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CHAPTER I 

INTORDUCTION 

 

 
1. Introduction 

In many engineering and physics areas the problems which are investigated may be 

best represented or modeled by unbounded or semi - unbounded domains. The description of 

waves generated at shock producing industrial facilities or subway lines and their propagation 

through the soil, propagation of seismic waves and their approach toward the investigated 

objects, the propagation of noise generated by traffic route, the electromagnetic modeling of 

antennas, are only few topics that requires considering dynamics of infinite domains. 

The key issue in modeling the dynamic behavior of infinite domains is the idea that 

there is no energy source at very large distance from the region being analyzed. All energy 

sources are circumscribed within a limited domain. So physically, energy generated at the 

bounded domains flows, usually as waves, from the source into the infinite domain and is not 

reflected. The unbounded domain is a perfect sink, where energy, in all its frequency and 

forms, is consumed. 

Artificial boundary conditions (ABC) furnish a widely used approach for numerical 

treatment of boundary-value problems initially formulated on unbounded domains.  These 

boundary conditions are typically set at the external boundary of a finite computational 

domain once the latter is obtained from the original unbounded domain by means of 

truncation. Implementation of ABC’s enables to complete the “truncated problem” and 

therefore, makes this problem available for solution on the computer. However, to ensure 

well-posedness of the problem in the exterior, it must be supplied with the Somerfeld 

radiation conditions at infinity, which guarantee that the waves are purely outgoing and 

decaying as they approach infinity. 

In the era of fast computers, obtaining solutions to many previously unsolvable 

problems became a reality, especially for problems involving partial differential equations 

(PDE), in which the analytical solutions exist only for the simplest condition. By utilizing 

numerical methods one can solve a problem from initial to some desired time at all spatial 

points. To solve a wave problem numerically in unbounded domain one usually introduces an 

artificial boundary, thereby defining a finite computational domain. On the artificial 

boundary one must impose some boundary conditions which should allow waves from the 

finite domain to pass through the artificial boundaries without generating spurious reflection.  

The numerical solution of wave problems is a challenge common to many branches of 

engineering and applied mechanics. One aspect which must be considered when solving 

boundary value problems numerically, and which has both theoretical and computational 

importance, is the treatment of the boundary conditions. The choice of good physical 

boundary conditions for various problems and the way to combine this condition with the 

numerical scheme employed in the interior is an important subject of research.     
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1.2. Organization 

 This thesis is separated in two main parts. First one has two chapters while the second 

one has three chapters. In the first part the theoretical background of this work is presented, 

while in the second one consists the results and interpretation of the results. The two chapters 

in the theoretical part are Chapters II and III. 

1. Chapter II begins with the idea of development the local and global artificial 

boundary conditions and goes on with a short review of some of the most important 

researches in field of artificial boundary conditions. In the last section of this chapter, 

it is given conclusions about the characteristics of global and local artificial boundary 

conditions. 

 

2. Chapter III consists two main sections. The first one is describing the mathematical 

model, which will be used in the second section for deriving the finite difference 

scheme.  

The results and the conclusions are given in the next three chapters 

3. In Chapter IV first a review of the two most popular numerical methods is given, the 

Finite-Difference Method (FDM) and Finite Element Method (FEM). In the 

continuance are presented numerically and graphically the results obtained from the 

numerical model derived in the second section of Chapter III. 

 

4. Chapter V is interpretation of the results represented in the previous chapter. In the 

discussions are stressed out the advantages and disadvantages of the experimented 

models. 

 

5. In the last Chapter VI are given the conclusions about the Absorbing boundary 

conditions and whole model at all. In this chapter short recapitulation of the whole 

work is done. Additionally some ideas which are possible to apple such to obtain 

model applicable in practical problems or for further scientific researches. 
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CHAPTER II 

ARTIFICIAL BOUNDARY CONDITIONS 

 

2. Artificial boundary conditions (ABC): a review 

 For almost any problem formulated on an unbounded domain, there are, generally 

speaking, many different ways of closing its truncated counterpart. In other words, the choice 

of the ABC’s is never unique. Clearly, the minimal necessary requirement of ABC’s is to 

ensure the solvability of the truncated problem. If, however we restrict ourselves to this 

requirement only, then we cannot guarantee that the solution found inside the computational 

domain will be anywhere close to the corresponding fragment of the solution to the original 

(infinite domain) problem.  Therefore, we must additionally require of the ABC’s that the two 

solutions be in a certain sense close to each other on the truncated domain. An ideal case here 

would obviously be an exact coincidence of these two solutions, which leads us to 

formulating the concept of exact ABC’s. Namely, we will refer to the ABC’s as being exact if 

one can complement the solution calculated inside the finite domain to its exterior so that the 

original problem is solved. The concept of exact ABC’s appears useful for the theoretical 

analysis of infinite domain analysis [1]. 

 As the exact ABC’s are not attainable routinely, the alternative is provided by various 

approximate local methods, which typically meet the other usual requirements of ABC’s 

beside minimization of the error associated with the domain truncation. As mentioned above, 

these other requirements are low computational cost, geometric universality (i.e. applicability 

to a variety of irregular boundary conditions often encountered in real-life settings), and 

implementation without difficulties, in particular, readiness in combining the ABC’s with the 

existing (interior) solvers.  

 Almost every numerical algorithm for setting the ABC’s can be thought of as a 

compromise between the two foregoing groups of requirements that in a certain sense 

contradict one other. Shifting the balance towards locality and practical efficacy often implies 

insufficient accuracy; shifting it to the other side, towards high accurate nonlocal techniques, 

may often yield cumbersome and all but impractical algorithms.  

 In the following sections (2.1 and 2.2.) a review of different ABC’s that have been 

published in the literature over recent years methodologies will be presented.  One section 

will be dedicated for each, global and local boundary conditions. 

2.1. Global methods 

 Engquist and Majda [3-4] one among the first who worked on ABC’s, developed the 

time-dependent ABC’s for some wave propagation problems, in particular those described by 

the wave equations and firs-order hyperbolic systems. Their approach is to represent the 

solution as a superposition of waves and to eliminate all incoming waves from the solution at 

the artificial boundary, because they can be interpreted as the reflection from the boundary. 

The ABC’s that prohibit such waves are often called the non-reflected boundary conditions 

(NRBC’s). This idea essentially implies that the exterior solution is sought for in the class of 

functions that can be composed of the outgoing waves only; this property constitutes the 

desired far-field behavior of the solution and can therefore be interpreted as the boundary 

condition at infinity; this boundary condition is then replaced by the ABC’s at some finite 

artificial boundary. 
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 Gustafsson [5] analyzed another hyperbolic problem, which from the standpoint of 

constructing ABC’s is an additional complication. The initial data and the RHS source terms 

are no longer required to concentrate inside the computational domain (as by Engquist and 

Majda) but can also spread beyond the artificial boundary.  The separation of variables using 

Laplace transforms in time and Fourier transform in space yield in this case in 

inhomogeneous relation that after the inverse transforms serves as nonlocal exact ABC at the 

planar artificial boundary.  

 Halpern [6] went further with his researches analyzing wider class of problems the so-

called incompletely parabolic systems, i.e., the (small) higher-order parabolic-type 

perturbations of hyperbolic systems. A typical example of the system from this class is the 

Navier-Stoke equations for viscous fluid flows. In his work the ABC’s for the linear half-

space incompletely parabolic problem (planar Cartesian artificial boundary) are again 

obtained by first implementing the Fourier-Laplace transform and separating the variables 

and then explicitly selecting in the transformed space only those modes that comply with the 

desired behavior of the solution near infinity. Similarly to the boundary conditions from the 

previous authors [3-5], these boundaries can be approximated by some local relations. 

 Sofronov published series of papers [7-9] where he presented his technique for 

construction of exact three-dimensional ABC’s for the wave equation as the spherical 

artificial boundary. Similarly to the works done from previous researches, the approach is 

also based on using the separation of variables. Spherical coordinates and Fouriers’s 

expansion with respect to the spherical functions are employed in space; Laplace’s transform 

is implemented in time. For the finite-difference formulation, the continuous spherical 

functions are substituted by the eigenvector of the discretized Beltrami operator on the 

sphere. These eigenvectors form an orthonormal basis and are called the difference spherical 

functions. The same type of approach has been carried out by Sofronov in later works (1995) 

for computation of the inviscid compressible flows in cylindrical wind tunnels. The inflow 

and outflow boundaries are planar cross-sections of the wind tunnel normal to its axis; the 

geometry and different governing Euler equations are linearized outside the computational 

domain. The resulting boundary conditions include the explicit formulas that connect the 

flow variables at the inflow and outflow artificial boundaries. An important part of the work 

by Sofronov is his approach to temporal localization of the exact ABC’s. 

