[bookmark: _GoBack]TIME COMPLEXITY IMPROVEMENT OF THE FIRST PROCESSING STAGE OF THE INTELLIGENT CLUSTERING
Done Stojanov1,*, Cveta Martinovska2
1Faculty of Computer Science, University ,,Goce Delcev”-Stip
done.stojanov@ugd.edu.mk
2Faculty of Computer Science, University ,,Goce Delcev”-Stip
cveta.martinovska@ugd.edu.mk
* Done Stojanov, е - mail: (done.stojanov@ugd.edu.mk)

Abstract. A new approach for data clustering is presented. IC clustering [1] initial processing stage is changed, so that the interval between the smallest and the largest radius-vector is divided into k equal sub-intervals. Each sub-interval is associated to a cluster. Depending on which sub-interval a radius-vector belongs, it is initially distributed within a cluster, associated with that sub-interval.

Key words: data clustering, radius-vectors, IC clustering, intervals.

1. Introduction
Since the second half of the 20th century, several techniques for data clustering have been proposed. The oldest one, but commonly used technique for data clustering is the k-means [2] algorithm, based on initial selection of k,k<n random objects (centroids) of object set of size n. The remaining n-k objects, which are not selected as centroids, are distributed within the closest clusters. Initially, each centroid represents a cluster. When a cluster is changed, cluster’s center is also changed. Centers no further change implies appropriate data distribution.
PAM (Partitioning Around Medoids) [4] as opposed to the k-means algorithm, effectively handles extreme values ​​(data outliers), which can easily disrupt the overall data distribution. Central objects within clusters (medoids) are used. Medoids are swapped only if that would result with a better data clustering.
CLARA [3] is basically PAM clustering, applied to a part (set of samples) of the object set. The result is not always the optimal one. CLARANS [5] searches graph data structure. Nodes medoids are replaced by nodes non-medoids, if that would reduce the clustering cost.
IC clustering [1] calculates the radius-vector for each object of object set of size n. During the first processing stage, the set of radius-vectors is sorted in ascending order, and then divided into k subsets of approximately equal size, where each subset initially represents a cluster. Next, radius-vectors being closer to the neighboring clusters are moved from one cluster into another. This is repeated until clusters no further change, when all objects are properly partitioned. Finally radius-vector clusters are transformed into object clusters, with properly partitioned objects.
In this paper, IC clustering is changed. Each radius-vector initially is partitioned within a cluster, determined by a sub-interval to which the radius-vector belongs, what in the worst case takes O(nk) processing time, where n is the size of the object set, k is the number of clusters, k<n. Certainly O(nk)<O(n2), where O (n2) is the time required to sort a set of size n, what implies improved time complexity of the first processing stage of the IC clustering.

2. Preliminaries

If a set of objects is given, where each object is represented with attributes (properties), , objects should be properly partitioned in clusters, where similar objects share a common cluster. There is no empty cluster.

3. Methodology

For each object , a radius-vector is calculated. Memory keeps data pairs, tracking object’s position in the object set , where is the radius-vector corresponding to the object at position .

From the set of radius-vectors , the smallest and the largest radius-vector are chosen, , . The interval is divided into equal subintervals, starting from up to . A radius-vector , such as is satisfied, initially is partitioned in cluster .

.....	

Since the data distribution is initiall, some of the radius-vectors might be inappropriately partitioned. The mean values for each two neighboring clusters and , are calculated according (1) , where is the number of elements in cluster . A radius-vector , for which is satisfied, is moved from cluster in cluster . Thus radius-vector , for which is satisfied, is moved from cluster in cluster . When a radius-vector is moved from one cluster into another, clusters’ structure and clusters’ mean values are changed, recalculating clusters’ new mean values and . Objects are moved from one cluster into another neighboring cluster, until clusters’ structure no further change, when all radius-vectors will be properly partitioned. Using data pairs information, each radius-vector is transformed into object ,. Thus clusters of radius-vectors , are transformed into object clusters , having each object from the object set properly partitioned in object cluster .

