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Abstract—' We define protocol coding as a way to encode
information in the actions taken by a communication protocol.
In this work we investigate strategies for protocol coding via
combinatorial ordering of the labelled user resources (packets,
channels) in an existing, primary system. This introduces a new,
secondary communication channel in the existing system, which
has been considered in the prior work exclusively in a stegano-
graphic context. Instead, we focus on the use of secondary channel
for reliable communication with newly introduced secondary
devices, that are low-complexity versions of the primary devices,
capable only to decode the robustly encoded header information
in the primary signals. We introduce a suitable communication
model, capable to capture the constraints that the primary system
puts on protocol coding. We derive the capacity of the secondary
channel under arbitrary error models. The insights from the
information—theoretic analysis are used to design practical error—
correcting schemes for secondary channels based on trellis codes.

I. INTRODUCTION

With the vast deployed infrastructure and variety of existing
wireless systems, it is of significant practical value to introduce
new features without changing the physical layer/hardware of
the infrastructure, but only upgrade it in software. This can be
achieved by a suitable, backward—compatible upgrade of the
communication protocols. We use the term protocol coding to
refer to techniques that convey information by modulating the
actions of a communication protocol.

Consider the example on Fig. 1, where a cellular base
station (BS) a group of primary terminals in its range. It is
assumed that the cellular system is frame—based (WiMax [1],
LTE [2], etc.). The metadata contained in the frame header
informs the terminals how to receive/interpret the actual data
that follows. The frame header is commonly encoded more
robustly compared to the data, such that it can be reliably
received in an area that is larger than the nominal coverage
area, as depicted on Fig. 1. In such a context, while still
using the same infrastructure, we can introduce new secondary
devices, which are able to operate in the extended coverage
area. These can be e. g. machine-type devices [3], such as
sensors or actuators, that are controlled by the cellular BS. The
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Fig. 1. Tllustration of a secondary communication through protocol coding
in cellular systems. A primary device can decode any information sent by
the base station, while the secondary device has a limited functionality can
only decode the information sent by protocol coding. The range of the
primary communication system (white circle) is smaller than the range of
the secondary information (shaded circle).

secondary devices are simple and have a limited functionality,
capable to decode only the frame header, but not the complex
high-rate codebooks used for data. The main idea is that
BS can send information to the secondary devices in the
frame header. As another example, assume that there are two
OFDMA channels, 1 and 2, defined in a diversity mode [1],
such that if a user Alice is scheduled in a given frame, it is
irrelevant whether it is assigned to channel 1 or 2. Hence, if BS
schedules Alice and Bob in a given frame, then it can encode
1—-bit secondary information as follows: allocating Alice to
channel 1 and Bob to channel 2 is a bit value 0, otherwise it
is a bit value 1. Taking this simple example further, let there
be three OFDMA channels, but still only two users, Alice and
Bob. In a given frame, each of them can get from 0 up to 3
channels assigned, which is decided by the primary scheduling
criterion; the secondary transmitter can encode information by
assigning these channels to Alice/Bob in a particular way. If
there are 2(1) packets for Alice (Bob), they can be assigned in
3 possible ways and in that particular frame, log,(3) secondary
bits can be sent. However, if all 3 packets are addressed to
Alice, no secondary information can be sent in that frame. This
variable amount of information due to the primary operation is
the crux of the communication model considered in this work.

This paper investigates the fundamental properties of com-



munication systems that use protocol coding to send infor-
mation, under restrictions imposed by a primary system. The
secondary information is encoded in the ordering of labelled
resources (packets, channels) of the primary (legacy) users. In
this paper we introduce a suitable communication model that
can capture the restrictions imposed by the primary system.
The model captures the key feature of a secondary commu-
nication: in a given scheduling epoch, the primary system
decides which packets/users to send data to, while secondary
information can be sent by only rearranging these packets.
Each primary packet is subject to an error (e. g. erasure), which
induces a corresponding error model for secondary commu-
nication. For this model, we carry out information-theoretic
analysis and devise suitable communication strategies.

Protocol coding can appear in many flavors. An early work
that mentions the possibility to send data by modulating the
random access protocol is [4], but in a rather “negative”
context, since the model used explicitly prohibits to decide
the protocol actions based on user data. The seminal work [5]
uses a form of protocol coding: the information is modulated
in the arrival times of data packets. More recent works on
possible encoding of information in relaying scenarios through
protocol-level choice of whether to transmit or receive is
presented in [6] [7] and [8]. At a conceptual level, protocol
coding bridges information theory and networking [9]. The
idea of communication based on packet reordering is not new
per se and has been presented in the context of covert channels
[10] [11] [12]. However, the big difference with our work is
that our objective is not steganographic, but rather what kind
of communication strategies can be used when the degrees of
freedom for secondary communication are limited by a certain
(random) process in the primary system. The practical coding
strategies are related to the frequency permutation arrays for
power line communications [13], [14].

Preliminary results of this work have appeared in [15]
and [16]. In [15] we have introduced the notion of a secondary
channel and sketched of the communication strategies when
the primary packets are subject to an erasure channel, while
in [16] we treated the case when the error model for the
primary packets is represented by a Z—channel. In this paper
we devise capacity—achieving strategies for arbitrary error
model incurred on the primary packets. We first show the
relation to the model of Shannon for channels with causal
side information at the transmitter (CSIT) [17]. We then de-
velop a new framework for computing the secondary capacity,
which leads us to explicit specification of the communication
strategies using trellis codes.

