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Abstract. A comparison of the efficiency of the multigrid solution method for
magnetostatic field analysis using nested and non-nested finite element meshes is
presented. Two types of multigrid algorithms are investigated; the V-cycle and the W-cycle
multigrid method. For the generation of nested meshes a simple halving procedure is
employed resulting in fine meshes strongly dependent on the initial coarse mesh and with
uniform mesh densities. Non-nested meshes are generated using adaptive meshing with a
suitable error estimator. The results show that both methods provide faster solution than the
ordinary ICCG method. The speed-ups range from 2 to 10 mainly depending on the type of
the cycle and the number of unknowns.

1. Introduction

Decreasing the computation time required for the solution of large algebraic systems such as those
usually arising during numerical solution of boundary value problems becomes a very important task,
especially in 3D. For the solution of such large systems of simultaneous algebraic equations a variety of
numerical methods have already been proposed with various success. In the fields of structure analysis
and computational fluid dynamics, the so-called multigrid solution methods have been widely used,
however, mainly in connection with the finite difference method [1], [2]. However, for electromagnetic
field analysis, due to the complexity of the analyzed domains and inter-material boundary conditions, the
finite element method finds a huge application area. Although computationally efficient and accurate, the
finite element method is very often a time consuming procedure, especially for complex 3D field
problems. At the same time, with the recent tremendous developments in the computer hardware and
software technology, the computers required for large scale electromagnetic analysis and simulation
became available. For such problems, it is very desirable to investigate the efficiency of the multigrid
solution method, not only as a preconditioning method, but also as a full solution method in order to
decrease the overall computing time.

Recently, we implemented and successfully applied several multigrid solution algorithms to
electrostatic and magnetostatic field analysis using nested finite element meshes [3]. However, although
development of nested meshes is a very straightforward procedure that can be easily applied to any finite
element mesh, nested meshes have several disadvantages such as:

¢ Dependence of fine meshes on the initially constructed coarse mesh

¢ Generation of uniformly dense meshes inside the entire analysis domain, and

¢ Generation of unnecessary dense meshes around areas that are not of main interest in the analysis

(mainly areas close to the boundaries) [3].

To overcome these problems, we present a multigrid solution procedure based on so-called non-nested
finite element meshes. First, we briefly describe the difference between nested and non-nested finite
element meshes. Next, we shortly address the main idea that lies behind the high efficiency of the
multigrid method. Two models are treated and the numerical data obtained during analysis are given.

2. Nested and Non-nested Meshes

Multigrid methods, as the name suggests, are methods for the numerical solution of a system of algebraic
equations generated by means of numerical discretization of a physical problem defined by partial
differential equations over several grids or meshes with various mesh densities. In general, these grids
(usually associated with the finite difference method), or meshes (associated with the finite element



320 V. Cingoski et al. / Multigrid Methods for Magnetostatic Field Analysis

method) can be nested or non-nested. Nested meshes are those meshes that have common nodes, i.e. all
nodes of a coarse mesh are at the same time nodes for any finer developed mesh too. The generation of
nested meshes is usually trivial, and can be executed by simple subdivision. A typical example is shown
in Figure 1. Here, each finite element of the coarse mesh (a) is subdivided into four smaller elements for
the finer mesh (b) using midpoints along each side of the triangle. Although easy, it is obvious that thig
procedure generates meshes with low quality of the elements. Additionally, from Figure 1, it is readily
apparent that nested meshes exhibit several other disadvantages, among which, the strong dependency on
the initial coarse mesh is probably the most unpleasant.

On the other hand, non-nested meshes do not require coincidence between nodes of two successive
meshes. These meshes can be constructed without any constraints and they do not depend on the initial
coarse mesh. Consequently, with the development of non-nested meshes, we can ensure the generation of
optimal meshes with graded mesh densities. Even more, non-nested meshes can be generated using any
type of adaptive mesh generation, therefore increasing the accuracy of the results and optimizing the
computational resources. Figure 2 shows two successive non-nested meshes generated adaptively. As
can be seen, non-nested meshes have only few common nodes between two successive meshes. These
meshes have a mesh density in correlation with the problem, i.e. denser meshes are generated around
areas with vigorous changes of the unknown variable, and opposite. The quality of the finite elements for
these meshes is also better than in the case of nested meshes. Each mesh is independent of the previous
one, and only the accuracy of the solution that is implicitly defined with the error estimation is important
for the mesh generation, thus enabling an optimal solution regarding the computation time, resources and
accuracy.

