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Abstract. For optimization of various electromagnetic devices an optimization method
which efficiently optimizes working parameters, design and shape of the device is
necessary. Recently, for this purpose various deterministic and stochastic searching
methods have been used, among which the genetic algorithm searching procedure
appears to be very promising, especially for multivariable optimization. However, the
genetic algorithms have also several demerits, among them their long computation time
is usually considered as being the most important. In this paper, an improved
optimization procedure based on the genetic algorithm (GA) searching procedure and
the gradient of the constrained condition is proposed. With this method an optimal
solution of a problem is searched by using the gradient of the user-defined constrained
condition after quasi-optimal solution is initially obtained by means of the genetic
algorithm searching procedure. The usefulness of the proposed method is verified by its
application for optimization of a power transformer's tank shield model for which very
good results are obtained.

1. Introduction

Recently, mainly as a result of increasing performances of modern digital computers, vigorous
research has been observed in the fields of direct and inverse optimizations of various
electromagnetic devices. Therefore, some complex and mainly multivariable optimization
problems, which were very difficult for solution with the physically reasonable time frames,
become possible tasks. Additionally, with the emergence and application of the so—called stochastic
searching algorithms, such as the genetic algorithms (GA), immune algorithms (IA) or evolutionary
strategies, optimization of multivariable problems becomes easy for computer handling. However,
although computationally possible, solution of complex and usually multivariable problems is still a
time consuming process. Therefore, decreasing of the computation time and improving the accuracy
of the obtained results are still of paramount importance.

In this paper, we present a new algorithm for improved inverse optimization of electromagnetic
devices. The proposed algorithm is based on stochastic searching using genetic algorithms, and for
the improvement of the accuracy of the results and the computation speed, the gradient function of
the constrained condition is utilized. With the proposed method, first the objective function is
defined and its minimization is performed according to the ordinary genetic searching algorithm [1].
When the speed of the minimization process becomes rather slow, the genetic searching algorithm
is stopped at this quasi-optimal solution. From this point on, the stochastic optimization process is
replaced with the deterministic minimization algorithm using the steepest descent method, which is
based on computation of the gradient function of the constrained condition. Because the
convergence of the steepest decent method strongly depends on its starting point, setting the quasi-
optimal solution obtained from the genetic algorithm searching process as a starting point largely
improves the accuracy of the results and the convergence rate of the entire optimization process [2].

The proposed optimization method was successfully applied for inverse shape optimization of
a power transformer's tank shield in order to decrease the eddy-current loss [3]. First, the proposed
optimization process is discussed in details, followed by the definition of the problem model, its
objective function and the numerically obtained results. Conclusions and some final remarks are
also given. ’
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2. Proposed Optimization Procedure

various problems. Additionally, the GAs work with coded values rather than directly with real
values of the optimization variable, enabling development of a single program that will successfully
deal with various optimization problems. On the other side, the GAs are quite slow procedures
because they converge rather slow, especially in the neighborhood of the global optimum. To aid in
this problem, several improved procedures have already been proposed [1], [4]). Some authors also
proposed to use mixed approaches such as stochastic and deterministic in order to improve the
convergence rate of the optimization process and decrease the computation time [2]. For that
purpose, usually the GAs are linked with some deterministic method such as the Newton or the
quasi-Newton methods. The deterministic methods usually require computation of the gradient
vector of the objective function that can sometimes be difficult or even impossible. Even more, in
some cases, the gradient vector might be constant resulting in slow and not adequately accurate
optimization results.

Step #1: Perform optimization using the ordinary GA searching algorithms. The user can define the
final number of iterations freely. After this optimization process is finished, a quasi-
optimal solution is obtained. Next, set the counter k = 0.

Step #2: Compute the searching vector d® = —1/ Ve (L“‘) ), where L is the vector of the design

variable, and J,,, is the maximum value of the eddy-current that flows inside the
transformer's tank. For finite elements with various values of the searching vector, only
the finite element with the largest negative value is taken into account, and for all other
elements the searching vector becomes equal to zero. Additionally, for elements where the
searching vector does not physically exists, the zero value for the searching vector is used.

Step #3: Compute the length of the improving step t(")z:sld,.(") =-0.02, and find a new

improved optimization value according such as: L**V =® 4 ,® -d®. Remesh the

analysis domain and again perform eddy-current finite element analysis in order to
compute the values of the eddy-currents inside the tank shield.