II. SYSTEM MODEL
A. Communication Scenario

The communication model is depicted on Fig. 2. A Base
Station (BS) transmits downlink data to a set of two users,
addressed 0 and 1, respectively. The BS serves the users
in scheduling frames with Time Division Multiple Access
(TDMA). Each frame has a fixed number of F' packets. Each
packet carries the address of a user to whom the packet
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Fig. 2. The primary system consists of a Base Station (BS) and two primary
devices. Each primary packet has a header that contains address a; € {0, 1}.
The BS selects the orders of the packets in a frame in order to send information
to the secondary device.

is destined, as well as data for that user. This is called
primary data, destined to either user 0 or user 1. There is
a third secondary device, that listens the TDMA frames sent
by the BS. This device only records the address of each
packet and ignores the packet data. Since this work is focused
on the secondary communication, the notions ‘“transmitter”
and “receiver” will be used to refer to secondary transmitter
and receiver, respectively. By addressing the packets in a
given frame in a particular order, the BS sends secondary
information. Thus, an input symbol for the secondary channel
is an F'—dimensional binary vector x € X = {0, 1}F.

The model with only two primary is limiting, but extension
to K primary addresses entails complexity that is outside
the scope of this initial paper on the topic. Yet, the results
with binary secondary inputs provide novel insights for the
communication strategies and set the basis for generalizations
to K > 2. Furthermore, the binary input captures the following
practical setup. Consider the case in which the arrival of
packets in the primary system is random and in a certain frame
the BS has only F’ < F packets to send, then (F — F’)
of the slots will be empty. In this case we can still use
the binary input model. We assign address 0 to a the empty
packet slots, such that these empty slots can be actually treated
as valid secondary input symbols. On the other hand, the
presence of a packet in a given slot is treated as a secondary
symbol 1. The secondary receiver only needs to detect packet
presence/absence, without decoding its header.

The key assumption in the model is that the packets that
are scheduled in a frame are decided by the primary commu-
nication system: the primary system decides that s packets in



a frame will be addressed to user 1 and (F' — s) packets will
be addressed to user 0, where 0 < s < F. This assumption
captures the essence of protocol coding: secondary communi-
cation is realized by modulating the degrees of freedom left
over from the operation of the original, primary communica-
tion system. In other words, the operational requirements of
the primary system are contained in the set of packets that the
BS decides to send in a given frame.

The number of packets s addressed to user 1 in a given
frame is called state of the frame. We assume that the primary
system selects packets in a memoryless fashion: in each
frame, a packet is addressed 1(0) with probability a(l — a),
independently of the other packets and the previous frames.
Hence, the probability that a frame is in state s is binomial
Ps(s) = (f)a“”(l — a)¥'~*. With the state s decided by the
primary system, the secondary transmitter is only allowed
to rearrange the packets in the frame. Since s is a random
variable over which the secondary transmitter has no control,
a frame carries a variable amount of secondary information.
For example, if F' = 4 and the primary system decides
s = 3, then the possible secondary symbols for the frame
are 1110,1101,1011,0111. But, if s = F' = 4, than in that
frame the secondary transmitter cannot send any information.

B. Error Models for the Secondary Channel

From the perspective of a secondary transmitter/receiver,
each packet is sent over a memoryless channel with binary
inputs. Several suitable error models can be inferred from
the physical setup. In an erasure channel, the receiver either
correctly decodes the packet address 0 or 1 or the header
checksum in incorrect, leading to erasure e. In a binary
symmetric channel, the receiver uses error-correction decoding
to decide whether it is more likely that address 0 or 1
is received. This results in only two possible outputs and
symmetric error events. Finally, the Z-channel is suitable if
0/1 corresponds to packet absence/presence, respectively. The
probability that, in absence of a packet, the noise produces
a valid packet detection sequence, is practically 0, while the
probability that packet transmission is not detected is p, > 0.

In the general case of a channel with binary inputs, there
can be J possible outputs from the set 7. The special cases
above have J = {0,1,e} and J = {0,1}. When ¢ = 0,1
is sent, there are J transition probabilities, represented by a
vector:

qi = (91, G2, - - - Giy) 1=0,1 (1)
where ¢;; = P(y = jlz = i) and some ¢;; can be equal
to 0. A secondary output symbol is y € ¥ = J¥. The
input/output variables of the secondary channel are denoted by
X and Y, respectively. By denoting x = (z1, 23, - xp) with
zy € {0,1} and y = (y1,92,---yr) with yy € J, we can
define the channel X —Y through the transition probabilities:

F
PY\X(y‘X) = H sy 2
F=1

When there is no risk for confusion, we simply write P(y|x).
Thus, the channel X7 is specified by the memoryless binary
channel through which each packet is passed.

The following notation will be used. & = {0,1,...F} to
denote the set of possible states. The set of input and output
symbols of the secondary channel is denoted by X and ),
respectively. The set of input symbols is partitioned into F'+ 1
subsets X, defined as follows:

F
X6X5®in:s 3)
i=1
When the frame state is S = s, then only x € X can be sent
over the secondary channel.

