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ROOFAbstract

It is shown that the common response spectrum method for synchronous ground motion can be extended to make it applicable for

earthquake response analyses of extended structures experiencing differential out-of-plane ground motion. A relative displacement

spectrum for design of first-story columns SDC (T, TT, z, zT, t, d) is defined. In addition to the natural period of the out-of-plane

response, T, and the corresponding fraction of critical damping, z, this spectrum also depends on the fundamental period of torsional

vibrations, TT, and the corresponding fraction of critical damping, zT, on the ‘‘travel time,’’ t (of the waves in the soil over a distance of

about one-half the length of the structure), and on a dimensionless factor d, describing the relative response of the first floor. The new

spectrum, SDC, can be estimated by using the empirical scaling equations for relative displacement spectra, SD, and for peak ground

velocity, vmax. For recorded strong-motion acceleration, and for symmetric buildings, the new spectrum can be computed from

Duhamel’s integrals of two uncoupled equations for dynamics equilibrium describing translation and rotation of a two-degree-of-

freedom system. This representation is accurate when the energy of the strong-motion is carried by waves in the ground the wavelengths

of which are one order of magnitude or more longer than the characteristic length of the structure.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Differential ground motion; Response spectra
 T

59

61

63

65

67

69

71

73
UNCORREC1. Introduction

Common use of the response spectrum method implicitly
assumes that all points of building foundations move
synchronously and with the same amplitudes. This, in
effect, implies that the wave propagation in the soil is
neglected. Unless the structure is long (e.g., a bridge with
long spans, a dam, a tunnel) or ‘‘stiff’’ relative to the
underlying soil, these simplifications are justified and can
lead to a selection of approximate design forces, if the
effects of soil-foundation interaction in the presence of
differential ground motions can be neglected [1]. Simple
analyses of two-dimensional models of long buildings
suggest that when a=lo10�4, where a is wave amplitude
and l is the corresponding wavelength, the wave propaga-
tion effects on the response of simple structures can be
neglected [2].
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Figs. 1a and b illustrate the ‘‘short’’ waves propagating
along the longitudinal axis of a building or a multiple-span
bridge. For simplicity, the incident wave motion has been
separated into out-of-plane (OP) motion (Fig. 1a),
consisting of SH and Love waves, and in-plane (IP)
motion (Fig. 1b) consisting of P, SV, and Rayleigh waves.
The IP motion can further be separated into horizontal
(longitudinal), vertical, and rocking components, while OP
motion consists of horizontal motion in the transverse
direction and torsion along the vertical axis. Trifunac and
Todorovska [3] analyzed the effects of the horizontal IP
components of differential motion for buildings with
models that are analogous to the sketch in Fig. 1b, and
they showed how the response spectrum method could be
modified to include the first-order effects of differential
motion. In the following, we will refer to their paper as
Paper I. The purpose of this paper (Paper II) is to show
how the response spectrum method can be extended to the
case of OP excitation, and when the maximum relative
response of a two-degree-of-freedom system can be
79
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Fig. 1. (a) A structure excited by passage of a SH or a Love wave. (b) A structure excited by passage of a Rayleigh wave.
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approximated by an equivalent spectrum for a single-
degree-of-freedom system response (Fig. 1a).

The concept of modifying response spectra to account
for spatial variation of strong ground motion has been
addressed in previous studies by describing those variations
via a suitable coherency function (e.g. [4]). Other studies
which also used coherency function, modeled incoherence
of ground motion and propagation effects, but not the
frequency dependent wave speeds, and thus no conse-
quences of wave dispersion. These coherency-based for-
mulations appear simple and direct, but are far less general
than the formulations based on the physical nature of wave
propagation, especially in the analyses of response to
strong pulses in the near field of earthquake ground
motion. A stochastic approach can lead to correct results
only when the physical assumptions it is based on are
correct and complete.
In this paper we present a deterministic formulation for

the OP response of a two-degree-of-freedom model. We
formulate a system of two differential equations, to
describe translation and torsion, for the most general
ground motion. To show how this solution can be
simplified for excitation by long ground waves, we
approximate ground torsion in terms of horizontal OP
motions, caused by body SH and surface Love waves.
Finally, by using a two-dimensional model and finite
differences, we compute response to a propagating pulse of
ground displacement, and show how to modify the spectra
of translational motions, into a spectrum, which approx-
imates the total (translational and torsional) response. We
show that this approximation is valid for strong motion
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Fig. 2. Simplified two-degree-of-freedom model of a one-story structure in

Fig. 1a.
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pulses associated with waves an order of magnitude longer
than the structure.