 (1)

4. Algorithm
 Algorithm 1 Improved IC: Intelligent Clustering
Input: set of objects О={o1,o2,…,on-1,on}
Output: k clusters of objects ocj, 1<=j<=k

for each object оi which belongs to the object set О{
calculate its radius-vector Ri;
store data pair (i,Ri) in the memory;
}
find the smallest radius-vector Rmin=min{R1,R2,…,Rn-1,Rn};
find the largest radius-vector Rmax=max{R1,R2,…,Rn-1,Rn};
determine sub-intervals sj, 1<=j<=k;
i=1;
j=1;
while(i<=n){
while(j<=k){
if(Ri belongs to sub-interval sj){
add Ri in cluster cј;
break while(ј<=k) loop;
}
j++;
}
i++;
}
calculate centers of clusters mcј, 1<=j<=k;
LOOP: j=1;
 while(ј<=k-1){
 for each Ri which belongs to cluster cj
 if (|Ri-mcj+1|<|Ri-mcj|){
 move Ri from cluster cј in cluster cј+1;
 calculate clusters’ new mean values mcј and mcј+1;
 }
 for each Ri which belongs to cluster cj+1
 if (|Ri-mcj|<|Ri-mcj+1|){
 move Ri from cluster cј+1 in cluster cј;
 calculate clusters’ new mean values mcј and mcј+1;
 }
 j++;
 }
go to LOOP while at least one mcј is changing;
transform radius-vector clusters cј into object clusters ocј, 1<=j<=k;

5. An Example

Set of objects should be partitioned in three clusters. According to the methodology being presented, for each object at position a radius-vector is calculated, Table 1. Memory keeps ten data pairs, Table 2.

Table 1 Objects’ radius-vectors
	Object
	(3,4)
	(5.7,5.9)
	(6,5.7)
	(6.1,5.8)
	(5.8,5.9)
	(4.5,4.9)
	(4.6,5)
	(7,7)
	(4,4)
	(8,6)

	Radius-vector
	5
	8.204
	8.276
	8.417
	8.273
	6.653
	6.794
	9.899
	5.657
	10

Table 2 Data pairs
	Data pairs

	(1,5)

	(2,8.204)

	(3,8.276)

	(4,8.417)

	(5,8.273)

	(6,6.653)

	(7,6.794)

	(8,9.899)

	(9,5.657)

	(10,10)

Once the smallest and the largest radius-vector have been found, intervals and can be determined.

Distributing radius-vector in cluster is permitted, only if belongs to the interval .

Cluster {5,6.653,5.657}, mean value

Cluster {8.204,8.276,8.273,6.794}, mean value

Cluster {8.417,9.899,10}, mean value

A check for radius-vectors, being cluster less distanced than cluster , is conducted, Table 3.

Table 3 Calculating the distances between cluster c1 radius-vectors and cluster c1 and c2 mean values
	Radius-vector
	Distance from cluster c1
	Distance from cluster c2

	5
	|5-5.77|=0.77
	|5-7.887|=2.887

	6.653
	|6.653-5.77|=0.883
	|6.653-7.887|=1.234

	5.657
	|5.657-5.77|=0.113
	|5.657-7.887|=2.23

According Table 3, there is no cluster radius-vector, being closer to cluster than cluster , what indicates appropriate radius-vector distribution in cluster .

A check for radius-vectors , being closer to cluster than cluster , has also to be conducted, Table 4.

Table 4 Calculating the distances between cluster c2 radius-vectors and cluster c1 and c2 mean values
	Radius-vector
	Distance from cluster c2
	Distance from cluster c1

	8.204
	|8.204-7.887|=0.317
	|8.204-5.77|=2.434

	8.276
	|8.276-7.887|=0.389
	|8.276-5.77|=2.506

	8.273
	|8.273-7.887|=0.386
	|8.273-5.77|=2.503

	6.794
	|6.794-7.887|=1.093
	|6.794-5.77|=1.024

Considering Table 4 distance results, it can be denoted that radius-vector 6.794 is cluster less distanced than cluster , where was initially distributed. In this case, radius-vector 6.794 is moved from cluster in cluster . Since cluster and cluster structure has been changed, cluster and cluster new mean values are calculated.

Cluster {5,6.653,5.657,6.794}, mean value

Cluster {8.204,8.276,8.273}, mean value

Cluster {8.417,9.899,10}, mean value

Distance results between cluster radius-vectors and cluster and cluster mean values are given in Table 5.