 Every one from the previous methodologies for exact ABC’s (except first one by 

Sofronov) has strict limitations on the shape of the artificial boundary. The limitations are 

accounted for by the very nature of the techniques used for constructing ABC’s; these 

techniques involve integral along the boundary and are essentially based on the separation of 

variables [1]. As way to achieve more geometric flexibility, Sofronov proposed first to 

enclose the actual artificial boundary (not essentially regular) between two additional 

spherical boundaries and the use interpolation. From the standpoint of geometry many local 

methods surveyed in Section 2.2 are much less restrictive. A highly accurate nonlocal ABC’s 

methodology, which would at the same time be geometrically universal, can be calculated 

using difference potentials method. 

 One other direction in constructing ABC’s was proposed by Givoli&Keller [10] by 

using the so-called Dirichlet to Neumann (DtN) mapping on the artificial boundaries. DtN 

relates the Dirichlet data u to the Neumann data 
   

  
. First they construct the nonlocal exact 

ABC’s for the Laplace equation and for some problems in elasticity. Further they developed 

similar boundary conditions for the Helmholtz equation, which is then solved by the finite 

elements method [11]. The approach is to express the normal derivative of the solution in 

terms of the solution itself so that the particular desired asymptotic of the solution at infinity 

is enforced. For the Helmholtz equation the Somerfeld radiation condition at infinity is 

enforced. They proved that combination of the exact boundary conditions with the finite 
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element method is very efficient. Also they are showing that the non-locality does not spoil 

the banded structure of the finite element matrix and does not increase the computation time 

significantly. 

 Practical implementation of the true exact ABC’s for time-dependent problems 

presents more substantial difficulties compared to the steady-state case. The primary reason 

for that is the non-locality of the exact ABC’s not only in space but in time. This non-locality 

may cause serve computational problems, mainly because when the numerical solution 

advance in time the amount of information to be stored in computer memory for updating the 

boundary conditions will need to constantly increase [1]. 

 Givoli [12] generalized and extends the original DtN-based methodology to allow for 

the treatment of time-dependent problems. The idea consists analyzing the “steady-state” 

system that arises on the upper time level when one integrates the time-dependent problem by 

an implicit method. The resulting boundary conditions appear nonlocal in space and local in 

time; in this particular case the localization in time implies that the overall ABC’s can be 

referred to only as approximated rather than exact [1]. 

Grote and Keller [13-14] proposed approach for temporal localization of the exact 

time-dependent ABC’s. The study was made on three-dimensional wave equation outside a 

sphere and first they used expansion in spherical harmonic to reduce the problem to a family 

of one-dimensional “radial” equations with variable coefficients. The reciprocal of the special 

transform that involves both the unknowns and the independent variables is used to reduce 

each of these equations to a standard one-dimensional wave equation with respect to a few 

functions. Finally the same idea that the exterior solution should consist only the outgoing 

waves is used. 

 Harari and Hughes [15] and Grote and Keller [16] specially analyze the 

truncated DtN maps for the Helmholtz equation. Truncation means taking only a certain 

number of leading terms in the infinite Fourier series that represent the original map, it is 

often done when discretizing and implementing the DtN map in practice, for example, in the 

FEM framework. For the Helmholtz equation, this truncation may disturb solvability of the 

problem and/or result in non-uniqueness of the solution for higher modes, which is associated 

with the possible resonance of the complementary (interior) domain. These authors have 

proposed different recopies to avoid this undesirable phenomenon. The uniqueness is 

guaranteed if a sufficient number of terms are taken into account before the truncation, or if 

the Somerfeld radiation condition is imposed on higher modes at finite artificial boundary 

rather than at infinity.  

Hagstrom et al. [17] construct and applied radiation boundary conditions of arbitrary 

order for wave propagation with subsonic convention in exterior problem. The construction is 

based on the progressive wave (or multipole) expansion of outgoing solutions. Using auxaliry 

functions defined only on the artificial boundary, problems associated with the use of high-

order derivatives, as in the original Bayliss-Turkel formulation, are avoided.  

 Gachter and Grote [18] derived exact non-reflecting boundary conditions for 

time-harmonic elastic waves in three space dimensions. This condition holds on a spherical 

surface, which separates the computational domain from the surrounding unbounded region. 

It estaqblishes an exact relation between the displacement field and its normal tangential 

tractions, and thus defines a Dirichlet-to-Neumann map on the boundary. The modified DtN 

confition is used to remove the difficulties that arise when the exact DtN condition is 

truncated for use in computation. 

 Premrov and Spacapan [19] proposed an iterative method, which varies the 

tangential dependence of the local DtN operator in each computational step, by problems of 

wave reflection from the fictitious boundary. The problem occurs when solving the wave 
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equation in exterior domain using local low-order DtN map for computational procedures 

applied for a finite domain.  

 

2.2. Local methods 

The first obvious idea on how to obtain the local ABC’s is to develop an 

approximation to the previously derived global boundary conditions.  

The beginnings of the local methods are related with the work done by Lysmer and 

Kuhlenmeyer [20]. They introduced a general method through which an infinite system can 

be approximated by finite one introducing the viscous boundary conditions. The resulting 

model they have analyzed by use of Finite Difference Method (FDM). Their viscous 

boundaries have the following form: 

σ = a*ρ*VP*    

τ = b* ρ*VS*    

where σ and τ are the normal and the shear stress respectively, ρ is the mass density, 

VP and VS are P-waves and S-waves velocities respectively (calculated with the well known 

equations),    and    are the normal and tangential velocities respectively and a and b are 

dimensionless parameters.  

They have made energy consideration, to show the ability of the viscous boundaries to 

absorb impinging energy from elastic waves. As a measure they have used the energy ratio as 

ration between the transmitted energy from the reflected waves and transmitted energy from 

incident waves. This ratio can be computed by the amplitudes A and B (unknown amplitudes 

from the reflected waves; for their computation they gave two linear equations as function of 

the incident angle θ) by considering the energy flow to and from a unit area of the boundary. 

The incident and the reflected energy respectively are:   

 

   
 

  
    

              

    
 

  
    

        
 

 
    

        

So the energy ration becomes: 

 
  

  
    

    

    
   

The maximal absorption of the boundaries is when a=b=1. The absorption cannot be 

made perfect over the whole range of incident angles by any choice of a and b. These 

boundaries defined with a=b=1 are 98.5% effective in absorbing P-waves. Because of that 

and because of its simplicity, it os nowadays often used in practical computations. 

Using various asymptotic in the transformed space, one can develop rational (e.g. 

Taylor or Pede) approximation to these symbols, then the resulting boundary in physical 

variables become differential, i.e. local. This idea has been implemented by many authors for 

different problems. 

The non-locality of the exact ABC’s is typically caused by the fact that these 

boundary conditions in the transformed space contain special expressions that cannot be 

mapped into regular differential operators and give rise to the pseudodifferential operator 

instead. Engquist and Majda [3] developed a special technique based on pseudodifferential 

operators to obtain a sequence of local boundary conditions of increasing order.  
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The first one corresponds to Taylor approximation of the dispersion relation used in global 

methods (             
  

     , and the second one to  

(           
 

 

  

      
  

     . The next member of the sequences obtained by 

Pade approximation of order O(η
6
/ω

6
). 

Hagstrom [21] had shown that over finite intervals of time the sequence of Pade 

approximations used by Engquist and Majda converges to the original operator as the 

approximation order increase. 

Based on the global boundary of Engquist and Majda [3-4], Engquist and Clayton 

[22] developed paraxial boundary conditions, which are widely used nowadays. This local 

boundary method will be later used in the model, so it will be detail described. 

