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Abstract
Frequent concomitant manifestation of type 2 diabetes 
mellitus (T2DM) and Alzheimer’s disease (AD) has 
been recently demonstrated by epidemiological studies. 
This might be due to functional similarities between 
β-cells and neurons, such as secretion on demand of 
highly specific molecules in a tightly controlled fashion. 
An additional similarity represents the age-related 
alteration of hyperphosphorylated tau in AD patients. 
Similarly, alterations have been identified in β-cells of 
T2DM patients. The islet amyloid polypeptide has been 
associated with β-cell apoptosis. As a consequence of 
increasing age, the accumulation of highly modified pro- 

teins together with decreased regenerative potential 
might lead to increasing rates of apoptosis. Moreover, re- 
duction of β-cell replication capabilities results in redu-
ction of β-cell mass in mammals, simultaneously with 
impaired glucose tolerance. The new challenge is to 
learn much more about age-related protein modifica-
tions. This can lead to new treatment strategies for 
reducing the incidence of T2DM and AD. 
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INTRODUCTION
Prevalence of  impaired glucose tolerance and type 2 dia-
betes mellitus (T2DM) is increasing among the elderly in 
humans. The absolute number of  T2DM patients is rising 
worldwide, particularly in industrialized countries. This is 
not only because of  the higher incidence of  obesity and 
reduced physical exercise, but is also due to the longer 
life expectancy in these countries, as well as superior food 
quality, and the availability of  highly effective medication. 
However, a longer life span brings with it age-associated 
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diseases such as diabetes mellitus type 2, cognitive disor-
ders, and Alzheimer’s disease (AD). Primarily, one would 
not expect that these two very different forms of  age 
related complications (TD2M and AD) to have any con-
nection. Yet, epidemiological studies have demonstrated 
that, when compared with age matched individuals with 
absence of  cognitive dysfunction[1,2] , impaired glucose tol-
erance and T2DM is more prevalent among AD patients. 
The link between these entities with different loci of  path-
ological processes might be found in similar key mediators 
or signaling pathways. In both, the pancreatic beta cell 
and neurons of  the central nervous system, secretion on 
demand of  highly specific molecules represents a genuine 
task. This is mediated via a tightly controlled exocytosis 
process. The SNARE (soluble N-ethylmaleimide-sensitive-
factor attachment protein receptor) protein complex gears 
transmitter and insulin secretion at neurons and beta cells, 
respectively. The SNARE complex exerts its function at 
the neuronal synapse and in the β-cell, using already pre-
primed mature granules. Three so called SNARE proteins 
participate in fusing the vesicles to the plasma membrane: 
the vesicle-associated membrane protein (VAMP, also 
called synaptobrevin); syntaxin, an integral plasma mem-
brane protein; and the synaptosomal-associated protein 
of  25 kDa (SNAP-25), anchored to the plasma mem-
brane via a palmitoyl group. Together, these three proteins 
form a helical bundle consisting of  four amphipathic 
helices, or SNARE motifs, two of  which are contrib-
uted by SNAP-25[3]. It is believed that assembly of  the 
SNARE complex proceeds in a zipper-like fashion from 
the N-terminal end of  the interacting helices toward the 
C-terminal membrane anchors. In this way, assembly of  
the proteins in the opposing membranes pulls the mem- 
branes together[4]. At the beginning of  membrane fusion,  
the SNARE proteins are located in still separated mem-
branes (so-called trans-complexes) and, after fusion, the 
trans-membrane segments of  the SNAREs are present in 
the same membrane (cis-complexes). To restore the cell  
for new exocytosis events, the cis-complexes are then dis-
assembled by NSF (N-ethylmaleimide-sensitive factor) 
and additional cofactors[5], and vesicles containing VAMP 
are recycled. Secretagogin, a novel hexa EF-hand calcium-
binding protein was recently found to interact with SN-
AP-25[6]. Further complex interdependencies will be dem-
onstrated in establishing inter-actoms[7].

ALZHEIMER’S PATHOLOGY IN 
PANCREATIC β-CELLS
As most cellular processes are regulated by multi-protein 
complexes, abolishing or enhancing a protein-protein 
interaction may have a profound impact and possibly 
manifests in distinct diseases. Since protein-protein intera- 
ctions are critical events for a wide range of  physiological 
and pathological processes, the precise control of  these 
interactions and their biological consequences present a 
major challenge and opportunity for modern drug design[8].  
Hyperphosphorylation and glycosylation might induce im- 

pairment of  the protein interaction machinery. As protein 
expression deficiencies of  SNARE members have been 
demonstrated in the brain at the Lewy body variant of  
AD patients[9], there might exist forms of  T2DM in which  
pancreatic β-cells undergo similar expression deficiencies, 
but this is still a matter of  investigation.