Table 5 Calculating the distances between cluster c2 radius-vectors and cluster c2 and c3 mean values
	Radius-vector
	Distance from cluster c2
	Distance from cluster c3

	8.204
	|8.204-8.251|=0.047
	|8.204-9.439|=1.235

	8.276
	|8.276-8.251|=0.025
	|8.276-9.439|=1.163

	8.273
	|8.273-8.251|=0.022
	|8.273-9.439|=1.166

Table 5 distance results clearly show that there is no cluster radius-vector being closer to cluster than cluster , where from can be concluded that cluster radius-vectors are properly partitioned.

At the end has to be checked whether exist cluster radius-vectors being cluster less distanced than cluster , Тable 6.

Table 6 Calculating the distances between cluster c3 radius-vectors and cluster c2 and c3 mean values
	Radius-vector
	Distance from cluster c3
	Distance from cluster c2

	8.417
	|8.417-9.439|=1.022
	|8.417-8.251|=0.166

	9.899
	|9.899-9.439|=0.46
	|9.899-8.251|=1.648

	10
	|10-9.439|=0.561
	|10-8.251|=1.749

Once again, radius-vector being partitioned in one cluster is closer to the neighboring cluster. Cluster radius-vector 8.417 is cluster less distanced than cluster , resulting with rearrangement of radius-vector 8.417, being moved from cluster in cluster . Since cluster and cluster structure is changed, clusters’ new mean values and are calculated.

Cluster {5,6.653,5.657,6.794}, mean value

Cluster {8.204,8.276,8.273,8.417}, mean value

Cluster {9.899,10}, mean value
Repeating this procedure from the beginning, no structure change of a cluster is recorded, where from a conclusion for clusters’ no further structure change can be deduced.

Using data pairs , each radius-vector is transformed into object from the object set . Thus radius-vector clusters are transformed into object clusters, having all objects properly partitioned.

Object cluster {(3,4),(4.5,4.9),(4,4),(4.6,5)}

Object cluster {(5.7,5.9),(6,5.7),(5.8,5.9),(6.1,5.8)}

Object cluster {(7,7),(8,6)}

Conclusion
A new data clustering technique is presented. Each object is represented with a radius-vector. Instead of sorting a set of radius-vectors of size n (Intelligent Clustering initial processing stage [1]), the interval between the smallest and the largest radius-vector is divided in k equal sub-intervals. Depending on which sub-interval a radius-vector belongs, it is distributed within a particular cluster. Radius-vectors being less distanced to the neighboring clusters are rearranged, moving them from one cluster into another. That is repeated until clusters’ structure no further change, when all radius-vectors are properly partitioned. Finally clusters of radius-vectors are transformed into clusters of objects, having all objects appropriately partitioned.

References
[1] D. Stojanov (2012): IC: Intelligent Clustering, a new time efficient data partitioning methodology. International Journal of Computer Science and Information Technologies 3(5), pp. 5065-5067.
[2] J. MacQueen (1967): Some Methods for classification and Analysis of Multivariate Observations. In Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297.
[3] L. Kaufman and P. Rousseeuw (1990): Finding Groups in Data, An Introduction to Cluster Analysis, 99th Edition. Willey-Interscience.
[4] L. Kaufman and P. Rousseeuw (1987): Clustering by means of medoids. In Statistical Data Analysis Based on the L1 Norm, pp. 405-416.
[5] R. Ng and J. Han (1994): Efficient and effective clustering methods for spatial data mining. In Proc. of the 20th VLDB Conference, pp. 144–155.

image1.wmf
n

image46.wmf
k

j

c

j

£

£

1

,

oleObject46.bin

image47.wmf
k

j

oc

j

£

£

1

,

oleObject47.bin

image48.wmf
n

i

o

i

£

£

1

,

oleObject48.bin

image49.wmf
O

oleObject49.bin

image50.wmf
k

j

oc

j

£

£

1

,

oleObject50.bin

oleObject1.bin

image51.wmf
k

j

c

c

R

mc

j

j

i

j

£

£

å

Î

=

1

,

|

|

oleObject51.bin

image52.wmf
)}

6

,

8

(

),

4

,

4

(

),

7

,

7

(

),

5

,

6

.

4

(

),

9

.

4

,

5

.

4

(

),

9

.

5

,

8

.

5

(

),

8

.

5

,

1

.

6

(

),

7

.

5

,

6

(

),

9

.

5

,

7

.