The high-order local boundary conditions can be presented as product of first-order 

terms as well. Taking typical wave equation uyy = utt – uxx we can rewrite this formula in 

following manner          

 
   

    
 

 

   

    
   

    
 

 

 
 

   

     
   

    
   

    
  

 

 
 

  

  
 

  

  
 

 

 

which in fact is product of the first order terms from the sequence of [1]. With this 

kind of representation can be seen that second-order boundaries are completely absorbing 

only for waves which are traveling along x-axis (normal incidence). Higdon [23] has 

developed the idea of Engquist and Majda [1] that for any given angel of incidence α ≠ π/2 

the second-order boundary will cause less reflection than the first-order. Using this viewpoint 

Higdon has promoted the multi-directional boundaries in the following form: 

         
  

  
  

  

  
  

   
   

The terms in this product dissolve only these two plane waves: u = u(t-cosαjx-sinαjy) 

traveling in direction (cosαj, sinαj), i.e. at the angle of incidence αj to the boundary x=0; and 

the wave u = u(t-cosαjx+sinαjy) traveling in direction (cosαj,-sinαj), i.e. at the angle of 

incidence - αj to the boundary x = 0. The pre-selected plane waves leave the computational 

domain and travels through the boundaries without any reflection, but for other waves they 

generally produce reflections. In certain case (see [23], the overall reflection coefficient can 

be lower than the one coming from the [1].   

Bayliss and Turkel [24-25] introduced another group of local ABC’s techniques that 

use the asymptotic form of the solution, named expansion boundaries, because their 

boundaries are based on expansion of outgoing pressure. The proposed methodology does not 

relate directly to local approximations of the previously constructed exact ABC’s. This 

method, in comparison with the previous, does not require the explicit knowledge of the 

coefficients in the asymptotic expansion. In fact, Bayliss and Turkel did not use the 

asymptotic form of the solution directly to set the ABC’s, they rather construct a set of 
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special local differential relations that identically cancel out a prescribed number of leading 

terms in the corresponding series[1]. Being applied at the artificial boundary, these relations 

provide for the approximate local ABC’s. 

 Local ABC’s equivalent to the truncated DtN maps are exact for an initially 

prescribed number of Fourier modes, after which the map is truncated. Givoli and Keller [26] 

proposed an artificial boundary and a finite difference algorithm for treating a spherical 

artificial boundary with a spherical grid. The authors used leap-frog finite difference scheme 

to solve three problems: 

a) Time harmonic source in full space; 

b) Scattering of flow frequency plane wave vertically impinging upon a spherical 

obstacle; 

c) Radiation from a circular piston on a sphere 

For all of the problems, the proposed algorithm gives accurate results. 

One alternative idea for localizing DtN boundary proposed Givoli and Palatachenko 

[27].  Given a special form of local differential operator on the boundary (with first-order 

radial and high-order tangential derivatives), they optimize its initially undetermined 

coefficients so that in the sense of L2 norm it provides for the best approximation of the 

original DtN map. The optimal NRBC’s which they presented may be of low order, but still 

represents high-order modes in the solution. They showed that the previously derived 

localized DtN conditions are special case of the new optimal conditions. Two types of 

techniques were proposed: solution-independent and solution-weighted.  

Givoli [28] presented alternative way construct high-order local ABC’s with a 

symmetric structure and with only low (first- and second-) order spatial and/or temporal 

derivatives using AHOC (arbitrary high-order condition). This enables the practical use of 

ABC’s of arbitrarily high-order. In the case of time-harmonic waves with finite element 

discretization, the approach yields a symmetric C
0
 finite element formulation in which 

standard elements can be employed. The general methodology was presented for both, the 

time-harmonic case (Helmholtz equation) and time-dependent case (the wave equation). 

In one of the recently published papers, Lee and Kallivokas [29] discussed the 

performance of the local second-order absorbing boundary condition of elliptical shape for 

scattering and radiation problems. Using the method of images, they extended the 

applicability of elliptically shaped truncation boundaries to semi-infinite acoustic media. For 

problems in either time- or frequency-domains, involving near-surface structures of elongated 

cross-sections, they showed that significant computational savings are attainable when 

compared with semi-circular truncation geometries.   

 

2.3. Symmary 

Each of the two main group artificial boundary conditions has advantages and 

disadvantages. 

Most of the global ABC’s replace the Sommerfeld radiation condition with DtN at the 

boundary. In their original formulation they involve high-order derivatives both in time and 

tangential direction, which means that for practical application they must be truncated and 

hence an error is introduced. Some of them, instead of truncation of the series, they reduce 

the order of the derivatives which requires additionally unknowns. Finally, the behavior of 

the boundary cannot be predicted in a case in which the incoming plane wave and the 

outgoing cylindrical wave are meeting at the boundary [2].  



 ARTIFICIAL BOUNDARY CONDITIONS 

 

September 2008           Numerical simulation for absorbing boundary conditions 9 

 

The nonlocal boundaries are exact absorbers but they are nonlocal, for steady-state in 

space and for time-dependent problems also in time and one must truncated to be usable in 

practical computation. The exceptions are rare and, as a rule, restricted to one-dimensional 

model examples [1]. Speaking about the practical computation, their non-locality may imply 

cumbersomeness and high computational cost. Because FE formulation is more flexible by 

non-rectangular shape than the FD schemes, these boundaries are more suitable for FE 

formulation.  

The primary reason for using the local ABC’s is that one can easily implement the 

local ABC’s, included their combination with the interior solvers. Of course reducing their 

order will lead to numerical accuracy of the resulting solution to be lower than the one 

provided by the exact ABC’s. As concerns practical algorithm issues (easiness in 

implementation), all foregoing approaches in constructing local ABC’s provide an essential 

simplification of the numerical algorithm compared with the direct implementation of 

nonlocal ABC’s, as well as substantial reduction in required computational domain [1]. 

Because of the requirement that the local ABC’s be of some simple shape, or saying with 

other words be a coordinate surface which allows the separation of variables in the governing 

equations, they are mostly derived for rectangular shape. The error, which actually is the 

reflection from the boundary, is depended upon the distance from the excitation. Their 

exactness is improved with increasing the distance of the boundary to the source.  

These ABC’s are very popular in FD applications which involve rectangular domains 

and complicated outgoing fields with wide frequency ranges [2]. 
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CHAPTER III 

COMPUTATIONAL MODEL 

 

3. Problem formulation 

3.1. Mathematical model 

 In order to be proved the effectiveness of the artificial boundaries it was necessary to 

develop a model.  The model is consisting of 2-D vertical medium, in rectangular shape 80m 

x 80m (see fig. 1). In each direction there are 40 points separated on equal distance of 2m. 

This part of the media should represent the truncated part of the whole media. For the 

medium it is assumed that it is homogenous and isotropic ground of one layer, with ground 

characteristics defined indirectly (see eq. 3.2.) by the shear vs and compressional velocities vp.  

The ratio between compressional and shear velocity is assumed to be    in all experimented 

models. At point (20, 20) an explosive source is applied.   

 

Figure 3.1 Test model  

3.1.1. Equation of motion 

 In the model it is assumed that the horizontal axis is x axis, with positive values 

increasing from left to right, and vertical axis is z-axis, with positive values increasing 

downwards (see Figure 3.1). The starting point (0,0) is set on the upper left corner of the 

model. With this configuration two coupled, second-order, partial differential equation can be 

used to be described the motion of the P-waves and vertically polarized shear SV- waves 

[30].  The other shear waves, horizontally polarized SH-waves, are not included in the 
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analysis, because they are uncoupled from the previously mentioned P-waves and SV-waves. 

So the two equation of motion [31] in elastodynamic, describing the wave propagation are:  

  
   

   
        

   

   
 

   

    
    

   

   
 

   

    
   

  
   

   
        

   

    
 

   

   
    

   

   
 

   

    
                  (3.1) 

 In this equation u and w are the horizontal and the vertical displacement respectively. 

Previously I have mentioned the density of the medium ρ and the Lame parameters λ and μ. 

The letter t is representing the time in the equations. 

 The velocities of the P-waves and S-waves, vp and vs respectively, are dependent on 

the ground characteristics and can be obtained by the following equations: 

 vp =  
      

 
 ;       vs =  

 

 
                  (3.2) 

3.1.2. Initial conditions 

 At time t=0 it is assumed that there is no motion in the ground and hence the 

displacements u=w=0. Since the numerical model is explicit, which will be explained later 

(Section 3.2), two time steps are needed to be calculated the next one, it means that the 

displacements at time t=1 should be also prescribed. At t=1 I have supposed that only at the 

source point (See figure 2) the excitation is activated. 

