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Figure 2. Convergence characteristic of Unax for the optimization of uniform field by SDM and CGM.
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Abstract -- Genetic Algorithms (GAs) work with coded information rather
than directly with the physical values of the optimized variables, therefore,
they are very robust and easy applicable as searching and optimization tools.
The coding method, however, is usually not general and mainly depends of
the analysis problem. In this paper, we show that the coding method has
additionally large influence on the computation speed and the accuracy of
the obtained results. We present a comparison between Gray coded and
binary coded GAs for inverse shape optimization of a rotating machine pole
face. We show that the Gray coded GA is better suited for inverse
optimization and could provide more accurate results for shorter
computation time.

1. Introduction

For optimal performance of electromagnetic devices, it is necessary to perform design
optimization of the shape and parameters of their magnetic circuit, size and positions of the
current windings, magnetic properties of the used magnetic materials, etc. The traditional
optimization methods based on try-and-error procedures are not very suitable, especially for
highly complex and multivariable optimization problems because they are very laborious,
time consuming and not enough accurate. Therefore, the development of a new and more
efficient methods for inverse optimization and automation of the entire optimization process
are always desired. In general, the optimization methods can be divided into two large
categories: the gradient-based (deterministic) searching methods and nongradient-based
(stochastic) searching methods. While the former ones need computation of the gradient
function of the objective function, the later ones work directly with the values of the objective
function, and are more convenient in cases where it is very difficult or even impossible to
compute exactly the gradient of the objective function.

In electromagnetic device optimization, the problem of obtaining such a device which will
result with desired values of the magnetic flux density vector and its direction at several
specific points, is a very common problem. However, since the exact expression of the
magnetic properties and the dependences of the magnetic field distribution on the geometry
and the shape of a device are mathematically unknown, the computation of the gradient
function is impossible, therefore, usage of the deterministic optimization methods is excluded.
Consequently, for such optimization problems, designers usually utilize stochastic methods,
among which the Genetic Algorithms (GAs), recently, attract wide popularity. Various
searching techniques based on the GAs has already been applied for inverse shape
optimization of electromagnetic devices, mainly due to their ability to avoid trapping into
local optimum of the objective function [1] [2]. GAs work with coded information rather than
directly with the optimized functions, therefore, they can be adjusted to particular problem
easily. However, since they search for the solution in the multidimensional space, they are
usually very computationally expensive. Consequently, it is necessary to apply additional
techniques to reduce the computation time and to increase the effectiveness of the searching
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- process. One of these techniques is to use better coding methods, to provide fast computétion

and high accuracy.

To express real value of the optimization variable for GA, such as position coordinates, it
is necessary to use a coding technique. Due to its simple appearance, the binary coding is the
most attractive; that is each real value is represented into an unique string of 0 and 1.
However, as we can see later in this paper, the coding can be done in different ways, and the
results will be always different. In this paper, we present our investigation about the
differences in the efficiency that the GA searching procedure exhibits in case of two different
coding techniques: the ordinary binary coding and the Gray coding. We show that the Gray
Code is superior and should be preferable as a coding technique in connection with GA
searching procedure. Additionally, we discuss some problems that occurs with binary coding,
the most important being the bias in the searching direction which occurs as a result of the
different number of bit swaps for the same distance between genes. The comparison is
performed using a model of rotating machine pole face, which is optimized in order to satisfy
the user's prescribed objective function.

2. Optimization using GA searching technique

To develop our idea, first, let us briefly describe a method for inverse shape optimization
based on the GA searching technique employed in our approach. First, we have to define the
searching space, and established several control points along the outline of the device which
shape optimization is desired as shown in Fig. 1. We can see that in this simple example, we
have to define an optimal shape of the iron core, and for that purpose, we set a set of four
control points. Each point can move freely inside the searching space width (see Figs.1 and
2), according to the GA operations such as reproduction, crossover and mutation, and
according to the values of the objective function which also must be defined by the user
before the optimization process is executed. Because we have a discrete number of control
points (four), the shape of the device between these four points will be undefined. In order to
overcome this problem and to obtain shape of the device with highly smooth surface, we use a
spline approximation for the shape between control points [3].

2.1. Definition of search spaces and gene settings

The most important task is to set appropriately the width of the searching space for each
control point. If this space is set too narrow, the possibility that the optimal solution is
excluded from the searching area is high. On the other side, if the searching space is set too
wide, then the optimization process goes slowly and the large computation time is necessary.