III. FRAMEWORK FOR ANALYZING THE CAPACITY OF A
SECONDARY CHANNEL

The secondary channel can be represented by the framework
of Shannon for channels with causal state information at the
transmitter (CSIT) [17]. Instead of considering the original
channel with CSIT, one can consider an ordinary, discrete
memoryless channel with equivalent capacity that has a larger
input alphabet. The input variable of the equivalent channel
is T and each possible input letter ¢, termed strategy [18],
represents a mapping from the state alphabet S to the input
alphabet X’ of the original channel. A particular strategy t € T
is defined by the vector of size |S|: (¢(1),...¢(|S])), where
t(s) € X. Therefore, if each s € S can be mapped map to any
x € X, then the total number of possible strategies is | x|/
and therefore |7| < |X|!S!. The capacity of the equivalent
channel can be found as:

C g;i?% I(T,Y) )
where Pr(-) is a probability distribution defined over the set
T which is independent of the state S. The maximization is
performed across all the joint distributions that satisfy [18]:

PS,T,X,Y(Sv 1, x, Y) = PS(S)PT(t)é()Q t(s))PY|X,S(Y|xv S)
&)
where 0(x,%(s)) = 1if x = #(s) and 0(x, t(s)) = 0 otherwise.
Following the properties of mutual information ([19], Section
8.3), the required cardinality of 7 is not more than |Y|.
However, Shannon’s result is for the general case of chan-
nels with causal CSIT. The secondary channel considered here
has a specific structure that permits more explicit characteri-
zation of the communication strategies. As noted in relation to
(3), for a given state S = s only a subset X5 € X’ of symbols
x may be produced. For example, when F' = 4 and s = 2, it
is not possible to send the symbol x = 1011. Nevertheless, in
the model with causal CSIT the distribution Py |x s(y|x,s)
needs to be defined for all pairs (x, s), irrespective of the fact
that in the original model some x are incompatible with s,
i. e. when the state is S = s, the symbols x ¢ X cannot
be sent. In order to deal with this situation, we extend the
model: Given Py x (y|x), we define Py|x s(y|x, s) such that
for each x,, ¢ X we take one x, € X5 and define:

Pyx s(¥|%xu,8) = Pyjx s(¥|x0,s)  Vye). (6)



The idea behind this approach is the following. For example,
let us assume F' = 4 and the erasure model. When s = 0 only
x = 0000 can be sent. But we can look at it in another way:
when s = 0 only y = 0000 ore the versions of 0000 with
erasures can occur. Hence, we can equivalently say that when
s = 0, any x can be sent, but, in absence of errors, the output
is always 0000. Picking a strategy ¢’ in which t"(s) = x,
is equivalent to picking ¢’ in which ¢'(s) = x,. In short, for
given s, we define Py|x s in order to discourage selection of
symbols x for which x # y in absence of channel errors.

Expressing the capacity in terms of strategies might pose
some conceptual and practical problems when F' is large [18].
On the other hand, our objective is to use the specific way in
which the set of states partitions the possible set of transmitted
symbols X in order to provide insights in the capacity—
achieving communication strategies. Therefore, a different
framework for capacity analysis from will be used. Recall
that 7' is an auxiliary random variable defined over the set
of possible strategies 7. For given 7' = ¢ and each s € S
there is a single representative of t in s x = t(s) € X;. In
the text that follows we use “strategies” and “input symbols”
interchangeably. Hence, 7 consists of the input symbols
{1,2,...]T]}. The set of F' + 1 representatives {x(¢)} for
given t will be called a multisymbol of t.

Due to the randomized state change, each ¢ € 7 induces a
distribution on X. For example, if F' = 2 and the strategy is
defined as ¢(0) = 00,¢(1) = 01,¢(2) = 11, then we can define
Pxyr(x = 00[t) = (1—a)? = Ps(0), Pxjr(x = 11]t) = a® =
Ps(2), PX‘T(X = Ol‘t) = 2(1(1 7(1) = Ps(l), and Px|T(X =
10[t) = 0. In general, Px|r(-) should satisfy that for each
s € S there is a single x € & such that Px|p(x[t) = Ps(s).
The set of such distributions is:

Pxir =
{Px|T(')‘Vt e T,Vse §,x € X, PX\T(X|t) = Ps(s)} @)

In this way, we do not need to explicitly consider state in
the capacity analysis, but instead we model the secondary
communication channel by using a cascade of two channels
T — X — Y and the primary constraints are reflected in the
definition of Px 7. In order to express the mutual information
I(T;Y), we write I(T,X;Y) = I(T;Y) + [(X;Y|T) =
I(X;Y) + I(T;Y|X) Using the Markov property for the
cascade we get I(7T;Y|X) = 0, which implies:

I(TY)=I1(X;Y) - I(X;Y|T) (8)

Let Pz denote the set of all distributions Pr(-). Our objec-
tive is to find the pair of distributions (Pr(-), Pxz(-)) that
maximizes I(7';Y). The capacity of the secondary channel is:

C= max I(T;Y 9
Pr(-),Pxr(-) ( ) &

We will always that Px|r(-) € Px|r always. The expres-
sion (9) can be upper—bounded:

I(X;Y)

C< max

< I(X;Y[T) (10)
Pr(),Pxr(")

— min
Pr (), Px|r ()

Fig. 3. Example choice of the probability distribution Px | with F' = 2
and 7 = {1,2}. The transition probabilities on the channel X — Y are
not marked, but it is assumed that each packet 0 or 1 can become erased €
independently with probability p.

where the equality is achieved if and only if there is a pair of
distributions (Pr(-), Pxr(-)) that simultaneously attains the
max/min in the first/second term, respectively. We will decom-
pose the problem (9) into two sub—problems, maximization of
I(X;Y) and minimization of I(X;Y|T).