3.1.3. Boundary conditions 

 The infinite medium is made finite, and hence computational, by introducing the 

boundaries. Depending on the problem, different boundary conditions can be used on the 

edges: approximate-radiation conditions (representing infinite medium), stress-free 

conditions (also known as the Neumann conditions or free-surface conditions), or zero 

velocity conditions equivalent to zero-displacement conditions (known as Dirichlet 

boundaries on rigid surface) [32].  

 The internal interface between two layers with different soil parameters can be treated 

as boundary as well. Having in mind that they are in homogeneous formulation by treating 

explicit boundary conditions, they can be applied in mine model as well. But for simplicity of 

the model it is assumed medium from one layer.  
 In order to have more realistic model, for the upper boundary at level z = 0, a free 

surface boundary conditions. That means that the stresses must vanish on this boundary [33]: 

         
  

  
   

  

  
         

            

    
  

  
 

  

  
                                (3.3) 

The other three boundary conditions (at x = 0; x = а and y = а) that were implemented in this 

model are based on paraxial approximations and one can find more about these 
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approximations in [3]. The authors of [3] presented a boundary condition which is non-local 

in both space and time. This boundary condition is impractical from a computational point of 

view since to advance one time level at a single point requires information from all previous 

times over the entire boundary [3]. And because of that they developed highly absorbing 

approximations and used those to build boundary which would be local and perfect 

absorbing.  

 The main feature of the paraxial approximations is that the outward-moving wave 

field can be separated from the inward-moving one. Along the boundary, the paraxial 

approximations can be used to model only the outward-moving energy and hence reduce the 

reflections. The boundary conditions are stable and computationally efficient in that they 

require about the same amount of work per mesh point for finite difference method as does 

the full wave equation [22]. 

The inventors of this boundary, Engquist and Clayton, in their paper [22] worked on 

the elastic wave equation in the following form: 

 utt = D1uxx + Huxz + D2uzz                 (3.4) 

where : 

 u =  
 
 
   

                     
                       

  

 D1 =  
   
   

  H=(α
2
+β

2
) 
  
  

     D1 =  
   

   
       

and α and β are the compressional and shear velocity respectively. They analyzed the 

following two paraxial approximations: 

 A1: uz + B1ut = 0; 

 A2: utz + C1utt + C2utx + C3utx = 0                              (3.5) 

The new three matrices which they introduced in the equations (3.4) are:  

       
 
   

  
  
                       

  
  

 
   

               
 

 
 
     

     
  

In Figure 3.2 the dispersion relations for the equations in (3.2) are shown. The fact 

that there are two curves for each approximations indicates that they decouple in to 

compressional and shear motions, as does the full wave equation. For the approximation A2, 

the shape of the dispersion curves depends on the ration of α and β, and the values in Figure 

3.2 are obtained with the ratio   , which will be used further in the model. In general, the 

larger the velocity ratio becomes, the poorer the approximations for shear waves [22]. In 

Figure 3.2 one can see the viscous boundaries of [20]. The curve is hyperbola independent of 

velocity ratio and indicates that the viscous boundaries will model shear waves less accurate 

than either A1 or A2 [22]. 
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Figure 3.2 The curves A1 and A2 are the dispersion relations of the paraxial approximations 

of the elastic wave equation (the circles). For each approximation there are two curves: that 

approximating the larger circle is for shear wave while the other is for compressive waves. 

The dashed curves (labeled LK) are the dispersion curves of the viscous boundary conditions 

of Lysmer and Kuhlenmeyer [20]  

 The dispersion curves indicate that the paraxial approximations can be used to model 

elastic waves moving in one direction and to discriminate against waves moving in the 

opposite direction. To absorb incident energy along the boundary the paraxial approximations 

are used that models only the energy moving outward from the interior and grid toward the 

boundary.  

A1 and A2 work for waves moving in positive z-direction, so this formulation will be 

suitable for the boundaries on level z = a. In case that absorbing boundaries are applied on the 

top as well, then it would have to be use the paraxial approximation with minus sign in the 

dispersion equation (kz = ±(ω/ν)[1-(ν
2
kx

2
/ω

2
)]

1/2
). For the remaining two boundaries (x = 0 

and x = a) are obtained only by interchange the x and z in the equations for top and bottom 

levels.  

 

3.1.4. Source excitations 

 In order to generate the waves, an explosive source is used as excitation. The 

formulation for this kind of source, the Gaussian pulse, is as follows: 

f(t) =          
 
                  (3.6) 
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where α is a parameter which controls the wave length content of excitation, t represents the 

actual time of calculation and t0 is time when the function hits its maximum [32]. For 

Gaussian pulse the parameter is α = 3000 and maximum at time t0 =0.036. At the maximum 

the Gaussian pulse has value equal to 1. By multiplication of f(t) with some factor one can 

vary the amplitude of the source. The multiplication factor for this model is 5 because such 

that bigger amplitudes are needed in order the model to be able to show effects like grid 

dispersion and the dumping in the model(see Chapter V). One important issue when one 

models explosive source is that the absolute value of the displacements must be equal in both 

direction fx(t) = fz(t). The development of this function in time is given on the following 

figure: 

 

Figure 3.3 Displacement function f(t) in time 

3.2. Numerical model 

3.2.1. Numerical methods 

 Before the era of fast computers a lot of problems were unsolvable, especially 

problems defined by partial differential equations (PDE). Nowadays with the utilized 

numerical solutions one can solve a problem from initial time step to some desired time in all 

spatial points. Most frequently used numerical methods for solving the PDE’s are finite 

element method (FEM) and finite difference method (FDM). FEM mostly use implicit 

methods, which means that the unknowns at all spatial points are obtained simultaneously for 

each time step by solving a system of linear algebraic equation. On the other hand, FDM is 

mostly based on explicit schemes, wherein the solution is obtained from the solution of the 

previous time step and the equations are uncoupled. So solving a full linear system of N
th

-

order leads to O(N
2
) operations for FEM and for uncoupled system by FDM the order of 

complexity is O(N). Hence, FDM is preferable for large-scale problems (N is big). Even the 

implicit schemes are usually symmetric and banded, which makes them smaller order then 

O(N
2
), they are still of higher order then explicit ones. When we speak about the numerical 

stability, the implicit schemes are unconditionally stable, what is not case for the explicit 

schemes. Being suitable for complicated and irregular shapes, gives advantage to FEM 

compared with the FDM. But for large-scale problems, as in seismological practice, the 
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explicit schemes are preferable because they are cheaper and easier to implement in 

numerical algorithms [2]. 

 Knowing all mentioned positive and negative characteristics of both methods, and 

after some consultations with experienced people in this field, the conclusion was the model 

to be built by using FDM.  

 

3.2.2 Equation of motion 

 In [30] Kelly has developed numerical model for the equations of motions (3.1). Same 

numerical approximation is used in the presented model to simulate the wave propagation in 

all grid points. So, using finite-difference numerical approximations Kelly according to the 

work of Ottaviani [34] presented the following coupled equations: 

 u(m, n, i+1) = 2*u(m, n, i) – u(m, n, i-1) + 

  + F
2
[u(m+1, n, i) – 2*u(m, n, i) + u(m-1, n, i)] + 

  +F
2
(1-γ

2
)[w(m+1, n+1, i) – w(m+1, n-1, i) – w(m-1, n+1, i) +w(m-1, n-1,i)] + 

  + F
2
 γ

2
[u(m, n+1, i) -2*u(m, n, i) +u(m, n-1, i)]  

  

w(m, n, i+1) = 2*w(m, n, i) – w(m, n, i-1) + 

  + F
2
[w(m, n+1, i) – 2*w(m, n, i) + w(m, n-1, i)] + 

  +F
2
(1-γ

2
)[u(m+1, n+1, i) – u(m+1, n-1, i) – u(m-1, n+1, i) + u(m-1, n-1,i)] + 

  + F
2
 γ

2
[w(m+1, n, i) -2*w(m, n, i) + w(m-1, n, i)]                 (3.7) 

where  x=mh, z=nh and t=iΔt. Δt is the time step and h is the grid interval in both x- and z-

directions. Furthermore γ=vs/vp, where vs and vp are the velocities given with the equations 

(3.2). The parameter F can be calculated by: 

 F =   
    

 
 

This parameter will be further used in stability calculations (see Section 3.2.5). 