2. The model

The motion of individual column foundations will
depend upon the foundation system; the relative stiffness
of the soil, connecting beams, and slabs; and the stiffness of
the structure supported by the foundation. In general, this
motion will have six degrees of freedom (three translations
and three rotations) and will depend upon the nature of
incident (body and surface) waves and the direction of this
incidence. For propagation along the longitudinal axis of
the building, SH and Love waves will excite the OP motion
and torsion, while the body P, SV, and surface Rayleigh
waves will cause IP horizontal, vertical, and rocking
motions. Trifunac and Todorovska [3] have studied
horizontal differential motions of column foundations for
IP excitation (Fig. 1b) and for long wavelengths of incident
waves for which lbL. In this paper, the approach will be
generalized by considering the OP excitation and response
only (Fig. 1a). We will analyze the response using a
vibrations approach in which lbL, and we will consider
only briefly the wave propagation approach, in which l is
comparable to and smaller than L. For the general
direction of wave incidence, in layered half space, and for
linear waves and response, the incident wave motions and
the structural response can be decomposed into their IP
and OP components, and the total response can be
computed by superposition.

As in Paper I, we will neglect the rocking of ground
motion in the excitation of individual columns and of the
entire foundation system. This rocking excitation may be
important for the general azimuth of wave incidence. For
OP response, it will vanish only in the special case,
considered in this paper, when the wave incidence is along
the longitudinal axis of the structure. We will leave
analyses of the effects of these rocking excitations for a
future study.

2.1. OP response of one-story structure when lbL

The model we consider is shown in Fig. 2. It represents a
one-story structure with mass m, supported by n columns
(see also Fig. 1a), with stiffness ki ¼ 1, 2,y, n. We consider
only the OP component of ground motion, ui(t), and of the
rigid mass, ur(t) and y(t). The absolute displacements of the
tops of the columns are u0ðtÞ þ urðtÞ þ xiy, while the
absolute displacements of the bases of the columns are ui.

We write dynamic equations of equilibrium with respect
to a point R (on the ground), which we use as a reference.
The OP direction gives

mð €u0 þ €ur � e€yÞ þ c _ur þ
Xn

i¼1

ki½ur þ u0 þ xiy� ui� ¼ 0, (1)

while the equilibrium of moments about A gives:
D P
ROOFJA

€y�með €ur þ €u0 � e€yÞ þ cy _y

þ
Xn

i¼1

kixi½ur þ u0 þ xiy� ui� ¼ 0, ð2Þ

where JA is the moment of inertia of the rigid mass with
respect to point A, at distance e from its center of gravity
(CG in Fig. 2).
Following the method of Trifunac and Todorovska [3],

we choose u0, relative to the reference point R, so that

Xn

i¼1

kiðu0 � uiÞ ¼ 0,

or

u0 ¼
Xn

i¼1

kiui

,Xn

i¼1

ki. (3)

It is seen that this definition of u0 represents ‘‘average’’
motion of the ground, averaged over length L (Fig. 2), with
respect to the weighting factors ki. With u0 defined by Eq.
(3), Eqs. (1) and (2) become

m €ur þ cr _ur þ ur

Xn

i¼1

ki ¼ �mð €u0 � e€yÞ � y
Xn

i¼1

kixi (10)

and

JA
€yþ cy _yþ y

Xn

i¼1

kix
2
i ¼ með €ur þ €u0 � e€yÞ � ur

Xn

i¼1

kixi

�
Xn

i¼1

kixiðu0 � uiÞ; ð20Þ

where we have assumed that two ‘‘dampers’’ (with
constants cr and cy) are ‘‘connected’’ between the rigid
slab and point R on the ground.
As in Paper I, when distances xi are small relative to the

dominant wavelengths of ground motion (|x1|, |x2|, |x3|,y
|xn|5lh, where lh is the apparent wavelength along x-axis),
ui can be approximated by three leading terms in its Taylor
series expansion:
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uiðtÞ�u0ðtÞ þ
qu

qx
xi þ

1

2

q2u

qx2
x2

i : (3*)

This gives

u0ðtÞ � uiðtÞ� �
qu

qx
xi �

1

2

q2u

qx2
x2

i . (4)

We recall that qu/qx is the horizontal shear strain in the
soil [5]. It also corresponds to the average rotation, f
(torsion), about the vertical axis between two points
separated by distance xi. The term q2u=qx2 represents
curvature [6], but it can also be approximated by absolute
acceleration, normalized by the shear-wave velocity in the
soil, aðtÞ=b2 [3].