Fig. 3 illustrates the cascade of channels where F' = 2
and erasure model for X — Y with J = {0,1,¢} and
goo = ¢q11 = 1 — p, while go¢ = g1 = p. Let us assume
that the primary constraint uses ¢ = i. The two multisym-
bols, corresponding to ¢ = 1 and ¢t = 2 are {00,01,11}
and {00, 10, 11}, respectively. It is seen that uniform Prp(-)
induces uniform Px(-). On the other hand, the capacity of
the vector channel with erasures X — Y is achieved when
Px(-) is uniform. The reader can check that uniform Pp(-)
and the choice of Px/r(-) according to Fig. 3 simultaneously
maximizes I(X;Y) and minimizes I(X;Y|T).

[ V)

A. Maximization of I(X;Y)

Each pair of distributions (Pr(-), Pxr(-)) induces a dis-
tribution Px on X. Let Px denote the set of all possible
distributions Px(-), while P% C Px containing the dis-
tributions Px(-) that can be induced by all possible pairs
(Pr(-), Px;r(+)). Then the following holds (proof omitted):

Proposition 1: The set of distributions P¥ is a subset of
Px.s, where Px ¢ C Px and:

Px,s = {PX(~)| > Px(x) = Ps(s),¥s =0, IF}

XEX
11
The proposition implies maxp,.(.), P,z (-) I(X;Y) <
maxp, (.)epx s L (X;Y). We will first look for the distribution
Px«(-) € Px,s that maximizes I(X;Y). Once Px-(-) is
known, we choose (Pr(:), Pxr(+)) in order to induce the



desired Px-(-). Let us define:

max

1(X;Y)
PxePx,s(+)

Cxy = (12)
which is never larger than the capacity of X —7Y, achieved by
selecting over all Px(-) € Px. For example, if the probability
a # % and there are erasure-type errors, then Cxy <
F(1—p), where F'(1—p) is the capacity of F' erasure channel
uses. This is because uniform distribution Py x(x) = 27
achieves the capacity of the erasure channel, which induces
the necessary condition Y x. Pyx(x) = (¥)27F, but this
is not equal to Ps(s) if a # 1.

In this text we are interested in channels X —Y where each
single channel use x consists of F' uses of a more elementary,
identical channels, leading to the following symmetry: the set
of transition probabilities { Py|x (y|x)} is identical for all x €
X, as they are all permutations of a vector with s 1s and F'—s
0Os. This is valid irrespective of the the type of elementary
channel used for a single primary packet. Such a symmetry is
instrumental for making statements about Cxy .

Lemma 1: The distribution Px(-) € Pax s that achieves
Cxvy is, for all s and each x € X,:
Ps(s)

(2

Having found Px (-) that attains C'xy, it remains to find 7,
Pr(-) and Pxr(-) (i. e. the representatives of each T' = 1)
such that (13) is satisfied. For example, let F' = 4 and |X;| =
1,4,6,4,1 for s = 0,1,2,3,4, respectively Let at first take
|T| = 4m and uniform Pr(t) = 4. Then each x € X;
can be a representative of exactly m different elements of 7T,
such that Px(X = x) = Pg(1) -m - .= = Pg(l)/(éll). In
general, if [7] = () - m and uniform Pr(t), we can choose
x € X, to be a representative of exactly m elements from
T;i. e. Pxjr(x|t) = Ps(s) for m different values ¢ and zero
otherwise. The resulting Px(-) satisfies (13). To satisfy this
condition for all s simultaneously, |7 | should be divisible with
(f ) for all s = 0--- F, leading to the following lemma, stated
without proof (Icm stands for “least common multiplier”):

Lemma 2: The distribution Px(-) that satisfies (13) can be
achieved by choosing uniform Pp(-) over a set with a minimal

cardinality of |7| = lcm ((lg), "), (?))

PX (X) =

(13)

B. Minimization of I(X;Y|T)

The multisymbol M; = {x¢(t), - xr(t)} corresponding
to ¢ has one representative in each x;(¢t) = X5, such that
Px|r(xs(t)[t) = Ps(s) and is zero for the other x. Since

I(X;Y|T = t) depends on the choice of representatives in
M, we will denote it by I(X;Y|M,), such that:

IXY|T) =) I(X; Y| M) (14)

teT
For example, let F = 5 with  M; =
{00000, 00001,00011,00111,01111, 11111} and

Ma =

Assuming a

{00000, 00001,00110, 11100, 10111, 11111}.
binary symmetric channel with

goo = q11 = 0.8,go1 = qi0 = 0.2 it can be seen that
IX;Y|Mi) < I(X;Y|My). For intuitive explanation,
consider two representatives x;, € Xs,, 2 = 1, 2. From (3) the
Hamming weight of x,, is s; and, without loss of generality,
assume s; > sg. For the multisymbol M;, the Hamming
distance between any two representatives is given by:

15)

dH(X31>X52) =582 —S1

and is minimal possible. Informally, any two representatives
from M are as similar to each other as possible since they
represent the same input 7' = 1, which is not the case for M.

The multisymbols satisfying (15) will be termed minimal
multisymbols. Among them, there is one termed basic multi-
symbol MP® with a particular structure: the representative in
X, 1is 00---011---1 starts with F'— s consecutive zeros and s
consecutive ones. It can be shown that any minimal multisym-
bol can be obtained from the basic one via permutation, such
that there are F'! different minimal multisymbols. For example,
let M® = {000,001,011,111} and we apply the permutation

= 321: the components of each x € M?" are permuted
according to 7 to obtain M™ = {000, 100,110,111}. In
general, for a given permutation 7 we define v, (-):

M = ’Vﬂ'(M)

such that each x/, € M’ is obtained from the corresponding
Xs € M by permuting the packets according to = and
the Hamming distance between any two representatives is
preserved dp(Xs,,Xs,) = du (X}, ,X,,) = 52 — 51.