3.2.3. Boundary conditions 

3.2.3.1 Absorbing boundaries 

 For the second-order elastic horizontal boundary conditions, related to equations (3.5) 

Clayton and Engquist propost the following formulation of finite difference scheme: 
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Bottom (n = a) 

   
   

  u(m, a, i) + 
 

 
    

   
  (u(m, A, i) + u(m, a-1, i)) + 

+ 
 

 
    

   
 (u(m, a, i-1) + u(m, a-1, i)) + 

+ 
 

 
    

   
  (u(m, a, i-1) + u(m, a-1, i+1)) = 0 

For the vertical boundaries the boundaries from Fuyuki and Matsumoto [35] are 

implemented, which are actually the same boundaries from [22] but in correct written form: 

Left side (m = 0) 

   
   

  u(0, n, i) - 
 

 
  
   

   
  (u(0, n, i) + u(1, n, i)) + 

        + 
 

 
  
   

   
  (u(0, n, i-1) + u(1, n, i)) – 

    
 

 
  
   

   
  (u(0, n, i-1) + u(1, n, i+1)) = 0 

Right side (m = a) 

   
   

  u(a, n, i) + 
 

 
  
   

   
  (u(a, n, i) + u(a-1, n, i)) + 

        + 
 

 
  
   

   
  (u(a, n, i-1) + u(a-1, n, i)) + 

  + 
 

 
  
   

   
  (u(a, n, i-1) + u(a-1, n, i+1)) = 0                          (3.8) 

 

The three differential operators   
    

        
   are backward, forward and central 

differential operators with respect to the variable z; i.e.  

  
     

         
        

      

  
     

         
          

      . 

The matrices   
  and   

  which were introduced in [35] have the following form 

  
   

 
    

  
   
  ;       

  
 

 
 
       

       
  

and   
  is the transposed matrix of   . 

 For the corner points and for their first neighboring points on the boundaries, Clayton 

and Engquist suggested using rotated formulation of the approximation A1 from equation 

(3.5). The rotated A1 is for: 
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Bottom-right corner 

uz + ux + Mut = 0 

    
     

             
                 

where (m, n) = (a, a-1); (a-1, a); (a, a)    

Bottom-left corner 

   
     

             
                                       (3.9) 

where (m, n) = (0, a-1); (1, a); (0, a) and the newly introduced matrix M is 

         
 

  
 
                  
                  

  

3.2.3.2. Free surface 

 

Figure 3.4 Pseudonodes at the free-surface boundary 

 For completing the model another boundary is left. The upper border, as mentioned 

previously is free surface. Because the points could not be solved only by the elastic wave 

equation, additionally new pseudonodes should be introduced. As it can be seen from figure 

3, the free surface boundary has coordinate z = 0, and the pseudonodes will have index -1. 

The unknown displacement for these nodes will be calculated by the stress free conditions 

(3.3). The finite difference code for (3.3) is: 

u(x, -1, t) = u(x, 0, t) + 0,5[w(x+1, 0, t) – w(x-1, 0, t)] 

w(x, -1, t) = w(x, 0, t) + 0,5(1-γ
2
)[u(x+1, 0, t) – u(x-1, 0, t)]            (3.10) 

Remark: equation (3.10) have this form only if grid size is dx = dz = h. 

 Finally, for the corner points where the intersection is between the vertical absorbing 

boundaries and the fictitious line first-order boundary conditions are used, according to [35], 

to determine their displacements. So, the schemes for these corner points are: 
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 (  
     

   
 )u(0, -1, t) = 0 

(  
     

   
 )u(a, -1, t) = 0               (3.11) 

3.2.4. Source  

 The term which represents the source in the equation of motion inherits the following 

expression            . One can easily recognize the Dirac-Delta function which has value 

infinity when r = r0. That means that at the point where the force is applied, the stresses are 

going to infinity. To avoid this, I applied the source in four surrounding points with the same 

function in time (3.6) producing radial displacements equal in all directions. 

3.2.5 Stability condition 

3.2.5.1 Grid mesh 

 A physically meaningful calculations requires that the finite difference algorithm be 

stable, i.e., the difference between the exact and the numerical solutions of a finite difference 

equation must remain bounded as the time index i increases, Δt remaining fixed for all m and 

n [36]. The authors in [37] have shown that the system of equations (3.7) is stable provided 

that:  

  
   

 
    

  

  
 
    

                (3.12) 

for all α and β. Equation (3.12) can be also written in more revealing form 

   
 

          
                 (3.13) 

which shows that the time increment cannot be chosen arbitrary but rather must obey a 

constraint imposed by the choice of a grid interval h as well as the values of the P- and SV-

wave velocities in particular homogeneous layer [30]. 

3.2.5.2 Absorbing boundaries 

 The stability of the absorbing boundaries is referred to the ratio of the SV- and P-

wave velocities β/α. Experimenting with this ratio, the authors of [37] proved that the 

instability appears when the ratio is smaller than 0.46. The instability of the absorbing 

boundaries can be seen on the following figure 4 token from [37]: 
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Figure 3.5 Instability of absorbing boundaries 

To prove the instability, Emerman and Stephen built a model with 304x304 grid 

points with interior finite-difference scheme from [38] modified to rectangular coordinates. 

The source is defined as line source according to [30] with ts = 0.6 and ξ = 50. In both 

directions they have same grid size Δx = Δy = 0.01km, the time step Δt = 0.04375s and 

velocities vp = 2.0 km/s and vs = 0.5km/s, with ground density ρ = 1.3 gm/cm
3
. The three 

curves on figure 3.4 are: A-modified absorbing boundary by the authors; B-reflecting 

boundary; C-Absorbing boundary from [35]. Curve A is indistinguishable from the analytical 

solution for a whole-space, curve B is strongly contaminated by the reflection from the right 

boundary of the model and curve C clearly demonstrate the instability of the absorbing 

boundary with ration vs/ vp < 0.46 (in this experiment it is 0.25). 

Beside the instability due to the ratio, according to some authors (e.g. [38], [39]) 

inappropriately defined free surface boundary conditions can derive a finite difference 

solution into instability when the velocity ratio is smaller than some critical value. 
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CHAPTER IV 

RESULTS 
 

4.1 Input parameters 

 In this chapter, the results obtained from four different models are shown. Three of 

the models are bounded with the Absorbing boundary conditions and stress-free boundary 

and one is bounded with boundaries with fixed displacements u = w = 0. First three models: 

Model 1, Model 2 and Model 3, have different ground characteristics representing three 

typical types of ground: mud (vs=250m/s; vp=250   m/s), clay (vs=400m/s; vp=400   m/s) 

and rock mass (vs=2500m/s; vp=2500   m/s) respectively. The fourth model, Model4, has 

fixed boundaries and responds to the mud model with ABC’s – Model 1. All of the models 

have same mesh size with 40 points in each direction, separated with equal spacing of 2m in 

both directions. 

4.2 Results 

 If the mesh size is smaller than 5000x5000, the selection of programming software 

doesn’t play big role, because the exactness by almost all programming languages in these 

margins doesn’t vary. For this master work, the modules are written in Java’s Eclipse. As an 

object-oriented language it contains classes which can be used for graphical and numerical 

representation of obtained results. The graphical output is colored in that way such that the 

red one represents the highest values and the dark blue is color for zero values. All other 

colors are representing in logical manner some values between the zero-values and the 

maximum. 

Because the P-SV wave’s problems are dealing with two unknown displacement in x- 

and z-direction, all results are representing the radial displacement at grid and boundary 

points in time. The radial displacement is calculated by the following equation: 

                            (4.1) 

where r is the radial displacement, u is the displacement in x-direction and w is the 

displacement in z-direction.   

 Due to the stability condition (3.13) different time step increments must be applied 

when the velocities in the models vary. Hence the graphical outputs are given by time in 

seconds. Time sections are different for the models and are chosen such that in the figures 

can be seen what is characteristic for the model. 