Air : e Air
Coil Searching space width

Iron core

Shupe optim ization space

Figure 1: Initial position
of GA points.

Figure 2: Position of GA
points during searching.

Figure 3: P-type for GA
control point.

Additionally, since we use a coded representation of the searching space, we always obtain
only a discrete solution, not continuous one, therefore, if the searching space is wide and the
number of bits too small, the optimization process will be trapped somewhere on the way
towards optimal solution. Figure 3 shows one example, where the entire searching space is
coded using 3-bit genes, which as can be seen results in 2*> = 8 possible solutions, and the
distance between to adjoin solutions is AL. Each solution (position of the GA control point
along the searching space), is represented by its phenotype (P-type). For each control point
there are 2 number of solutions, where M is the number of bits (length of the gene). In our
simple example shown in Fig. 3 the current P-type of the GA for this particular control point
is4.

3. Gray Coding vs. Binary Coding

GAs work with coded information represented into a compact form such as chromosomes
and/or genes. It is very advantageous to use binary representation with only two bits
information data O and 1. Therefore, most of the coding method for GA searching is usually
done using binary coding and decoding techniques. Table 1 shows the binary coding where
each decimal number is encoded into a binary number, which is very easy computer task. For
example, as shown on the left side of Fig. 4, decimal numbers 7 and 8 can be easily encoded
into binary numbers B(7)=0111 and B(8)=1000 using binary coding technique [3]. However,
if we want to move from P-type 7 into P-type 8 one must necessary change all four bits in
order to come from B(7)=0111 to B(8)=1000. In order words, during GA optimization we
need four separate GA operations to move from solution 7 to solution 8, which is time
consuming. On the other hand, if we want to move from solution B(0)=0000 to solution
B(1)=0001 we need only one GA swapping operation. Therefore, we may conclude that using
ordinary binary coding some searching directions are preferred to the others, i.e. we have bias.
It will be ideal, if we could move from one to another neighboring solution with only one
swap. Fortunately, the Gray Code provides exactly that; generation of P-type with the same
swap distance of only one. The Gray coding can be executed by encoding the binary codes
into the Gray codes using the logical circuits shown in Fig. 4. This binary transformation
function G(B(Z)) encodes any binary code into another code with better GA properties than the
original one [4]:

Gy=B, G,=B,®B;, G, =B,®B, G,=B,®B, ’ (€Y
B,=G, B,=B;®G, B, =B,®G, B,=B,®G, . ?2)

encoding

decoding

This transformation function G(B(i)) encodes and decodes any integer number of i (0 < i
< 2M.1), where M is integer number (M = 0). This Gray code, has this very good property:
codes for two adjacent values of the coding variable i and i+1 always differ in exactly one bit
information, e.g. G(B(7)) = 0100 and G(B(8)) = 1100 (see the right side of Fig. 5). As can be
seen, this is very important for GA searching technique, where instead of exchanging four bits
to reach from 7 to 8 for binary coding, using the Gray coding we need only one bit exchange.
This property, as can be seen later, has large influence on the computation time and the
accuracy of the obtained results.

4. Definition of the Analysis Model and the Objective Function

A model of a rotating machine pole face, which was used for inverse shape optimization
using GA and the Finite Element Method (FEM) is given in Fig. 6. Fig. 7 shows the enlarged
view of the pole face that was optimized. Five control points along the pole face P; - Ps were
established. They define the shape of the pole and during the optimization process these



Table 1: P-type encoded into the binary

B, G, code and the Gray code.
. G, . P-Type |Binary code| Gray code
B(" 3, ¢ B0 0| 0000 | 0000
, . 1| 0001_[ o001
! 2 0010 0011
(a) Gray Code Encoder 3 0011 0010
4 0100 0110
G,0 0 B, 5 0101 0111
. 5, 6| 0110 | 0101
G(B(i) B(i) 1 0111 0100
oo, B 8 | 1000 | 1100
G, B, 9 1001 1101
(b) Gray Code Decoder 10 1010 1111
: 11 1011 1110
. . ; 12 1100 1010
F 4: Gr. de coding.
ST 13| 1101 | 1011
14 1110 1001
15 1111 1000
B(7) G(B(7))
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Bits change - Bitchanges
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Figure 5: P-type binary and Gray code changes.

points could move only in the vertical direction as shown in Fig. 7. The optimization goal was
to obtained a kind of pole face shape which will result in the desired sinusoidal distribution of
the magnetic flux density By, at several observation points along the line A-B also shown in
Fig. 7. The objective function was defined as the minimum error between the desired
magnetic flux density values By and their computed values B at each observation point:

1 ",B., -B’
Obj = — O S 3
D) B, 3

where N=17 was the total number of observation points along line A-B as shown in Figs. 6,
and 7.
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Figure 6: Analysis model of Figure 7: Enlarged view of pole face area, control
a pole face. points and searching space.