5

(

),

4

,

3

{(

=

O

oleObject52.bin

image53.wmf
i

oleObject53.bin

image54.wmf
10

1

,

£

£

i

R

i

oleObject54.bin

image55.wmf
10

1

),

,

(

£

£

i

R

i

i

oleObject55.bin

image2.wmf
}

,

,...,

,

{

1

2

1

n

n

o

o

o

o

O

-

=

image56.wmf
)

,

(

i

R

i

oleObject56.bin

image57.wmf
10

,

5

max

min

=

=

R

R

oleObject57.bin

image58.wmf
2

1

,

s

s

oleObject58.bin

image59.wmf
3

s

oleObject59.bin

image60.wmf
[

)

667

.

6

,

5

3

20

,

5

3

)

5

10

(

1

5

,

5

:

1

=

÷

ø

ö

ê

ë

é

=

÷

ø

ö

ê

ë

é

-

´

+

s

oleObject60.bin

oleObject2.bin

image61.wmf
[

)

333

.

8

,

667

.

6

3

25

,

2

20

3

)

5

10

(

2

5

,

3

20

:

2

=

÷

ø

ö

ê

ë

é

=

÷

ø

ö

ê

ë

é

-

´

+

s

oleObject61.bin

image62.wmf
[

]

10

,

333

.

8

3

30

,

3

25

3

)

5

10

(

3

5

,

3

25

:

3

=

ú

û

ù

ê

ë

é

=

ú

û

ù

ê

ë

é

-

´

+

s

oleObject62.bin

image63.wmf
10

1

,

£

£

i

R

i

oleObject63.bin

image64.wmf
3

1

,

£

£

j

c

j

oleObject64.bin

image65.wmf
i

R

oleObject65.bin

image3.wmf
m

image66.wmf
3

1

,

£

£

j

s

j

oleObject66.bin

image67.wmf
:

1

c

oleObject67.bin

image68.wmf
77

.

5

3

31

.

17

1

=

=

mc

oleObject68.bin

image69.wmf
:

2

c

oleObject69.bin

image70.wmf
887

.

7

4

547

.

31

2

=

=

mc

oleObject70.bin

oleObject3.bin

image71.wmf
:

3

c

oleObject71.bin

image72.wmf
439

.

9

3

316

,

28

3

=

=

mc

oleObject72.bin

image73.wmf
1

c

R

i

Î

oleObject73.bin

image74.wmf
2

c

oleObject74.bin

image75.wmf
1

c

oleObject75.bin

image4.wmf
)

,

,...,

,

(

,

1

,

2

,

1

,

m

i

m

i

i

i

i

p

p

p

p

o

-

=

image76.wmf
1

c

oleObject76.bin

image77.wmf
2

c

oleObject77.bin

image78.wmf
1

c

oleObject78.bin

image79.wmf
1

c

oleObject79.bin

image80.wmf
2

c

R

i

Î

oleObject80.bin

oleObject4.bin

image81.wmf
1

c

oleObject81.bin

image82.wmf
2

c

oleObject82.bin

image83.wmf
1

c

oleObject83.bin

image84.wmf
2

c

oleObject84.bin

image85.wmf
2

c

oleObject85.bin

image5.wmf
n

k

k

<

,

image86.wmf
1

c

oleObject86.bin

image87.wmf
1

c

oleObject87.bin

image88.wmf
2

c

oleObject88.bin

image89.wmf
1

c

oleObject89.bin

image90.wmf
2

c

oleObject90.bin

oleObject5.bin

oleObject91.bin

image91.wmf
026

.

6

4

104

.

24

1

=

=

mc

oleObject92.bin

oleObject93.bin

image92.wmf
251

.

8

3

753

.