Step #4: If the computed values for eddy-currents are larger than those desired, than the values
obtained at previous optimization step are used as optimal. Otherwise, change the counter
k =k +1, and continue with Step #2.

3. Optimization Problem

3.1. Analysis Model

A power transformer's tank shield model used for optimization with the proposed optimization
method is presented in Figure 1. It consists of two coils and a tank with constant sizes. The
optimized size of the shields is numerically defined with the distances L,L, L, L, as shown in

the same figure. The optimization goal is to define minimum values for the lengths L,, L, »Ly, L, s0

that the eddy-current density that flows inside the transformer’s tanks is less or equal to 0.4
[A/mm?]. The following objective function that actually corresponds to the volume of the shielded
area is considered:

% (L,+2-L2+2-L3+L4) ) 1)
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Figure 1 Analyzed model of power transformer.
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3.2. Numerical Analysis

For each of the computed intermediate optimization results, a finite element analysis was
performed. The finite element mesh for each model was automatically generated using dynamic
bubble mesh generation system [5]. The analysis was performed using 2D eddy-current finite
element A — @ method:

Vxy Vx A=J, -a(aAat+V¢) , ¥))

where, A is the magnetic vector potential, J, is the source density vector, o and v are the electric
conductivity and the magnetic permeability coefficients and ¢ is the scalar potential.

3.3. Optimization Results

As already mentioned above, in the proposed optimization procedure, first a quasi-optimal solution
is obtained using the ordinary GA. For this part of the optimization process, three cases were
investigated:

Case #1: Constant width of the searching space / =10 [mm], defined by the model.

Case #2: Variable searching space; Starting from initial space / =10 [mm], at 100™ generation, the
searching space is reduced to //2.

Case #3: Variable searching space; Searching space is reduced two times: after 70™ and after 140™
generation, each time to one half of the previous value, i.e. /,//2 and I/4.

As GA parameters, 20 five-bit strings with 10 elite strings, crossover rate of 60 % and mutation
rate of 10 % were used. The obtained results for all three cases after generation of 200 populations
are given in Table I and Figure 2(a). As can be seen, for all three cases the optimization process is
smooth, with better results obtained for Case #2 and Case #3. For all three cases the convergence
speed of the optimization process decreases with its approach towards the optimal solution.

After the initial optimization process using GA is finished, the quasi-optimal solution was used
as an initial solution for next optimization step, performed using steepest descent method with
gradients of the constrained function as described above. Optimal solutions for all three cases are
given in Table II. As can be seen, the final values for each of the four optimization parameters

L,L, L, L, are very similar, however, the number of iterations is different and it is the smallest

for the Case #3 as expected. The final optimal value of the objective function is the same for all
three cases. The convergence of the optimization process based on steepest decent method is given
in Figure 2(b). Convergence rates for all three cases are fast and similar, however, for Case #/ the
number of iterations is much larger because it has the worst initial solution.

Finally, Figure 3 shows the distribution of the magnetic flux lines for a model without shields
and for a model with optimized size of the magnetic shields. It is obvious that for the optimized
model the amount of eddy-currents that flow inside the tank is negligible small.

4. Conclusions

A new optimization procedure based on mixed stochastic and deterministic optimization methods is
presented. As a stochastic method an ordinary GA searching algorithm was employed, and to
improve the accuracy of the optimized results, a deterministic optimization method based on the
steepest descent method using gradients of the constrained function is used. The proposed method
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was successfully utilized for shape optimization of tank shields of a power transformer in order to
decrease the amount of the eddy-currents that flow inside the tank.
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Figure 2 Changes of the objective function, (a) for GA optimization process, (b) for steepest decent

optimization process.

(a) Initial model (no shields) (b) Model with optimized shields
Figure 3 Magnetic flux lines and the eddy-current distribution inside the tank and shields.

Table I GA quasi-optimal solutions Table I Steepest descent optimal results

.Case#1  Case#2  Case#3

Case #1 Case #2 Caso#3
Ly [mmj 4.545 4.621 4.735 Ly [mm] 4.676 4.585 4.640
Lz fmmj 2.121 1.970 1.856 L2 fmm] 1.891 1,949 1.919
La fmmj 0.606 0.455 . 0.455 L3 fram] 0.408 0.408 0.403
Ly Imm - 0303  0.152 0.152 La fmm]

0.027 0.015  0.019
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