We write the mutual 1nf0rmat10n I(X;Y|M:) =
H(Y|M;) — H(Y|X, M,) and first consider:

(16)

H(Y|X, M) ZPS H(Y[x(t)) (17)
Since each component of x uses identical memoryless chan-
nel, H(Y|x,(t)) depends only on the Hamming weight s, and
not on the arrangement of 0, 1s in x,. This is stated through:

Lemma 3: The conditional entropy for xs € X, having a

Hamming weight of s, is given by:
H(Y|X =x;) = sH(a1) + (F — s)H(qo) = H,

—Z;}:l ¢ijlogy q;j for i = 0,1 and q; is

(18)

where H(q;) =
given by (1).
Using the lemma, (17) can be rewritten as H(Y|X, M;) =
ZSF:O Ps(s)H and is not affected by the actual choice of
M., as long as there is a representative in each Xj.

To gain intuition, we first consider a special type of Ps(-),
in which only two states si,s2 € S occur with non-zero
probability Ps(s;) = A and Pg(s2) = 1 — A, such that
M, = {xs,, Xs, }. Due to the symmetry implied by Lemma 3,
without losing generality, we first pick an arbitrary x5, € Xj,.
Then, how to select x5, € &5, in order to minimize the
H(Y|M;)? Slightly abusing the notation from (15), we use
dg(x) to denote the Hamming weight of x. Recall that
dp(x) = s for x € Xs. Let gyy (X5, , X5, ), Where u, v € {0,1}
denote the number of positions f at which z,,y = u and



Zs,¢ = v. For example, if x,, = 00110, x,, = 11011, then
goo = 0, go1 = 3, g1o = 1, and g;; = 1 (we write gy, for
brevity). Using similar arithmetics as in Lemma 3:

H(Y|T =1t) = gooH (q0) + g11H(q1) + go1 H(Aqo
+(1-N)a1) + g10H ((1-M)qo + Aq1)

The Hamming distance is dp(Xs,,Xs,) = go1 + gi0. The
following lemma formalizes the intuition that H(Y|M;) is
minimized when any two representatives are as similar to each
other as possible.

Lemma 4: When M, consists of only two representatives
Xs, s Xy, H (Y| M) is minimized when the Hamming distance
dp(Xs,,Xs,) = |82 — $1| is minimal possible.

We now consider a general Pg(-). As indicated above,
H(Y|M};) can be written as:

19)
(20)

F
H(Y|M;) = H(uy) @1
f=1

where uy is the probability distribution that corresponds to
the f—th position, defined as:

F

uy = ZPS (1 =24 f)qo0 + s rqi]
s=0

where =, r € {0,1}

(22)

Without losing generality, let us take the first value z4; of

each of the representatives x; to create (F 4 1)—dimensional
vector z;. In a similar way z, is created, such that:

z1 = (o1, 11, TF1) 2 = (zo2,T12, - Tp2) (23)

The probability distribution vectors u;, us can be written as:

u; = (Qoo + Qo1)do + (Qio + Q11)a1
us = (Qoo + Qi0)do + (Qo1 + Q11)a1

where Q. = Zseguv(zl,zg) P, and the sets Gy, (21,22) =
{s|zs,1 = u, 252 = v} for u,v € {0,1}.

Lemma 5: The contribution of the positions 1 and 2 to
H(Y|M,;) is minimal when one of the sets Go1, G19 is empty.

This analysis leads us to the following theorem and corol-
lary:

Theorem 1: When each individual packet in a frame is
sent over an identical channel with binary inputs and general
outputs, the minimal multisymbol minimizes H (Y| M;).

Corollary 1: The following mutual information is constant
for all minimal multisymbols M™:

[(X;Y|IM™) = H(Y|M™) = H(Y[X, M™) = I,

(24)
(25)

(26)

C. Achieving the Capacity of the Secondary Channel

Here we analyze (10) and find 7 and {M,} (i. e. Pr())
and Px|r(-), respectively) that simultaneously maximizes
I(X;Y) according to Lemma 1 and minimizes I(X;Y|T) =
I, according to (26). Recall that uniform 7' with |T] =

(lg), (If), ceey (?)) = L can achieve Cxy. Since there

Iem g
are F! > L multisymbols, then in principle it should be

possible to select L minimal multisymbols in order to have
I(X;Y|T) = I,,, and maximize I(X;Y).

In order to show that it is always possible to select {M,},
with [{M;}| = L and uniform T, we first take an example
with ' = 4. The set of L = 12 multisymbols can be
selected as on Fig. 4(a). Multisymbols can be represented by a
directed graph, see Fig. 4(b). Each node in the graph represents
a particular x € X. An edge exists between x; € X
and X;41 € Asyq if and only if the Hamming distance is
dp(xs,Xs4+1) = 1. The directed edge from x; to X417 exists
if they can both belong to a same minimal multisymbol M.
A multisymbol is represented by a path of length F' that
starts at 00---0 and ends at 11---1. To each edge we can
assign a nonnegative integer, which denotes the number of
multisymbols (paths) that contain that edge. On Fig. 4(b),
each edge that starts from 0000 has a weight 3, each edge
between an element of X; and X, has a weight 1, etc. The
weight of each edge between x; and x4 can be treated as an
outgoing weight for x, and incoming weight for x,;. Using
this framework, we need to prove that, foreachs =0... F—1,
it is possible to match all outgoing weights from X5 to all
incoming weights from X, ;.