24

2

=

=

mc

oleObject94.bin

oleObject95.bin

oleObject96.bin

image93.wmf
2

c

oleObject97.bin

image6.wmf
i

o

image94.wmf
3

c

oleObject98.bin

image95.wmf
2

c

oleObject99.bin

image96.wmf
2

c

oleObject100.bin

image97.wmf
3

c

oleObject101.bin

image98.wmf
2

c

oleObject102.bin

oleObject6.bin

image99.wmf
2

c

oleObject103.bin

image100.wmf
3

c

oleObject104.bin

image101.wmf
2

c

oleObject105.bin

image102.wmf
3

c

oleObject106.bin

image103.wmf
3

c

oleObject107.bin

image7.wmf
n

i

p

R

m

k

k

i

i

£

£

å

=

=

1

,

1

2

,

image104.wmf
2

c

oleObject108.bin

image105.wmf
3

c

oleObject109.bin

image106.wmf
3

c

oleObject110.bin

image107.wmf
2

c

oleObject111.bin

image108.wmf
2

c

oleObject112.bin

oleObject7.bin

image109.wmf
3

c

oleObject113.bin

image110.wmf
2

mc

oleObject114.bin

image111.wmf
3

mc

oleObject115.bin

oleObject116.bin

oleObject117.bin

oleObject118.bin

image112.wmf
293

.

8

4

17

.

33

2

=

=

mc

image8.wmf
n

oleObject119.bin

oleObject120.bin

image113.wmf
950

.

9

2

899

,

19

3

=

=

mc

oleObject121.bin

image114.wmf
10

1

),

,

(

£

£

i

R

i

i

oleObject122.bin

image115.wmf
O

oleObject123.bin

image116.wmf
:

1

oc

oleObject124.bin

oleObject8.bin

image117.wmf
:

2

oc

oleObject125.bin

image118.wmf
:

3

oc

oleObject126.bin

image9.wmf
n

i

R

i

i

£

£

1

),

,

(

oleObject9.bin

image10.wmf
i

oleObject10.bin

image11.wmf
O

oleObject11.bin

image12.wmf
i

R

oleObject12.bin

image13.wmf
i

oleObject13.bin

image14.wmf
}

,

,...,

,

{

1

2

1

n

n

R

R

R

R

R

-

=

oleObject14.bin

image15.wmf
}

,

,...,

,

min{

1

2

1

min

n

n

R

R

R

R

R

-

=

oleObject15.bin

image16.wmf
}

,

,...,

,

max{

1

2

1

max

n

n

R

R

R

R

R

-

=

oleObject16.bin

image17.wmf
]

,

[

max

min

R

R

oleObject17.bin

image18.wmf
k

oleObject18.bin

image19.wmf
1

s

oleObject19.bin

image20.wmf
k

s

oleObject20.bin

image21.wmf
i

R

oleObject21.bin

image22.wmf
k

j

n

i

s

R

j

i

£

£

£

£

Î

1

,

1

,

oleObject22.bin

image23.wmf
j

c

oleObject23.bin

image24.wmf
))

(

1

,

[

:

min

max

min

min

1

R

R

k

R

R

s

-

+

oleObject24.bin

image25.wmf
))

(

2

),

(

1

[

:

min

max

min

min

max

min

2

R

R

k

R

R

R

k

R

s

-

+

-

+

oleObject25.bin

image26.wmf
))

(

1

),

(

2

[

:

min

max

min

min

max

min

1

R

R

k

k

R

R

R

k

k

R

s

k

-

-

+

-

-

+

-

oleObject26.bin

image27.wmf
)]

(

),

(

1

[

:

min

max

min

min

max

min

R

R

k

k

R

R

R

k

k

R

s

k

-

+

-

-

+

oleObject27.bin

image28.wmf
j

c

oleObject28.bin

image29.wmf
1

1

,

1

-

£

£

+

k

j

c

j

oleObject29.bin

image30.wmf
|

|

j

c

oleObject30.bin

image31.wmf
j

c

oleObject31.bin

image32.wmf
j

i

c

R

Î

oleObject32.bin

image33.wmf
|

|

|

|

1

j

i

j

i

mc

R

mc

R

-

<

-

+

oleObject33.bin

image34.wmf
j

c

oleObject34.bin

image35.wmf
1

+

j

c

oleObject35.bin

image36.wmf
1

+

Î

j

i

c

R

oleObject36.bin

image37.wmf
|

|

|

|

1

+

-

<

-

j

i

j

i

mc

R

mc

R

oleObject37.bin

image38.wmf
1

+

j

c

oleObject38.bin

image39.wmf
j

c

oleObject39.bin

image40.wmf
j

mc

oleObject40.bin

image41.wmf
1

+

j

mc

oleObject41.bin

image42.wmf
)

,

(

i

R

i

oleObject42.bin

image43.wmf
i

R

oleObject43.bin

image44.wmf
i

o

oleObject44.bin

image45.wmf
n

i

£

£

1

oleObject45.bin

