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Abstract. In this paper, the efficiency of the multigrid method for

clectromagnetic field computations is presented. We apply the

multigrid method to nodal and edge finite clement analyses. A

comparison of the computational time between the multigrid
| method and the ICCG method, which is commonly used a
| solution method in the finite clement analysis, is also presented. It
‘ is obvious that the efficiency of the multigrid methods is better

than that of the ICCG method especially for solving larger
’ systems of equations.

1. Introduction

Recently. with the tremendous developments in the computer software and
hardware technology a large-scale simulation is feasible. But, it needs a long
computation time because we have to solve a large system of equations. Therefore, we
need to shorten the computation time in order to solve a large system of equations for
which various techniques have already been proposed. Among them, the multigrid
method that is a fast solution method for a large system of equations is the most
promising.

In finite element analysis, a nodal finite element has been traditionally used.
Naturally, the multigrid method was initially developed for the nodal finite element
analysis [1]-[4]. Recently, an edge finite element method is widely used for
electromagnetic analysis because of its good computational propertics. Respectively,
‘we applied the multigrid method not only to a nodal finite element method but also for
‘an edge finite element method. In this paper, we applied the mutigrid method to the 3D
| magnetostatic problems, and investigated its efficiency. The convergence criterion was
iset to 10 for all analysis cases. For the analyses, we used a personal computer with
|Alpha processor CPU (21164A, 633MHz).
|

2. Multigrid Method

In analysis using the multigrid solution method, it is necessary to prepare several
meshes with different mesh densitics. The stationary iterative methods (e.g. Gauss-
Seidel method) can eliminate the high frequency components of an error in several
iteration steps, but it requires many iteration steps to eliminate the low frequency
components of the same error. This process causes very slow convergence of the
iteration process. On the other hand, in the multigrid method, the high frequency
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components of an error are eliminated on the finer mesh, and the low frequency error
components are eliminated on the coarser mesh. This procedure is called “coarse gird
correction” and is a basic process of the multigrid method. Fig. 1 shows the flowchart
of the coarse grid correction. o
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Figure 1: Flowchart of coarse grid correction

Step I —  Relax a few times on K; x; = f; to obtain an approximation solution X,.
The matrix K- is the system matrix, and vectors X, and f> are the unknown
veetor and the source vector, respectively. This step is called “smoothing”.

Step 2 ~Compute the residual vector r;= f3 - Ky X,

Step 3—-  Project the residual vector onto a coarser mesh, ry = R ry, using the
restriction operator R.

Step 4 — Exactly solve the residual equation K, e; = r; to obtain an error approximation

e1.

Step 5—  Interpolate the approximation error to the finer mesh, e, = P ey, using the
prolongation operator P.

Step 6 -Compute the improved solution x, = X,+ey.

Step 7—Continue into a new iterative cycle by starting again from smoothing.

At step 4, it is possible to apply the coarse grid correction scheme recursively.
Then, the number of meshes is unrestricted and several iteration schemes are possible.
In that case, it is called “A Mulrigrid Method".

3. Applications

We applied the multigrid method to the 3D magnetostatic model shown in Fig. 2,
where the permeability of iron is 1000 and the source current is 1000 At

—
L)




t of the IC
| of the It
i multigric
[ the num
= method,
£ ICCGm
(=]
E
i 32 E
' Nexi
shows t
: v 4 P multigri
20[mm] ) X computs
AL ) multigri
| = 1000[mm] » faster th
| Figure 2: Analysis model
|
3.1.  Nodal element
| First, the multigrid method is applied to the tetrahedral nodal finite element.
Four meshes with different mesh density are prepared for the multigrid method. The
number of nodes, elements and unknowns for each mesh are shown in Table L
Slubdividing one element of the coarser mesh into 8 finer clements generates the finer
mesh. Fig. 3 shows the comparison of the multigrid method and the ICCG method. For
30,000 unknowns, the computation time of the multigrid method is almost cqual to that
' Table 1: Number of nodes for nodal elements
! Level  Nodes Elements Unknowns
1 232 591 928
2 1284 4728 5136
{ 3 8215 37824 32860
! 4 57933 302592 231732
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Figure 3: Number of unknowns vs. computation time for nodal element
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of the ICCG method. But, as the number of unknowns increases, the computation time
of the ICCG method increases rapidly. On the contrary, the computation time of the
multigrid method increases slowly as the number of unknowns increases. Therefore, as
the number of unknowns increases, the multigrid method is faster than the ICCG
method. For about 230,000 unknowns, the multigrid method is 4 times faster than the
ICCG method.

3.2,  Edgeelement

Next. the multigrid method is applied to the brick edge finite element. Table II
shows the number of nodes, elements and edges. Fig. 4 shows the comparison of the
multierid method and the ICCG method. As the number of unknowns increases, the
computation time of the ICCG increases rapidly but the computation time of the
multigrid method increases modestly. In this example, the multigrid method 1s 4 times
faster than the 1CCG method for 350,000 unknowns.

Table 2: Number of nodes for edge elements
Level  Nodes Elements Edges

1 480 210 1138

2 2697 1680 7012

3 17385 13440 48088

4 123057 107520 353392
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Figure 4: Number of unknowns vs. computation time for edge element

Therefore, it is revealed that the multigrid method is equally effective for nodal and
for edge finite element analyses. Especially, the edge finite element method using the
multigrid method is the fastest in this example.
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4. Conclusions

We presented an investigation of the efficiency of the multigrid method for nodal
and for edge finite element analyses. The multigrid method improves strongly the
convergence rate and reduces the computation time in comparison with the 1CCG
method. The multigrid method is very effective for the large-size problem.
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