Theorem 2: 18 L =1lem ((§), (1), (1)) and the distri

0/):\1 F)

bution over 7 is uniform, then the multisymbols can be chosen
such as to achieve the capacity of the secondary channel.

If F' = 4 it turns out that 4= is always an integer, such
that all the outgoing/incoming weights to the same node are
identical. This is not the case if, e. g., ' =7, then L = 105,

mi 15

my = 15 and =G such that each node from X has 3

outgoing edges of weight 3 and 3 of weight 2.

IV. STRATEGIES FOR TRELLIS CODING

As a reference, we first look at a naive coding strategy,
which ignores the capacity—achieving analysis. We take any
error-correction code of rate R and interleave the output of
this code, e. g. by using a pseudo-random interleaver. The
motivation for using an interleaver is to break the burst bit
errors within one secondary symbol (frame). For example, for
F' = 4 we take 4 of the coded/interleaved bits and look at the
current state of the channel. Then, we pick arbitrarily any of
the possible frames, obtained by permuting the packets, that
has the minimal possible Hamming distance. For example,
let the coded bits are 0101 and let the state be s = 3.
Then the Hamming distance of the “true information” 0101
from 0111, 1101 is 1 (minimal possible), while it is 3 from
1011 or 1110. Hence, when the system needs to send 0101
and s = 3, it chooses randomly between 0111 and 1101.
One trouble with the described naive strategy is that, even
when the channel does not introduce errors, there will be
decoding errors. Additionally, the results will show that the
naive strategy has overall poor error performance.

We propose a coding strategy, inspired by the capacity
results for the secondary communication channel. From the
viewpoint of capacity, the choice of the multisymbols is
irrelevant, as long they are minimal and the distribution of X
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Fig. 4. Selection of the representative sets for F' = 4 that achieve the
capacity. (a) Multisymbols for the 12 inputs (b) Graph representation of the
process for selecting the multisymbols x (t).

fulfills the required condition. However, the choice of the mul-
tisymbols does affect the performance of the error-correcting
code constructed based on the multisymbol framework. Our
aim is to use the multisymbol framework in the construction
of practical coding schemes which are better suited for the
secondary communication channel than the naive approach.
The question to ask is which criterion, e. g. distance metric we
are going to use in the selection of the multisymbols. We adopt
a heuristic approach and take the expected Hamming distance
as the metric of interest for the choice of the L multisymbols.
This distance for two multisymbols ¢; and ¢, is defined:

F
Eay(t1t2) = Y Ps(s)du (ws(tr), z4(t2)),

s=0

27)

where dy is the Hamming distance between the two vectors.
This metric incorporates the state of the channel which can
not be controlled by the secondary system. We can now define
a trellis code. A state contains two outgoing branches, each
of them corresponding to one possible input binary symbol.
Also, each state has two incoming branches. In our case, the
input symbol is binary and the output symbol is one of the
L multisymbols. The trellis is chosen on purpose to have L
branches, such that each multisymbol is used only once. The
question is how we associate multisymbols with the transitions
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(0000, 0001,0011,0111,1111)
(0000, 0001,0101,1101,1111)
(0000, 0001, 1001,1011,1111)
(0000, 0010,0011,0111,1111)
(0000, 0010, 1010,1011,1111)
(0000, 0010, 1010,1110,1111)
( )
( )
( )
( )
( )

0000, 0100,0101,1101, 1111
0000, 0100,0110,0111, 1111
0000, 0100,0110,1110, 1111
10 0000, 1000, 1001, 1011, 1111
11 0000, 1000, 1100, 1101, 1111
12 | (0000, 1000,1100,1110,1111)
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Fig. 5. Selection of the representative sets for F' = 4, Example 1.

in the trellis. We use the known rules from trellis coding:
the output symbols on the branches exiting from the same
state should be maximally separated in terms of the expected
Hamming distance. The same is valid for the output symbols
associated with the two branches that enter the same state.
However, here these rules are only heuristic, as we have not
rigorously related the error performance to the the expected
Hamming distance. To illustrate the code construction, we set
F' = 4, where the minimal cardinality of the uniform auxiliary
variable T'is L = lem{(;), (}),..., (5)} = 12.

There are multiple ways in which the multisymbols can be
chosen. The choice is facilitated by the representation of the
multisymbols as paths in the directed graph, see Fig. 5. In
order to maximize the expected Hamming distance between
multisymbols, the paths corresponding to the multisymbols
should be as diverse as possible. To assure this, we have to
choose the multisymbols such to avoid, as much as possible,
having multisymbols with common edges, as in that case the
expected Hamming distance is 0. The necessary condition to
avoid a common edge between the nodes from Xy and X, 1,
where s < |F/2| —1, is that L/(f) < F —s. In other words,
the edge weight should be at most 1. Since in the general case
it is difficult to control the code distance spectrum, we turn to
the the heuristic of minimal expected Hamming distance as a
simplified indicator of the code performance. However, as we
are going to see in the next section, some of the simulation
results indicate that the minimal expected Hamming distance is
not the only factor which is decisive for the error performance.
In the following we give three representative examples of the
set of multisymbols 7, created for F' = 4.

1) Choice of multisymbols, Example 1: In the first example,
we choose the 12 multisymbols as given in Fig. 5 (a). This
choice is capacity achieving, but we need to investigate its
performance in terms of error rate when used to construct
a channel code. Using the representation from Fig. 4(b), it
is noted that some of the multisymbols have common edges
which can be avoided. This, for example, is the case with
the multisymbols ¢; = {0000,0001,0011,0111,1111} and
t4 = {0000,0010,0011,0111,1111}. The expected Hamming
distance profile for the above choice of the set of multisymbols
reveals that the minimal distance is 0.5.