Defining

ti �
sxi

bav
, (5)

where bav is the average shear-wave velocity in the top 30m
of soil and s is an empirical scaling factor that is of order of
one [3], Eq. (4) can be written as

u0ðtÞ � uiðtÞ�vðtÞti �
1

2
aðtÞt2i , (40)

where v(t) and a(t) are the velocity and acceleration of
point R (Fig. 2).

The last term on the right-hand side of Eq. (20) is then

Xn

i¼1

kiðu0 � uiÞxi�
Xn

i¼1

ki vðtÞti �
1

2
aðtÞt2i

� �
xi

¼
vðtÞs

bav

Xn

i¼1

kix
2
i �

aðtÞs2

2b2av

Xn

i¼1

kix
3
i . ð6Þ

Dividing Eq. (10) by m and Eq. (20) by JA, and defining

o2 ¼
Xn

i¼1

ki=m (7)

and

o2
T ¼

Xn

i¼1

kix
2
i =JA. (8)

Eq. (10) and (20) become

€ur þ 2oB _ur þ o2ur ¼ �ð €u0 � e€yÞ �
y
m

Xn

i¼1

kixi, (100)

€yþ 2oTBT _yþ o2
Ty ¼

me

JA

ð €ur þ €u0 � e€yÞ �
ur

JA

Xn

i¼1

kixi

� o2
T

vðtÞs

bav
�

aðtÞs2

rb2av
x

 !
, ð200Þ

where

z � 2c=ccr, (9)

zT � cT=cT;cr, (10)
ED P
ROOF

ccr � 2 m
Xn

i¼1

ki

 !1=2

, (11)

cT;cr ¼ 2 JA

Xn

i¼1

kix
2
i

 !1=2

(12)

and

x �
Xn

i¼1

kix
3
i

,Xn

i¼1

kix
2
i . (13)

For a symmetric structure e ¼ 0, JA ¼ J (moment of
inertia of the rigid mass with respect to CG), x ¼ 0 andPn

i¼1kixi ¼ 0, and Eq. (100) and Eq. (200) simplify to

€ur þ 2oz _ur þ o2ur ¼ � €u0, (1000)

€yþ 2oTzT _yþ o2
Ty ¼ þo

2
Tf0, (2000)

where

f0ðtÞ�
�vðtÞs

bav
. (14)

In Eq. (14), s is analogous to A, which is discussed in
Paper I for IP motion and serves to approximate the
‘‘equivalent’’ overall phase velocity ceqiv via ceqivEbav/s.

The idea here is that the complexity of the analysis can be
reduced if some equivalent phase velocity ceqiv. can be used
in place of all surface-wave modes and all body waves
propagating along the supports of the structure. We
assume it is possible to define ceqiv. and then choose
s ¼ bav/ceqiv because it is convenient to relate ceqiv. to the
average velocity of shear waves in the top 30m, bav, which
can be determined from site investigations. For incident SH
waves, ceqiv. will depend upon bav and upon the incident
angle g between the incident ray and the vertical (ceqiv.�bav/
sin g). For soft surface soil/sediments and incident body
waves, g-0, and thus ceqiv. may be in the range say from 1
to 6 km/s. The contribution of surface waves will dominate
at larger epicentral distances and for shallow faulting [7–9].
It can be seen from this that further research is required to
develop a robust empirical scaling equation for s.
The shear forces Vi (i ¼ 1,2 ,y, n) in the columns of the

one-story structure (Fig. 2) are

Vi ¼ ki½u0ðtÞ þ urðtÞ þ yðtÞxi � uiðtÞ�, (15)

and since uiðtÞ ¼ u0ðtÞ � vðtÞti þ
1
2

aðtÞt2i

V i ¼ ki½urðtÞ þ yðtÞxi þ vðtÞti �
1

2
aðtÞt2i �, (150)

where v(t) and a(t) are the ground velocity and ground
acceleration for reference point R, vðtÞ ¼ qu0ðtÞ=qt and
aðtÞ ¼ q2u0ðtÞ=qt2.
To design the columns for maximum shear, the

maximum relative displacement of the columns has to be
estimated. For this purpose, we define a five-parameter
relative displacement spectrum for columns SDC (T, TT, z,
zT, t) by
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 layer    thickness β         α       density

km           km/s   km/s   gm/cc

1         0.18         0.98    1.70    1.28
2         0.55         1.13    1.96    1.36
3         0.98         1.57    2.71    1.59

