Wiener Restored Image    Constrained LS Restored Im.     Lucy-Richardson Restored Im. 

 

Fig. 1. Restoration in simulated degraded Barbara image for length of the 

horizontal blurring process, l=20. 

The difference in quality of restored images can hardly be 
seen by human eye. For this reason, the ISNR and MSE have 
been chosen in order to compare the restored images. Fig. 2 – 4 
shows the corresponding ISNR, MSE and PSNR values.  The 
figures illustrate that the quality of the restoration is as 
satisfactory as the classical methods or better (l<100 pixels). 
Regarding these three parameters ISNR, MSE, PSNR similar 
results we present in [8] for other standard Matlab image called 
Cameraman. 

 

Fig. 2. Improvement in signal-to-noise-ratio vs. length of the blurring 

process in pixels. 

 

Fig. 3. Mean squared error vs. length of the blurring process in pixels. 
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Fig. 4. Peak signal-to-noise-ratio vs. length of the blurring process in pixels. 

B. Vertical motion 

Obviously the method is not restricted to restoration of 
images blurred from horizontal motion. The results present in 
Fig. 5 – 8 refer when we have vertical blurring process. 

Original Image                 Degraded Image   GIM Restored Image 

Wiener Restored Image    Constrained LS Restored Im.     Lucy-Richardson Restored Im. 

 

Fig. 5. Restoration in simulated vertical degraded image for length of the 

blurring process, l=20. 

 

Fig. 6. Improvement in signal-to-noise-ratio vs. length of the blurring 

process in pixels. 

 

Fig. 7. Mean squared error vs. length of the blurring process in pixels. 

 

Fig. 8. Peak signal-to-noise-ratio vs. length of the blurring process in pixels. 

C. Separable two-dimensional blur 

The results for the standard Matlab image Barbara in case 
of separable two-dimensional blur are given on Fig. 9 – 12. 

 Original Image             Degraded Image    GIM Restored Image 

 

  Wiener Restored Image    Constrained LS Restored Im.     Lucy-Richardson Restored Im. 

 

Fig. 9. Restoration in simulated degraded Barbara image for length of the 

blurring process l1=15 and l2=20. 
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Fig. 10. Improvement in signal-to-noise-ratio vs. length of the blurring 

process in pixels. 

 

Fig. 11. Mean squared error vs. length of the blurring process in pixels 

 

Fig. 12. Peak signal-to-noise-ratio vs. length of the blurring process in pixels. 

D. Time consuming 

 Tastings are made for different values of dimensions of the 
image nr , while parameter 1 takes values from 5 to 101 with 

step 3. The results presented in the next pictures refer to the 
time of calculation for getting of the restored picture in seconds 

(t(sec)) as a function of 101l . Comparison is performed for 

the presented model for restoration (GIM1 Method) [5], the 
method from [9, 10] called LM method and the standard 
methods, for different random matrices with dimensions: 

600600 , 600800  and 6001000 .  

 

Fig. 13. Computational time vs. length of the blurring procces in pixels for 

r=600, n=600. 

 

Fig. 14. Computational time vs. length of the blurring procces in pixels for 

r=800, n=600. 

 

Fig. 15. Computational time vs. length of the blurring procces in pixels for 

r=1000, n=600. 

With using of the proposed method, the resolution of the 
restored image stays at very high level, and another advantage 
of these methods is also in the required computational time 
which is very close or smaller, compared with other methods 
and techniques. Improving of the standard methods for image 
restoration are presented in [11, 12]. 
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Fig. 16. Computational time vs. length of the blurring procces in pixels for 

Barbara. 

In Fig. 16 the results for standard image Barbara is shown. 
The times of the computational calculation that correspond to 
our method are almost independent in matter of the increasing 
of the parameter l. 

V. CONCLUSIONS 

We introduce a computational method, based on the 
Moore-Penrose inverse matrix, to restore an image that has 
been blurred by linear motion.  

We are motivated by the problem of restoring blurry 
images via the well-developed mathematical methods and 
techniques based on Moore-Penrose inverse matrix in order to 
obtain an approximation of the original image.  

We present the results by comparing our method and that of 
the Wiener filter, Constrained least-squares filter and Lucy-
Richardson algorithm, well-established restoration methods. 
Results are shown concerning when we have horizontal, 
vertical and separable two-dimensional blurring of the image. 

In the method we studied, the resolution of the restored 
image remains at a very high level, yet the ISNR and PSNR is 

considerably higher. Although the computational efficiency is 
improved in comparison to other methods and techniques. 

REFERENCES 

[1] J. Biemond, R. L. Lagendijk, and R. M. Mersereau, “Iterative methods 
for image deblurring”, Proc. IEEE, 78(5):856–883, 1990. 

[2] Al Bovik, The essential guide to the image processing, Academic 
Press, 2009. 

[3] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 
2nd Edition, Prentice-Hall, 2002. 

[4] Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins, Digital 
Image Processing Using MATLAB, Prentice-Hall, 2003. 

[5] Spiros Chountasis, Vasilios N. Katsikis, and Dimitrios Pappas, 
“Applications of the Moore-Penrose Inverse in Digital Image 
Restoration”, Mathematical Problems in Engineering Volume 2009 
(2009). 

[6] Ahmet M. Eskicioglu and Paul S. Fisher, “Image Quality Measures and 
Their Performance”, IEEE Transactions on Communications, vol. 43, 
pp. 2959-2965, Dec. 1995. 

[7] Zhou Wang and Alan C. Bovik, “Mean Squared Error: Love It or Leave 
It? A New Look at Signal Fidelity Measures”, IEEE Signal Processing 
Magazine, vol. 26, no. 1, pp. 98-117, Jan. 2009. 

[8] I. Stojanovic, P. Stanimirovic, M. Miladinovic and D. Stojanovic, 
“Application of Non-Iterative Method in Image Deblurring”, Journal of 
Computer Science and Control Systems (JCSCS), ISSN 1844-6043, pp. 
99-102, Vol. 5, Nr. 1, 2012. 

[9] I. Stojanovic, P. Stanimirovic and M. Miladinovic, “Applying the 
Algorithm of Lagrange Multipliers in Digital Image Restoration.”, 
FACTA UNIVERSITATIS, Series Mathematics and Informatics, ISSN 
0352-9665, Vol. 27, No 1, pp. 41-54, 2012. 

[10] I. Stojanovic, I. Kraljevski and S. Chungurski, “Using of the Algorithm 
of Lagrange Multipliers in Image Restoration”, Journal of Electrical and 
Electronics Engineering (JEEE), ISSN 1844-6035, pp. 203-206, Vol. 3, 
Nr. 2, 2010. 

[11] P. Stanimirovic, S. Chountasis, D. Pappas, I. Stojanovic, “Removal of 
blur in images based on least squares solutions”, Mathematical Methods 
in the Applied Sciences, Print ISSN: 0170-4214, Online ISSN: 1099-
1476, DOI:10.1002/mma.2751. 

[12] P. Stanimirovic, I. Stojanovic, S. Chountasis, D. Pappas, “Image 
Deblurring Process Based on Separable Restoration Methods”, 
Computational and Applied Mathematics, ISSN: 0101-8205 
(Print) 1807-0302 (Online), DOI: 10.1007/s40314-013-0062-2. 

 

 

Proceedings of the XI International Conference ETAI 2013, 26th -28th of September 2013, Ohrid, Republic of Macedonia 




