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Abstract. A new approach for data clustering is presented. IC clustering [1] initial processing stage is changed, so that the interval between the smallest and the largest radius-vector is divided into k equal sub-intervals. Each sub-interval is associated to a cluster. Depending on which sub-interval a radius-vector belongs, it is initially distributed within a cluster, associated with that sub-interval.
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1. Introduction
Since the second half of the 20th century, several techniques for data clustering have been proposed. The oldest one, but commonly used technique for data clustering is the k-means [2] algorithm, based on initial selection of k,k<n random objects (centroids) of object set of size n. The remaining n-k objects, which are not selected as centroids, are distributed within the closest clusters. Initially, each centroid represents a cluster. When a cluster is changed, cluster’s center is also changed. Centers no further change implies appropriate data distribution.
PAM (Partitioning Around Medoids) [4] as opposed to the k-means algorithm, effectively handles extreme values ​​(data outliers), which can easily disrupt the overall data distribution. Central objects within clusters (medoids) are used. Medoids are swapped only if that would result with a better data clustering.
CLARA [3] is basically PAM clustering, applied to a part (set of samples) of the object set. The result is not always the optimal one. CLARANS [5] searches graph data structure. Nodes medoids are replaced by nodes non-medoids, if that would reduce the clustering cost.
IC clustering [1] calculates the radius-vector for each object of object set of size n. During the first processing stage, the set of radius-vectors is sorted in ascending order, and then divided into k subsets of approximately equal size, where each subset initially represents a cluster. Next, radius-vectors being closer to the neighboring clusters are moved from one cluster into another. This is repeated until clusters no further change, when all objects are properly partitioned. Finally radius-vector clusters are transformed into object clusters, with properly partitioned objects.
In this paper, IC clustering is changed. Each radius-vector initially is partitioned within a cluster, determined by a sub-interval to which the radius-vector belongs, what in the worst case takes O(nk) processing time, where n is the size of the object set, k is the number of clusters, k<n. Certainly O(nk)<O(n2), where O (n2) is the time required to sort a set of size n, what implies improved time complexity of the first processing stage of the IC clustering.

2. Preliminaries





If a set of  objects  is given, where each object is represented with  attributes (properties), , objects should be properly partitioned in   clusters, where similar objects share a common cluster. There is no empty cluster. 

3. Methodology








For each object , a radius-vector is calculated. Memory keeps  data pairs, tracking object’s position  in the object set , where  is the radius-vector corresponding to the object at position .










From the set of radius-vectors , the smallest and the largest radius-vector are chosen, , . The interval  is divided into  equal subintervals, starting from  up to . A radius-vector , such as  is satisfied, initially is partitioned in cluster . 
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Since the data distribution is initiall, some of the radius-vectors might be inappropriately partitioned. The mean values for each two neighboring clusters  and , are calculated according (1) , where  is the number of elements in cluster .  A radius-vector ,  for which  is satisfied, is moved from cluster  in cluster . Thus radius-vector  ,  for which  is satisfied, is moved from cluster  in cluster . When a radius-vector is moved from one cluster into another, clusters’ structure and clusters’ mean values are changed, recalculating clusters’ new mean values   and . Objects are moved from one cluster into another neighboring cluster, until clusters’ structure no further change, when all radius-vectors will be properly partitioned. Using data pairs  information, each radius-vector  is transformed into object ,. Thus clusters of radius-vectors , are transformed into object clusters , having each object  from the object set  properly partitioned in object cluster .                                                                        

                                                                                                         (1)

4. Algorithm
 Algorithm 1 Improved IC: Intelligent Clustering 
Input:  set of objects О={o1,o2,…,on-1,on}
Output: k clusters of objects ocj, 1<=j<=k

for each object оi which belongs to the object set  О{
calculate its radius-vector Ri;
store data pair (i,Ri) in the memory;
}
find the smallest radius-vector Rmin=min{R1,R2,…,Rn-1,Rn};
find the largest radius-vector Rmax=max{R1,R2,…,Rn-1,Rn};
determine sub-intervals sj, 1<=j<=k;
i=1;
j=1;
while(i<=n){
while(j<=k){
if(Ri belongs to sub-interval  sj){
add Ri in cluster cј;
break while(ј<=k) loop;
}
j++;
}
i++;
}
calculate centers of clusters mcј, 1<=j<=k;
LOOP:  j=1;
   while(ј<=k-1){
   for each Ri which belongs to cluster cj
   if (|Ri-mcj+1|<|Ri-mcj|){
   move Ri from cluster cј in cluster cј+1;
   calculate clusters’ new mean values mcј and mcј+1;
    }
    for each Ri which belongs to cluster cj+1
    if (|Ri-mcj|<|Ri-mcj+1|){
    move Ri from cluster cј+1 in cluster cј;
    calculate clusters’ new mean values mcј and mcј+1;
    }
    j++;
    }
go to LOOP while at least one mcј is changing;
transform radius-vector clusters cј into object clusters ocј, 1<=j<=k;


5. An Example




Set of objects should be partitioned in three clusters. According to the methodology being presented, for each object at position  a radius-vector is calculated, Table 1. Memory keeps ten data pairs, Table 2. 