 In this chapter contains only graphical result illustration. Some of the written results 

are used further in the next chapter as interpretation of the results shown by the following 

figures. 
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4.2.1 Comparison between Model 1 and Model 4 

  

        Model 1             Model 4 

   

  

  

  

        t = 0.004s  

  

  

   

 

  

   

 

 

         t = 0.06s 

 

 

 

  

   

 

          t = 0.1s 

 

 

 

Figure 4.1  Radial displacement by the Model 1 and Model 4 at time t=0.004s; t=0.006s and    

t=0.1s  
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 t = 0.14s 

 

 

 

 

 

  

  

 

 t = 0.16s 

 

 

 

 

  

  

 

 t = 0.28s 

 

 

 

 

Figure 4.2  Radial displacement by the Model 1 and Model 4 at time t=0.14s; t=0.16s and    

t=0.28s 
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t = 0.52s 

 

 

 

 

   

  

 

 

 t = 0.56s 

 

 

 

 

  

  

  

  

  

 t = 0.6s 

 

 

 

Figure 4.3  Radial displacement by the Model 1  and Model 4 at time t=0.52s; t=0.56s and    

t=0.60s 
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4.2.2 Model 2 and Model 3 

    Model 2                  Model 3 

    

 

 

  

 

 

 

        t = 0.002s                                 t = 0.0004s 

      

    

   

   

   

   

   

   

    

 

t = 0.06s       t = 0.002s 

 

       

 

 

  

 

 t = 0.07s       t = 0.008s 

Figure 4.4  Radial displacement by the Model 2 at time t=0.004s; t=0.06s and t=0.07s and 

Model 3 at time t=0.004s; t=0.002s and t=0.008s 
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          t = 0.08s              t = 0.036 

 

  

  

 

 

 

 

         t = 0.12s              t = 0.056 

 

  

   

 

 

 

 

 

           t = 0.18s             t = 0.064s 

Figure 4.5  Radial displacement by the Model 2 at time t=0.08s; t=0.12s and t=0.18s and 

Model 3 at time t=0.036s; t=0.056s and t=0.064s 
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      t = 0.28s        t = 0.08s 

 

    

       t = 0.36s        t = 0.1s 

 

 

                    

 

 

 

 

 

     t = 0.37s 

Figure 4.6  Radial displacement by the Model 2 at time t=0.28s; t=0.36s and t=0.37s and 

Model 3 at time t=0.08s and t=0.1s 
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CHAPTER V 

INTERPRETATION OF RESULTS 
 

5.1 Interpretation of results 

 The first row of the two panels on Figures 4.1 and Figure 4.4 are at time equal to the 

first time incremental. Mentioned previously in section (3.1.2) at time t=0s all displacements 

are equal to zero, and after the first time incremental only values of amplitude of the source 

function are applied at the four source points. The displacement at these source points and 

some of the neighboring points in Model 1 are: 

 

0.00000     0.00000     0.00000       0.00000     0.00000     0.00000 

0.00000     0.00000     0.00000       0.00000     0.00000     0.00000 

0.00000     0.00000   -2.31642E-01   2.31642E-01  0.00000     0.00000 

0.00000     0.00000   -2.31642E-01   2.31642E-01  0.00000     0.00000 

0.00000     0.00000     0.00000       0.00000     0.00000     0.00000 

0.00000     0.00000     0.00000       0.00000     0.00000     0.00000 

   u-displacements at source points 

 

0.00000     0.00000     0.00000       0.00000     0.00000     0.00000 

0.00000     0.00000     0.00000       0.00000     0.00000     0.00000 

0.00000     0.00000   -2.31642E-01  -2.31642E-01  0.00000     0.00000 

0.00000     0.00000    2.31642E-01   2.31642E-01  0.00000     0.00000 

0.00000     0.00000     0.00000       0.00000     0.00000     0.00000 

0.00000     0.00000     0.00000       0.00000     0.00000     0.00000 

   w-displacements at source points 

 

0.00000     0.00000     0.00000        0.00000     0.00000     0.00000 

0.00000     0.00000     0.00000        0.00000     0.00000     0.00000 

0.00000     0.00000   3.275913E-01   3.275913E-01  0.00000     0.00000 

0.00000     0.00000   3.275913E-01   3.275913E-01  0.00000     0.00000 

0.00000     0.00000     0.00000        0.00000     0.00000     0.00000 

0.00000     0.00000     0.00000        0.00000     0.00000     0.00000 

   r-displacements at source points 

Figure 5.1 u-, w- and r-displacements at the four source points of Model 1 at time t=0.004s 

 

The u-displacements are chosen to induce positive displacements in right column and 

negative in the left column. The upper row of the w-displacements initiates negative 

displacements and the lower row positive. By using equation (4.1), equal radial 

displacements for all source points are obtained. As it can be seen, all neighboring points 

have still no displacements. Hence we have red square (see Figure 4.1 and Figure 4.4) only in 

the middle of the model and the rest is colored with dark blue. Because these source points 
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are satisfying the wave equation as well, they never achieve the maximum displacement 

which is given by the f(t) or f’(t) source functions.  

The next row of figures in Figure 4.1 and Figure 4.4 are showing developed wave 

field which is moving towards the borders of the model. The wave fields have perfect circle 

form and there is simple explanation how can be obtained this form. The more grid points are 

used the better is the graphical output and the circle line. For the explanation of the circle-

form wave field, I used the following displacements from Model 1 at the source and some 

neighboring points (see Figure 5.1): 
 

0.0 0.0   0.0       0.0     0.0      0.0      0.0      0.0    0.0 0.0 

0.0 0.0   0.0       0.0     0.0      0.0      0.0      0.0    0.0 0.0 

0.0 0.0 -0.00361 -0.02533 -0.03619  0.03619  0.02533  0.00361 0.0 0.0 

0.0 0.0 -0.03257 -0.11220  0.02171 -0.02171  0.11220  0.03257 0.0 0.0 

0.0 0.0 -0.09410 -0.07962 -0.31663  0.31663  0.07962  0.09410 0.0 0.0 

0.0 0.0 -0.09410 -0.07962 -0.31663  0.31663  0.07962  0.09410 0.0 0.0 

0.0 0.0 -0.03257 -0.11220  0.02171 -0.02171  0.11220  0.03257 0.0 0.0 

0.0 0.0 -0.00361 -0.02533 -0.03619  0.03619  0.02533  0.00361 0.0 0.0 

0.0 0.0   0.0      0.0      0.0      0.0      0.0      0.0    0.0 0.0 

0.0 0.0   0.0      0.0      0.0      0.0      0.0      0.0    0.0 0.0 

   u-displacemetns 

 

0.0 0.0   0.0       0.0      0.0      0.0      0.0      0.0   0.0 0.0 

0.0 0.0   0.0       0.0      0.0      0.0      0.0      0.0   0.0 0.0 

0.0 0.0 -0.00361 -0.03257 -0.09410 -0.09410 -0.03257 -0.00361 0.0 0.0 

0.0 0.0 -0.02533 -0.11220 -0.07962 -0.07962 -0.11220 -0.02533 0.0 0.0 

0.0 0.0 -0.03619  0.02171 -0.31663 -0.31663  0.02171 -0.03619 0.0 0.0 

0.0 0.0  0.03619 -0.02171  0.31663  0.31663 -0.02171  0.03619 0.0 0.0 

0.0 0.0  0.02533  0.11220  0.07962  0.07962  0.11220  0.02533 0.0 0.0 

0.0 0.0  0.00361  0.03257  0.09410  0.09410  0.03257  0.00361 0.0 0.0 

0.0 0.0    0.0      0.0      0.0      0.0      0.0      0.0   0.0 0.0 

0.0 0.0    0.0      0.0      0.0      0.0      0.0      0.0   0.0 0.0 

   w-displacemetns 

 

0.0 0.0    0.0    0.0        0.0      0.0      0.0      0.0   0.0 0.0 

0.0 0.0    0.0    0.0        0.0      0.0      0.0      0.0   0.0 0.0 

0.0 0.0 0.005118 0.041267 0.100825 0.100825 0.04126  0.005118 0.0 0.0 

0.0 0.0 0.041267 0.158677 0.082535 0.082535 0.158677 0.041267 0.0 0.0 

0.0 0.0 0.100825 0.082535 0.447795 0.447795 0.082535 0.100825 0.0 0.0 

0.0 0.0 0.100825 0.082535 0.447795 0.447795 0.082535 0.100825 0.0 0.0 

0.0 0.0 0.041267 0.158677 0.082535 0.082535 0.158677 0.041267 0.0 0.0 

0.0 0.0 0.005118 0.041267 0.100825 0.100825 0.04126  0.005118 0.0 0.0 

0.0 0.0    0.0     0.0       0.0      0.0      0.0      0.0   0.0 0.0 

0.0 0.0    0.0     0.0       0.0      0.0      0.0      0.0   0.0 0.0 

   r-displacement 

Figure 5.2  u-, w- and r-displacements at the four source points of Model 1 at time t=0.012s 

 

 Analyzing Figure 5.2 clearly can be seen that the u-displacements on the left half of 

the non-zero values (first three columns) have negative sign, which means that they are 

oriented opposite to the positive x-axis, which is the direction of the wave field left from the 

source. Opposite to that, values on the right half (last three columns) have positive signs and 

are corresponding to the direction of the wave filed right from the source. The same can be 

concluded for the w-values as well. Namely, values above the source (first three rows) have 

negative sign and values below the source have positive signs which correlate to the direction 

of moving of the wave field above and below the source. 