2) Choice of multisymbols, Example 2: In the second
example, we choose the 12 multisymbols as given in Fig. 6.
We observe that no two multisymbols are identical and



(0}
(0000,0001,0011,0111,1111)
(0000, 0001,0101,1101,1111)
(0000,0001,1001,1011,1111)
(0000,0010,0011,1011,1111)
(0000,0010,0110,0111,1111)
(0000, 0010,1010,1110,1111)
(0000, 0100,0101,0111,1111)
(0000, 0100,0110,1110,1111)
(0000, 0100,1100,1101,1111)
(0000, 1000,1001,1101,1111)
(0000, 1000,1010,1011,1111)
(0000, 1000,1100, 1110, 1111)

(a)

= =] =
2l 2| 5] ©f oof 1| o o s | wo| pof | =

{xs(®)}
{0000, 0001, 0011, 0111, 1111)
(0000, 0001, 0101, 0111, 1111)
(0000, 0001, 1001, 1011, 1111)
(0000, 0010, 0011, 1011, 1111)
(0000, 0010, 0110, 0111, 1111)
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Fig. 6.  Selection of the representative sets for F' = 4 that achieve
the capacity, Example 2. (a) Multisymbols for the 12 inputs with minimal
expected Hamming distance 1. (b) Multisymbols for the 12 inputs with
minimal expected Hamming distance 0.75.

the choice of the multisymbols is capacity achieving. The
multisymbols are constructed by avoiding common edges
as much as possible, except for the edges between Xy =
{0000} and X; = {0001,0010,0100,1000}. For example,
we choose ¢, = {0000,0001,0101,1101,1111} instead of

= {0000, 0001,0101,0111,1111} in order to avoid a com-
mon edge with ¢t; = {0000, 0001,0011,0111,1111} in the last
section of the graph. The minimal expected Hamming distance
for this choice of multisymbols is 1. We expect that this
set will perform better compared to the set of multisymbols
in Example 1, due to the better distance spectrum. This is
confirmed by the simulation results.

Surprisingly, we have been able to find a set of multisym-
bols with minimal expected Hamming distance 0.75 which
performs better than the above set with minimal distance 1,
as presented in the simulation results in the next section. The
set of multisymbols is presented on Fig. 6 b). We suspect that
the reason for this behavior is that the minimal distance itself
is not decisive for the performance, even if the conjecture that
the expected Hamming distance is the relevant metric for the
error-control coding holds. Nevertheless, the performance in
both cases is superior to the naive scheme, which makes the
case for the relevance of the multisymbol framework in the
design of practical error-control schemes.

3) Choice of the multisymbols, Example 3: As a third
example, we choose the 12 multisymbols as shown in Fig. 7

{xs (D)}
(0000, 0001, 0011, 0111, 1111
(0000, 0001, 0011, 0111, 1111
(0000, 0001, 0101, 0111, 1111
(0000, 0010, 0110, 1110, 1111
(0000, 0010, 1010, 1011, 1111
(0000, 0010, 1010, 1011, 1111
(
(
(
(
(

(a)

0000, 0100,0101,1101, 1111
0000, 0100,0110,1110, 1111
0000, 0100, 1100, 1101, 1111
0000, 1000, 1001, 1101, 1111
0000, 1000, 1001, 1101, 1111
(0000, 1000, 1100, 1110, 1111
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Fig. 7. Selection of the representative sets for F' = 4, Example 3.
The selection of the multisymbols yields non-uniform distribution of 7. (a)
Multisymbols for the 12 inputs.

a). We notice that, according to this choice, the multisymbols
t, and t, are identical. Actually, besides t; = t5, we have
also t5 = tg and t19 = t11. We note that this choice does not
violate the conditions for minimal multisymbols and satisfies
the target distribution over X, thus it is capacity achieving.
At the first sight, this result seems counterintuitive and re-
veals the following problem: why we do not lose capacity even
if we are not using the highest possible diversification at the
input (in this case we assign the same multisymbol to two input
symbols £)? We note that the cardinality of the input symbols
is not 12, but 9. However, they are non-uniformly distributed
— for example, 6 have probability 1—12 and 3 have probability
%. Until now, we have constrained ourselves to uniform distri-
bution over the input symbols. However, it can be shown that
if non—uniform distribution is used over 7T, then capacity can
be achieved even with |7| < L = lem ((g), (I;), cee (?))
For this particular instance with ' = 4, it can be shown that
in the above example the capacity can be achieved by a set
T with cardinality |7| = 8. The probability distribution of
the input symbols T is Pp(t) = § for t = 1,2,3,4 and
Pr(t) = 15 fort = 5,6,7,8. In the following we specify
only the nonzero members P, the transition matrix for the
channel 7' — X. Note that the notation is slightly abused,
with e. g. P(0001|T = 1,5) meaning P(0001|7 = 1) or
P(0001|T = 5)): P(0000|T = t) = P(1111|T = t)

L forany t = 1...8; P(0001|T = 1,5) = P(0010|T =
2,6) = P(0100]T = 3,7) = P(1000|T = 4,8) = &
POO11|T = 1) = (0110|T = 2) = P(1100|]T = 3) =
P(1001|T 4) = &, P(0101|T = 5,7) = P(1010|T =
6,8) = <, and P(0111|T = 1,5) = P(1110|T = 2,6) =

P(1101|T = 3,7) = P(1011|T = 4,8) = 1. The general
case of T—X with non—uniform distribution on 7 and minimal
required size | 7| to achieve the capacity is outside of the scope
for this paper and is a topic of ongoing work.