5. Optimization Results

“Figure 8 shows the changes of the objective function as the optimization process evolves
for binary and Gray coding GAs, separately. Two conclusions are readily visible:

1. The Gray coded GA exhibits accelerated convergence rate of the objective function
over the ordinary binary coded GA;
2. Using Gray coding the accuracy of the results strongly improves.

From Fig. 8, one can easily see that the accuracy of the results achieved after 600 generations
of a binary coded GA can be achieved only after 80 generations of a Gray coded GA.
Additionally, the accuracy achieved after 600 Gray coded GA generation is almost four times
better than that of the binary coded GA. Figure 9 shows the comparison between desired and
obtained magnetic flux density distribution along observation points, for initial and final pole
shapes. As can be seen the final shape of a pole face provides almost exact magnetic field
distribution with the desired one. The initial and the optimal pole shapes together with the
obtained magnetic flux lines are presented in Figs. 10 and 11, respectively. As a result of
using spline surface approximation, the generated surface defined by such a small number of
control points (five) is very smooth.

6. Conclusion

A comparison between the binary coded and the Gray coded GAs for inverse shape
optimization of electromagnetic devices is presented. For computation of the fitness of the
solution we used the 2D finite element electromagnetic field analysis. It was shown that the
Gray coded GA are better suited for inverse shape optimization and that they are superior than
the ordinary binary coded GA, mainly because they do not bias the searching direction. The
Gray coded GA provided faster convergence, and better accuracy than the binary coded GA.
The comparison was performed using a model of a rotating machine pole face optimized to
provide almost sinusoidal magnetic flux density distribution in the air-gap region.
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Figure 8: Average inverse values of the
objective function using Gray coded
and binary coded GAs, respectively.

Figure 9: Comparison between desired
and computed magnetic flux density
distributions.
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Figure 11: Final shape of pole face and
magnetic flux line distribution.

Figure 10: Initial shape of pole face and
magnetic flux line distribution.
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Neural Networks for Inverse Electromagnetic Problems
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Abstract. An inverse multilayered artificial neural network (ANN) has been
proposed to solve inverse problem of field source searching in inaccessible
region by local field data. The ANN has been trained using magnetic field
data obtained from numerical simulation of the forward problem. The
location and magnitude of current sources in target distribution pattern are
controlled since the results obtained depend on the initial state. The
application of the proposed method for inverse problem of source
distribution is presented. The effectiveness of proposed method is proved by
computational simulation.

1. Introduction

Identification of electromagnetic activity within a closed system to which the
instrumentation has.no access is of great importance when dealing with inverse problems of
electromagnetics (optimal field synthesis, optimal device design, identification problems,
etc.). Determining the current source distribution in order to obtain prescribed external or
internal magnetic field densities is of main interest considering nondestructive testing (NDT)
or electromagnetic compatibility (EMC) problems. The current source distribution in
conducting media is one of the most important properties that determines the quality and
performance of the electromagnetic devices (transformers, reactors, inductors, converters, AC
transmission lines etc.). Reconstruction of current source distribution in the human body from
the measured magnetic field distribution is basically used for medical diagnosis and therapy.
In either problem, as much as in many others from other branches of engineering, the exterior
field activity that we can measure must be used to identify the interior system. There is
significant number of publications in this field [1-4].

Many electromagnetic devices are designed with respect to the spatial distribution of the
magnetic field as well as the electric field. Designing of a device as well as determine its
location in order to obtain prescribed external magnetic and electric fields is a main inverse
problem.

In this paper an inverse multilayered artificial neural network (ANN) has been proposed to
solve inverse problem of source searching in inaccessible region by given field data. The
ANN has been trained using magnetic field data obtained from numerical simulation of the
forward problem. An inverse source problem is transformed into a discrete problem through
the division of the entire target region into disks with constant current density. A uniform
pattern is applied to the input units in the first step, whose activation level depends upon the
variable input pattern. This pattern is propagated through the net and generates the initial
output. The difference between this output vector and the target output vector is propagated
backwards through the net as error signals. When the error signals reach the input layer, they
represent a gradient in input space, which gives the direction for the gradient decent. This
procedure is repeated with the new input vector until the distance between the generated
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