In contrast to neuronal transmitters, insulin does not 
undergo a reuptake into β-cells. The premature insulin 
granules[10] have to be transported to the cell periphery 
along microtubules via an energy-consuming process using 
kinesin[11]. In this respect, microtubular dynamics as well as 
microtubule-associated protein tau (MAPT), also named 
tau, play an important role. Abnormalities in tau protein 
structure such as tangles and hyperphosphorylated tau ag- 
gregates were identified in the brains of  AD patients[12,13] 
about 30 years ago. This has led to the technical term 
tauopathy and has been defined as detergent insoluble tau 
aggregates forming tangels and neuritic plaques[14]. Very 
recently, hyperphosphorylated tau, representing a factor 
responsible for the inhibition of  microtubule assembly and  
microtubule disruption[15], has been identified in pancreatic  
islets of  Langerhans of  T2DM patients[16]. In contrast, this 
was not found in pancreatic islets of  healthy individuals. 
Such data have been confirmed by in vitro studies using in- 
sulinoma tissue and cell lines from rodents[17]. At least six  
individual tau isoforms have been identified in these ro-
dent β-cell lines, of  which two are of  higher molecular 
weight than the brain derived isoforms. Insoluble aggre- 
gates were isolated and demonstrated. Most interestingly, a 
slight but not significant up-regulation of  tau[18] expression 
could be defined at the gene level using expression screens 
when comparing normal age matched donor islets with 
pancreatic islets from T2DM patients. 

Although tau has become an important molecule in 
defining AD pathology, it is not  solely responsible for disea-
se development[19]. In the brain, extracellular beta amyloid 
deposits are the second main hallmark of  AD pathology. 
Interestingly, a homologous protein[20] named islet amyloid 
polypeptide (IAPP)[21] is present in beta cells, which is intri- 
guing in this respect. It is co-expressed and secreted with  
insulin by pancreatic beta cells[22,23]. The IAPP has a pro- 
pensity to misfold and aggregate into cytotoxic oligomers, 
which result in islet amyloid deposits found in T2DM 
patients[24]. Oligomers of  human IAPP are known to cause  
membrane disruption[25], and are therefore involved in the 
mediation of  β-cell apoptosis in T2DM. Interestingly, the 
single amino acid mutation (proline substitution) in ro- 
dent IAPP hinders the formation of  IAPP deposits[22], and  
rodents do not spontaneously develop diabetes characteri-
zed by islet amyloid deposits[26]. This, in turn, has led to 
the development of  transgenic rats expressing the human 
variant of  IAPP[27]. The transgenic rat model indeed 
resembles the T2DM of  humans closely, and provides 
proof  that this molecule is involved in derangement of  
β-cell function.  It is of  note that, using these models, 
it has been shown that the toxic effect of  human IAPP 
on β-cell apoptosis is initiated by a threshold-dependent 
effect[26]. 
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MODIFICATIONS OF INSULIN SECRETION
Insulin secretion from pancreatic beta cells has been mo-
nitored in a pulsatile mode under physiological conditi-
ons[28,29]. The frequency of  pulses changes depending on 
the blood glucose level, and can be influenced by drugs 
such as sulfonylurea[29]. Most interestingly, impairment of  
this mode of  secretion has been observed much earlier 
than the abnormal glucose tolerance could be measured[30]. 
Each pulse of  insulin release is preceded by an increase 
of  intracellular calcium[29]. This tightly controlled mecha-
nism as reviewed by Tengholm and Gylfe[31] is deranged 
in individuals with impaired glucose tolerance and dia-
betes[32,33]. Additionally, an age-dependent change in pul-
satile insulin secretion has been demonstrated in animal 
models[34] as well as in humans[35].

β-CELL REPLICATION AND AGE
It has been demonstrated in rodent models that the beta 
cell mass is the result of  a balanced mode of  replication 
and apoptosis[36,37]. An adjusted increase in replication 
has been found in obesity of  rodents[38] and humans[39]. 
Moreover, the adaptive increase in beta cell mass has been 
shown to have important biological relevance for the in-
creased insulin demand in pregnancy[40,41,42]. Furthermore, 
as depicted in rats, these adaptations are necessary to bal-
ance the age-related insulin resistance building up within 
12 mo of  birth[34]. Data beyond this age are not available 
from rats, though it has to be speculated that this β-cell 
replicative potential decreases in rodents in an age-depen-
dent manner[43] as it has been shown for humans[44]. In 
younger individuals, β-cell mass can adapt to increase in 
body mass in order to maintain glucose tolerance within 
the normal range, this seems not to be the case in older 
individuals.

β-CELL APOPTOSIS AND AGE
Although T2DM has been associated with increased β- 
cell apoptosis[44,45,46], it does not necessarily mean that there  
is an increase in apoptosis going along with the age. How- 
ever, there exists clear evidence that islet amyloid polypep- 
tide increases with age at the islet of  Langerhans[47,48]. This 
physiological peptide can cause apoptosis in its oligomeric 
form[25,45,49,50]. In addition to this, hyperphosphorylated tau 
protein can accumulate within the islet of  Langerhans, as 
mentioned above[16]. Rodent models suggest that increased 
apoptosis might be responsible for the decrease in β-cell 
mass[26,27,51,52]. 

PROTECTIVE EFFECTS
It has been suggested that several protective effects exist  
to prevent neuronal death[53,54]. The former author descri-
bes that the calcium-binding protein secretagogin might ex- 
hibit a neuro-protective effect. This protein is highly ex-
pressed at the pancreatic islet of  Langerhans, and might in-
deed exert important sensing capabilities at the calcium spi- 

kes preceding each pulse of  insulin secretion[55]. Some pre- 
liminary data have been suggested in recent work, which 
might indicate that this protein provides more resistan- 
ce to β-cell stressors under in vitro conditions[17]. Similarly,  
chaperon proteins have been implicated in refolding pro- 
teins back into their normal structure, following derange-
ment from their native structure due to exposure to toxins 
or disease-mediated changes in body temperature[56,57]. 

Further basic research work will be necessary to teach 
us how age-related changes in β-cells can be reduced, pre-
vented and counteracted.
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