Table 1 Objects’ radius-vectors
	Object
	(3,4)
	(5.7,5.9)
	(6,5.7)
	(6.1,5.8)
	(5.8,5.9)
	(4.5,4.9)
	(4.6,5)
	(7,7)
	(4,4)
	(8,6)

	Radius-vector
	5
	8.204
	8.276
	8.417
	8.273
	6.653
	6.794
	9.899
	5.657
	10




Table 2 Data pairs  
	Data pairs

	(1,5)

	(2,8.204)

	(3,8.276)

	(4,8.417)

	(5,8.273)

	(6,6.653)

	(7,6.794)

	(8,9.899)

	(9,5.657)

	(10,10)






Once the smallest and the largest radius-vector have been found, intervals  and  can be determined.

                                                                                                          

                                                                                          

                                                                                                 




Distributing radius-vector  in cluster  is permitted, only if  belongs to the interval .


Cluster  {5,6.653,5.657}, mean value 


Cluster  {8.204,8.276,8.273,6.794}, mean value 


Cluster  {8.417,9.899,10}, mean value 



A check for radius-vectors, being cluster  less distanced than cluster , is conducted, Table 3.

Table 3 Calculating the distances between cluster c1 radius-vectors and cluster c1 and c2 mean values
	Radius-vector
	Distance from cluster c1
	Distance from cluster c2

	5
	|5-5.77|=0.77
	|5-7.887|=2.887

	6.653
	|6.653-5.77|=0.883
	|6.653-7.887|=1.234

	5.657
	|5.657-5.77|=0.113
	|5.657-7.887|=2.23







According Table 3, there is no cluster  radius-vector, being closer to cluster  than cluster , what indicates appropriate radius-vector distribution in cluster .



A check for radius-vectors , being closer to cluster  than cluster , has also to be conducted, Table 4.

Table 4 Calculating the distances between cluster c2 radius-vectors and cluster c1 and c2 mean values
	Radius-vector
	Distance from cluster c2
	Distance from cluster c1

	8.204
	|8.204-7.887|=0.317
	|8.204-5.77|=2.434

	8.276
	|8.276-7.887|=0.389
	|8.276-5.77|=2.506

	8.273
	|8.273-7.887|=0.386
	|8.273-5.77|=2.503

	6.794
	|6.794-7.887|=1.093
	|6.794-5.77|=1.024











Considering Table 4 distance results, it can be denoted that radius-vector 6.794 is cluster  less distanced than cluster , where was initially distributed. In this case, radius-vector 6.794 is moved from cluster  in cluster . Since cluster  and cluster  structure has been changed, cluster  and cluster  new mean values are calculated.


Cluster  {5,6.653,5.657,6.794}, mean value 


Cluster  {8.204,8.276,8.273}, mean value 


Cluster  {8.417,9.899,10}, mean value 



Distance results between cluster  radius-vectors and cluster  and cluster  mean values are given in Table 5.

Table 5 Calculating the distances between cluster c2 radius-vectors and cluster c2 and c3 mean values
	Radius-vector
	Distance from cluster c2
	Distance from cluster c3

	8.204
	|8.204-8.251|=0.047
	|8.204-9.439|=1.235

	8.276
	|8.276-8.251|=0.025
	|8.276-9.439|=1.163

	8.273
	|8.273-8.251|=0.022
	|8.273-9.439|=1.166







Table 5 distance results clearly show that there is no cluster  radius-vector being closer to cluster  than cluster , where from can be concluded that cluster  radius-vectors are properly partitioned.



At the end has to be checked whether exist cluster  radius-vectors being cluster  less distanced than cluster , Тable 6.

Table 6 Calculating the distances between cluster c3 radius-vectors and cluster c2 and c3 mean values
	Radius-vector
	Distance from cluster c3
	Distance from cluster c2

	8.417
	|8.417-9.439|=1.022
	|8.417-8.251|=0.166

	9.899
	|9.899-9.439|=0.46
	|9.899-8.251|=1.648

	10
	|10-9.439|=0.561
	|10-8.251|=1.749












Once again, radius-vector being partitioned in one cluster is closer to the neighboring cluster. Cluster  radius-vector 8.417 is cluster  less distanced than cluster , resulting with rearrangement of radius-vector 8.417, being moved from cluster  in cluster . Since cluster  and cluster  structure is changed, clusters’ new mean values  and  are calculated.


Cluster  {5,6.653,5.657,6.794}, mean value 


Cluster  {8.204,8.276,8.273,8.417}, mean value 


Cluster  {9.899,10}, mean value 
Repeating this procedure from the beginning, no structure change of a cluster is recorded, where from a conclusion for clusters’ no further structure change can be deduced.


Using data pairs , each radius-vector is transformed into object from the object set . Thus radius-vector clusters are transformed into object clusters, having all objects properly partitioned.


Object cluster  {(3,4),(4.5,4.9),(4,4),(4.6,5)}

Object cluster  {(5.7,5.9),(6,5.7),(5.8,5.9),(6.1,5.8)}

Object cluster  {(7,7),(8,6)}

Conclusion
A new data clustering technique is presented. Each object is represented with a radius-vector. Instead of sorting a set of radius-vectors of size n (Intelligent Clustering initial processing stage [1]), the interval between the smallest and the largest radius-vector is divided in k equal sub-intervals. Depending on which sub-interval a radius-vector belongs, it is distributed within a particular cluster. Radius-vectors being less distanced to the neighboring clusters are rearranged, moving them from one cluster into another. That is repeated until clusters’ structure no further change, when all radius-vectors are properly partitioned. Finally clusters of radius-vectors are transformed into clusters of objects, having all objects appropriately partitioned. 
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