 For the perfect circle-form one must have symmetry about all axes. U- and w-

displacements analyzed separately have symmetry only about x- and z-axis, respectively. But 

if one analyze the values of u- and w-displacements it can be recognized that the u-
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displacements are having the same values as w-displacements but rotated about the source for 

90 degrees. So by calculating the radial displacements for two points about spatial symmetry 

(the source is defined in four points, hence only vertical, horizontal and both diagonal 

symmetry can be analyzed) same values will be used and the difference in signs will be 

eliminated by giving them power of two. At the end the full symmetry can be seen in the r-

displacements.  

 
 

 
 

 
 

 
 

Figure 5.3 Displacement in time at node “node [20][39]” for Model 1, Model 2 and Model 3 
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 The time needed to be formed the wave field is directly depended on the velocities of 

the waves. Also the time when the wave field is “hitting” the Absorbing boundaries and the 

free surface is related to the velocities of the waves. It can be simply calculated by the 

Newton equation t=
 

  
, where L is the distance from the source to the borders and vp is the 

compressional velocity. If the wave field is formed continuously in time, the time needful the 

wave field to be formed should be added. For this characteristic of the wave fields I made the 

third row of figures in Figure 4.1 and Figure 4.4. The wave fields from Model 1 and Model 4 

are having same velocities and hence the wave fields are approaching the borders at same 

time. Model 2 needs much shorter time compared to Model 1 and Model 3 loose the stability 

before the wave field is formed, which will be explained later. More clearly that can be seen 

in the Figure 5.3 where the displacements are measured at point with coordinate (20,39) 

which is the last point before the bottom absorbing boundary. This will be discussed again at 

the end of this chapter. 

 Figure 5.3 shows another characteristic that must be expressed when one deals with 

wave propagation. The displacements at this analyzed node are not the same. As mentioned 

previously the velocities are function of Lame parameters and density. When these 

parameters are changed indirectly the dumping ratio is changed as well.  

 The first two rows of figures in Figure 4.2 and Figure 4.5 are showing the different 

effect by different type of boundary conditions. In Model 4 where the displacements are 

prescribed (Dirichlet boundary conditions u=w=0) the waves can’t go through the borders of 

the truncated model and they are reflected inside the computational region. That means that 

the energy is occupied between the borders and can’t be dispersed outside the model with the 

moving wave field. This of course leads to wrong, unreal results. The reflection can be seen 

on the following figure as well, where the source point displacement is shown in time.  

 

 

 
Figure 5.4 r-displacement in time at one of the four source nodes by Model 4 
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The top panel of Figure 5.4 shows already mentioned excitation due to the explosive 

source. The first disturbing in the lower panel is due to the wave fields which are reflected 

from the boundaries. The vibrations at higher time steps are showing that the energy is not 

disappeared and is closed inside the model. 

In the figures from the previous chapter one can see that also in the Model 1 to Model 

3 there is reflection from the top boundary. In these models the top boundary is representing 

the free surface. The free surface boundaries are Neumann boundary conditions, so these four 

models are confirming that the Dirichlet and Neumann boundary conditions are producing 

reflections. Opposite to this, the Absorbing boundary conditions fulfilled their function by 

letting the wave fields passing through them. Since they are approximation of the wave 

equation and there is interaction in two directions in the numerical model between the borders 

and the grid, they must maintain the symmetry which is coming from the wave field (about 

all axes) and lest the model would not lose its symmetry. The following figure is showing the 

displacements at the bottom-right and bottom-left corners of Model 1 and the symmetry can 

be recognized.  
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   Bottom-left corner 

 

0.0743   0.0752   0.0910   0.1029   0.1159   0.0834   0.0803   0.0581 

0.0752   0.9103   0.1208   0.1206   0.1149   0.1058   0.0687   0.0273 

0.0910   0.1208   0.1156   0.1297   0.1453   0.0820   0.0428   0.0214 

0.1029   0.1206   0.1297   0.1589   0.0965   0.0718   0.0165   0.0970 

0.1159   0.1149   0.1453   0.0965   0.0883   0.0490   0.0733   0.1502 

0.0834   0.1058   0.0820   0.0718   0.0490   0.0386   0.1167   0.2104 

0.0803   0.0687   0.0428   0.0165   0.0733   0.1167   0.1380   0.1906 

0.0581   0.0273   0.0214   0.0970   0.1502   0.2104   0.1906   0.2038 

   Bottom-right corner 

Figure 5.5 r-displacements at bottom right and bottom-left corners 

 

 The bottom boundary is defined by the paraxial approximation A2 (see eq.3.5) and 

this definition is valid starting from point (3,40) up to (28,40). For the rest of the points, two 

points at the beginning and end of the row representing the corners, the approximation A1 is 
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used. By comparing the r-displacements at the corners, one can see that the symmetry is not 

disturbed.  

Although the absorbing boundaries make absorption of energy, they are defined as 

approximations and thus they must produce some reflection. The reflection is dependent on 

the order of the paraxial approximation and the angle of incidence. The higher is the order of 

the paraxial approximation the higher is the exactness. For the dependence on the incident 

angle the authors of [22] have given the following results: 

 

Figure 5.6.Reflection coefficient for A1 (left panel) and A2 (right panel) for incident S-

waves (upper graphics) and incident P-waves (lower graphics) 

 

To find the effective reflection coefficients for elastic eaves in the authors in [22] 

assumed that wave potentials have solution of form: 

          
 

 
                  

 

 
           

  

          
 

 
                  

 

 
           

where                 are the direction cosines of the wave front. For incident 

compressional waves,      and      and for incident shear waves it is opposite. The 

displacement fields can be found by transformation 

                         
            
The displacements are substituted in the equation (3.5) and the reflection coefficient rp and rs 

are obtained. 
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Figure 5.6 clearly shows that the reflections are much smaller by the A2 

approximations than by A1 approximations. It should be noted that angles where the 

reflection coefficient is large, correspond to waves traveling almost parallel to the boundary 

[22]. But it is logical to expect that this wave would strike another boundary and not that one 

which is parallel to their direction. 

The difference in the reflections can be seen in the first and second row of figures in 

Figure 4.2 and 4.5. The first row is when the wave field is passing through the border where 

A2 is applied and the second row is showing the wave field passing through corners where 

A1 is applied. It means that in the first case we have incident angle equal to zero and in 

second case wave approaching the corners with incident angle around 45
0
. A1 are causing 

reflections that are even visible. Confirmation about this is shown on the next figure: 

 

 
Figure 5.7 r-displacements in time for nodes (2,39) and (20,39) from Model 1 

 

On the graph are shown the displacements in time for node (2,39) as neighbor point to 

absorbing boundary defined by A1 and node (20,39) as point next to the boundary where A2 

paraxial approximation is used. The peaks which are next to the wave field peak are result of 

the reflections and grid dispersion (will be discussed at the end of the chapter). The following 

peak at node (2,39) (the blue line) is much bigger than the same peak at node (20,39) (red 

line) which confirms that the order of the paraxial approximations and the angle of incidence 

makes A1 approximation induce greater reflections than A2. The reflection coefficient in 

Model 1 is in the margins of 5-10%.  

Beside the reflections, on Figure 5.7 one can see that because the difference in 

distances between the source and bottom boundary is shorter than the distance between the 

source and the corners, the peaks are not happening at the same time. Since the distance from 

the source to the node (20,39) is shorter the displacements are first developed at the this node. 

Also the effect of the dumping can be recognized by the values of the peaks.  