In the following section we present worked-out examples
of trellis codes based on the multisymbol framework.

V. CODE DESIGN AND SIMULATION RESULTS

The coding scheme is a concatenation of an outer error
correcting code, an interleaver and an encoder, as given in
Fig. 8 a). The outer error correcting code is a convolutional
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Fig. 8. Code Design. a) Block diagram of the code. b) Trellis construction
for the set of multisymbols of Example 1. (c) Trellis construction for the set
of multisymbols of Example 2.

code with rate 1/2, thus 2n binary symbols are generated
from n symbols. As already discussed, the inner code is trellis
based, each branch in the trellis is associated with an input
symbol (binary) and output symbol which is one of the L
multisymbols. We associate multisymbols with the transitions
in the trellis such that the output symbols on the branches
exiting from the same state should be maximally separated
in terms of expected Hamming distance. The same is valid
for the output symbols associated with the two branches that
enter the same state. For this evaluation, we assume a binary
erasure channel, but it should be reiterated that the capacity
results presented are valid for a wider class of channels.

The error bursts are broken by an interleaver, implemented
as A\ x 27" matrix, with 2n divisible by A. The trellis based
coding scheme for F' = 4 defines a trellis with 12 branches.
One option is to have 4 states and 3 branches from each
state or a code, which implies that the source information
is in ternary symbols. A more practical option is to have a
trellis with 6 states and 2 branches from each state, such that
one binary symbol is transmitted for each multisymbol. The
trellis design the sets of multisymbols from Example 1 and
Example 2 is given on Fig. 8 (b) and (c), respectively. In both
cases, the multisymbols associated with the transitions in the
trellis are chosen such that the output symbols on the branches
exiting from the same state are maximally separated in terms
of the expected Hamming distance. In both cases the distance
between the incoming/outgoing multisymbols is maximal, 2.5
for all states.

The simulations have been performed with A\ = 8 and the
results are averaged over 10000 iterations. The simulation is
performed for packet lengths N = {2,6,14,30,62}. These
packet lengths are chosen such that NV 4 2 (two tail bits are
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Fig. 9. Performance comparison between the naive coding scheme and the
scheme motivated from the multiuser framework

added by the outer convolutional code) is divisible by A = 8.

First, we compare the performance of the coding scheme
inspired by the multisymbol framework and the naive coding
scheme, which does not account for the specifics of the
secondary channel. The simulation results for the packet
error rate (PER) for different erasure probability are shown
in Fig. 9. This result present a clear evidence that the
information-theoretic analysis carries a practical significance
for the secondary communications channels. We also simulate
the two different choices of the sets of multisymbols, with
minimal expected Hamming distance 0.5 and 1 respectively, as
presented in Section IV. As already commented, although the
choice of the set with minimal distance 1 performs better than
the set with minimal distance 0.5 ( Fig. 10 a)), we were able to
find another set with minimal distance 0.75 which outperforms
both sets (Fig. 10 a)). This result indicates that besides the
minimal expected Hamming distance, there are also other
factors to be considered, notably the distance spectrum and
the choice of the trellis transitions.

VI. DISCUSSION

We used a simplified model, in which the set of packets
sent in a given frame is independent from the other frames. In
practice this is rarely satisfied, since buffering at the primary
scheduler and/or packet retransmission due to errors creates
dependencies between consecutive frames. In such a case,
Shannon’s result is not directly applicable and instead we need
to use a more general model in which the sequence of frame
states is not memoryless (see Section 6 in [18]). Another
aspect is the freedom of in reordering user resources. For
example, if in the case of WIMAX the scheduler puts each user
on a channel where she can achieve a high data rate, then the
freedom to permute users across channels becomes restricted.
It is incorrect to say that protocol coding is not applicable once
such restrictions are put by the primary system, but it should
rather be observed that the secondary capacity is decreased.
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Fig. 10. Performance of the error-correcting coding schemes. (a) Comparison
between two sets with minimal distance 0.5 and 1 respectively. (b) Compar-
ison between two sets with minimal distance 0.75 and 1 respectively.

This reiterates the observation that protocol coding can be used
as a measure of how optimally given primary system operates.

VII. CONCLUSION AND FUTURE WORK

We have introduced a class of communication channels with
protocol coding, i. e. the information is modulated in the
actions taken by the communication protocol of an existing,
primary system. In particular, we have considered strategies in
which protocol coding is done by combinatorial ordering of
the labelled user resources (packets, channels) in the primary
system. Differently from the previous works, our focus here
is not on the steganographic usage of this type of protocol
coding, but on its ability to introduce a new secondary com-
munication channel. The communication model captures the
constraints that the primary system operation puts on protocol
coding i. e. the secondary information can only be sent by
rearranging the set of packets made available by the primary
system. The challenge is that the amount of information that

can be sent in this way is not controllable by the secondary.
We have derived the capacity of the secondary channel under
arbitrary error models and provided practical trellis coding
strategies.

As a future work, it is interesting to consider the case when
the scheduling process in the primary system is generalized
(e. g. buffering). Another direction is to compute the capacity
under error models for channels with deletions/insertions. In
practice, a secondary channel can be defined over virtually
any existing wireless system and therefore it is of interest to
find the coding strategies that are suited to the actual protocol
specification in a certain primary system.
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