3. Multigrid Methods

Multigrid methods are a set of techniques for solving systems of algebraic equations using several finite
element meshes with different mesh density [1]. They keep the number of iterations almost independent
of the number of unknowns providing the solution of elliptic partial equations discretized on # nodal
points in Of¥) operations, which is much faster than any other rapid iterative method which could go as
far as Of¥] 4y¥)). Of large importance is to acknowledge the main reason why multigrid iterative methods
are so superior over other iterative methods. As described lengthily in [3], the main advantage of the
multigrid method is its property to utilize the smoothing characteristic of some iterative procedures using
several meshes with different mesh density. It is well known that for dense meshes where a large amount
of smooth error components exists, we usually have slow convergence rates. However, if we somehow
project such smooth error components onto another coarser mesh, than they become less smooth and can
be diminished easily. This process is called restriction. Later on, solution improvements have to be
interpolated from the coarser mesh toward the finer mesh, a procedure that is called prolongation.
Multigrid methods extensively use these two procedures alternately to increase the computational speed
and to improve the convergence rate of the iterative solution method. There is a large number of widely
established multigrid algorithms with names set according to the shape of the iterative cycles that each of
them performs and the number of restriction and prolongation steps, such as the V—cycle, the W—cycle,
the F—cycle, etc., [3]. In this paper we will only treat two iterative cycles: the V—cycle and the W- cycle
as the two most commonly used (see Figure 3). A description of the cycles can be found in various
references such as [3] and goes beyond the scope of this paper.

What is important to say is how to obtain the restriction and prolongation operators between coarse
and fine meshes. In the case of nested meshes, these two operators can be easily defined taking into
account that each new node is placed exactly at the centre of an edge, therefore, a simple halving
procedure works fine [3]. However, in the case of non—nested meshes, this procedure is not valid and a
new method for constructing the restriction and prolongation operators (matrices) must be found. In our
research, we obtained very good results utilizing the ordinary area coordinates method. The main idea is
given in Figure 4. Unknown values at each node of a coarse and of a fine mesh are computed using linear
interpolation from the values at finite element vertices, very similar with the ordinary finite element
approximation. Therefore, for the restriction operator we use a simple injection method:
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where, 4 is the area coordinate values, while r and e are the residual and error (defect) vector at the
vertices 1, 2 and 3 and at the node I, respectively (see Figure 4).

4. Analyzed Model and Obtained Results

To investigate the efficiency of the multigrid solution method for magnetostatic field analysis, a simple
model of a C-type electromagnet was investigated. Two sets of meshes were developed: a set of nested
meshes as shown in Figure 1, and a non-nested adaptively generated set of meshes shown in Figure 2. For
adaptive mesh generation we used the well-established Bank-Weiser error estimator [4]. From the
generated meshes it is visible that, the error estimator correctly represents the amount of the generated
computational error — the error is lerger around singular points of the model. Relevant data for both sets
of meshes are given in Table I. As can be seen, we intentionally developed two sets of meshes with
approximately the same number of nodes and elements in order to correctly evaluate the influence of the
type of meshes, nested or non—nested.

Figure 5 shows the comparison of the obtained convergence rates for both nested and non-nested
meshes using the V—cycle and the W-cycle multigrid method. Two things are visible: (1) the W-cycle
always converges faster than the V—cycle, and (2) the mesh type (nested or non — nested) has large
influence on the convergence rates for the V—cycle, and almost no influence for the W—cycle. The
computation time is given in Figure 6 in comparison with the computation time for the ICCG solution
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method (for the densest mesh in Table | only). From Figure 6, one can easily see that although for nested

ost the same, in the case of non—
is also visible that both multigrid

Table I. Mesh data for the analyzed model

Nested Meshes Non — nested Meshes
Mesh Level Nodes Elements Mesh Level Nodes Elements
1 30 44 1 30 44
2 106 180 2 103 176
3 391 720 3 381 704
4 1501 2880 4 1465 2814
5 5881 11520 5 5745 11264
LE+00 ppm BV- cycle
1LEOL B W- cycle 444
LE62 T OICCG Method
% LE4 non-nested ‘E 282
x LE nested \ nested \ 2
s non-nested \ \ \ 6 121 1,15
1,E-06 A3 A2 ")
W - cycle
1,E07
0 s 10 15 20 2 Nested mesh Non-Nested mesh
Number of cycles

Figure 5. Convergence rates. Figure 6. Computation time.

5. Conclusions

th adaptive mesh generation and multigrid solution
algorithms. Additional research and comparison between results presented here and similar ones using

so—called full multigrid method could be very interesting for a wide range of researchers in this area.
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