The biggest disadvantage of these boundary conditions is the corners. Clayton and 

Engquist [22] tried to improve that by introducing the A1 approximation at the corners. But 

this is only valid when two absorbing boundaries are intersecting. In the top-left and the top-

right corners the intersection is between the free surface and the absorbing boundary and thus 

A1 is not an option. These corners are uncovering the greatest weakness of the model. They 

produce instability which have influence at the rest points. Namely, calling back Figure 5.6 

one can see that the displacements for node (20,39) have three peaks. The first one is from 

the wave field coming from the source (firs row on the left panel of Figure 4.2 and Figure 

4.5); the second one is from the wave field which is reflected from the free surface (third row 

of left panel on Figures 4.2 and 4.5) and the last one is result of the instability at the top-left 
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and top-right corners. On the second row of figures on Figure 4.2 and 4.5 there are extremes 

colored with red exactly at those corners. In the next row one can see that these extreme 

values are moving downwards and in the first row of figures in Figure 4.6 can be seen that 

these extremes produced at the top corners influence the displacements on the bottom 

boundary as well. As shown on the last two rows on figures on Figure 4.6 these extremes are 

leaving the model but meanwhile new one are produced.  

On the last two rows on Figure 4.4 another disadvantage of the Absorbing boundaries 

is illustrated. These boundary conditions are losing the stability after some number of time 

steps by permanent increment of the displacements. The displacement in time for node 

(20,40) on the bottom-boundary would look like the following figure: 

 

 
Figure 5.8 Instability of Absorbing boundaries in time 

  

 This would be no problem if the instability is happening only on the boundaries. But 

because of the interaction between the grid mesh and the absorbing boundaries, the increment 

is transferred in the inner part of the model. 

 Most of the previous interpretation was referred to the Model 1, Model 2 and Model 

4. The results for Model 3 shown on the right panel on the Figure 4.4 to Figure 4.6 are not 

satisfying. It is not a weakness of the boundaries, but because the wavelength is proportional 

to the wave velocity and hence the model doesn’t capture the full wavelength and that is not 

allowed. So increasing the velocity means that it is needed the model to be increased as well. 

The dimensions of the model must be careful defined such that the model would represent the 

full wave field and it’s propagation through the medium.  

Another important issue which should be stressed out is the distance between the grid 

points. This problem was analyzed by Boore [40] and Alford et al. [41]. Grid dispersion 

produce a “normal” variation of velocity with frequency, that is, the higher signal frequencies 

are delayed relative to the lower signal frequency and substantial “tailing” of the signal 

arises. When wave propagates in discrete grid it is progressively dispersed with increasing the 

travel time. This dispersions increase in prominence as the grid interval h becomes larger 

[30]. As a rule of a thumb, the number of grid points per wavelength at the upper half-power 

frequency of the source should be approximately ten or more in order to satisfy limit grid 

dispersion [41]. From the four models Model 1 and Model 4 have less than 10 points per 

wavelength while Model 2 and Model 3 are satisfying the criteria of minimum points per 

wavelength. The stronger grid dispersion can be seen in Figure 5.3. On the panel for the 

Model 1 the maximal radial displacements are smaller than those from the Model 2.  

For illustration of the grid dispersion the following picture is used: 

 

0 
5 

10 
15 
20 
25 
30 
35 
40 

0
 

0
,0

3
2

 

0
,0

6
4

 

0
,0

9
6

 

0
,1

2
8

 

0
,1

6
 

0
,1

9
2

 

0
,2

2
4

 

0
,2

5
6

 

0
,2

8
8

 

0
,3

2
 

0
,3

5
2

 

0
,3

8
4

 

0
,4

1
6

 

0
,4

4
8

 

0
,4

8
 

0
,5

1
2

 

0
,5

4
4

 

0
,5

7
6

 

0
,6

0
8

 

0
,6

4
 

0
,6

7
2

 

0
,7

0
4

 

0
,7

3
6

 

0
,7

6
8

 

0
,8

 

boundary node (20,40) - Model 1 

displacement 



 INTERPRETATION OF RESULTS 

 

September 2008           Numerical simulation for absorbing boundary conditions 35 

 

 
Figure 5.9 Grid dispersion for different velocities 

 

 By decreasing the velocity, the wavelength is decreased too. So, for same grid mesh 

less grid points are used per wavelength and hence the grid dispersion (“tailing” peak) is 

bigger. 

Another characteristic is obvious on this figure. For that purpose the following relations of 

parameters should be analyzed: 

                          

If one decrease the wave field velocity v, the density ρ must be increased, thus the pore 

coefficient e is smaller and therefore the shear moduli G have increment. Higher shear 

moduli gives smaller shear strain amplitude γ and this leads to smaller dumping coefficient 

D. So, for smaller velocities the dumping is smaller too and that give higher displacements, 

what actually is shown on the last figure. 
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CHAPTER VI 

  CONCLUSIONS 

 

6.1. Conclusions 

  

 The model developed in this theses is another confirmation that the Dirichlet 

boundary conditions (fixed displacements) and the Neumann boundaries (stress free 

boundary) are boundary conditions which produce reflection. Due to the reflection, the whole 

incoming energy coming towards the boundary with the wave field is reflected back in the 

model and hence the energy is captivated inside the model. The model with this kind of 

boundaries cannot provide accurate results. Before the artificial boundaries were introduced, 

the researchers used very large models to avoid the effect of the reflections in some lower 

time steps. The bigger the model is build, the more computational time and the complexity of 

the problem is increased. That time that was big problem because the computers didn’t have 

the performance of nowadays machines. This is the background of the idea to invent the 

artificial boundary conditions. 

Despite that more than 30 years are gone since the Absorbing boundary conditions 

were introduced by Clayton and Engquist, these boundaries are often used in the practical and 

research applications nowadays. They are simple to apply, in the problem of wave 

propagation and artificial boundary conditions. They don’t require long computational time 

and hence are very computationally inexpensive. Now in the era of fast computers this is 

secondary problem, and the main priority is to get more accurate results. A good boundary 

condition nowadays is definition for boundary where the reflected energy is less than 2% of 

the income energy. The Absorbing boundaries used in presented model were based on 

paraxial approximations of first and second order. The used paraxial approximations don’t 

satisfy the modern definition of accurate boundary condition at the corners and higher angle 

of incidence. On the rest of the boundary the reflection is much lower. The accuracy of the 

numerical solution can be improved by increasing the order of the approximation.     

The proposed model showed some weaknesses when the absorbing boundaries should 

be combined with the stress-free boundary. The problem arises in the corners of intersection 

between the line with pseudonodes, needed for the calculation of the free surface, and the 

vertical absorbing boundaries. The difficulty is because the first order approximation used for 

the other corners, where the intersection is between two absorbing boundaries, is not valid for 

these corners. What remains is pure 90
0
 edge which by many authors is called as “threat” to 

the numerical stability of the model. With this model it was confirmed the numerical 

inexactness of the corners with first order paraxial approximations. The generated reflection 

is greater than 5%. At the intersection between absorbing boundary and pseudonodes 

numerical instability is occurred. It has further effects on the displacement of the bottom 

boundary.  

 With the developed model it is confirmed that the numerical stability of the absorbing 

boundaries is dependent on the ratio of the shear and compressional velocities. The lower 

limit for this ratio is 0.46. 

 The correct results are dependent on the correctly set gird mesh. At the end of Chapter 

V is stressed out that the distances between the points of the grid should be chosen such that 

there are at least 10 points per wavelength. Also inexact results can occur if the dimensions of 

the model are not proportional to the wavelength.  
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6.2. Possibilities and ideas for further upgrade to the Model   

  

In the past 30 years many researches are done and a lot of improvements are 

suggested. This work is review of the Absorbing boundary conditions [22]. It can be further 

developed in model of some of the proposed improvements and can be made comparison of 

the obtained results from different boundary conditions. The model can be adapted for 

practical purpose as well. With this formulation only one type of ground is available. There is 

possibility to introduce an interface between two layers with different ground properties, 

which can help to obtain more real model representing truncation of i.e. underground basis of 

analyzed object. Another step towards obtaining more real model is introducing the non-

linearity of the ground, which, as mentioned previously, is one of the advantages of finite-

difference numerical simulations. Of course in this format it has function of solver, for real 

practical usage one must add friendly user interface and very good output of the results. 
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