4         1.19         2.17    3.76    1.91

5         2.68         2.71     4.69    2.19

6         infinite      3.70     6.40    2.71

6
cmax

α

β
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SDCðT ;TT; z; zT; tÞ � max
8t

urðtÞ þ yðtÞxi þ vðtÞt�
1

2
aðtÞt2

� �
, ð16Þ

where T ¼ 2p=o, TT ¼ 2p=oT and z and zT are given by
Eqs. (9) and (10), respectively.

The maxima of Vi(t), ur(t), y(t), f0(t), v(t) and a(t), in
general all occur at different times. Assuming that
ymaxxi�vmax ti, neglecting the contribution of a(t), and
using square root of the sum of squares approximation, it
follows that

SDCðT ;TT; z; zT; tÞ � fu
2
rmax
þ 2ðvmaxtÞ

2
g1=2 (17)

and

V imax
� kiSDCðT ;TT; z; zT; tÞ. (18)

3. Torsional strong ground motion

The rotation of the ground surface about vertical axis z

associated with motions ux and uy in the x- and y-directions
(Fig. 3) is equal to

f ¼
quy

qx
�

qux

qy
. (19)

In this paper, we assume the presence of SH and Love
waves only, propagating in the x direction (so that ux ¼ 0),
and we express the rotation f by [10]

f ¼
quy

qx
. (20)

For harmonic-wave motion, uy ¼ Aeioðt�ðx=cxÞÞ, and f ¼
�Aðo=cxÞe

ioðt�x=cxÞ and for velocity vy ¼ quy=qt ¼

Aoeioðt�ðx=cxÞÞ this gives f ¼ �vy=cx. For strong earthquake
ground motion, which is a superposition of many harmonic
waves with different phase velocities, we assume that the
rotation f(t) in Eq. (20) can be approximated by f0(t),

f0ðtÞ ¼ �vyðtÞ=ceqiv:, (21)

where ceqiv is some ‘‘average’’ or ‘‘representative’’ phase
UNCOy

x

uy

ux

Fig. 3. Coordinates x and y and displacements ux and uy.
ROOF

velocity, cminoceqiv.ocmax, and cmin and cmax are the
minimum and maximum phase velocities at a site with
parallel layers (Fig. 4). Throughout this paper, in order to
simplify notation we will drop the subscript ‘‘y’’ and use u

in place of uy and v in place of vy.
Approximation in terms of Eq. (21) cannot be verified by

comparison with recorded data because strong-motion
torsional accelerograms €fðtÞ and velocities _fðtÞ have not
been recorded thus far [12]. However, for a layered half
space and linear wave propagation, this approximation can
be tested by comparison with synthetically computed oz

and v(t), where oz ¼ ð1=2Þððquy=qxÞ � ðqux=qyÞÞ ¼ 1
2f

[11,13,14]. We illustrate this by considering artificial
translational ðq2u=qt2Þ and torsional ðq2oz=qt2Þ accelero-
grams, computed for a hypothetical earthquake, with
magnitude M ¼ 6.5, at epicentral distance R ¼ 10 km,
and for horizontal u(t) and torsional fðtÞ ¼ 2ozðtÞ motions
evaluated for a layered half space model at the El Centro,
California, site (Fig. 4 in [11]). This comparison is shown in
Fig. 5, where v(t) and fðtÞ ¼ 2ozðtÞ are computed by a
synthesis of surface and body waves. It is seen from this
example that Eq. (21) can represent a reasonable approx-
imation, provided a suitable phase velocity ceqiv. can be
chosen.
The scales chosen in Fig. 5, for comparison of �v(t) with

f(t) are equivalent to ceqiv: ¼ 2� 3000m=s. In this figure
99
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Fig. 4. (top) Typical variation of P-wave (a) and S-wave (b) velocities

versus depth in El Centro, Imperial Valley, California; and (bottom) the

corresponding Love (dashed lines) and Rayleigh (full lines) phase

velocities (redrawn from [11]).
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we show a synthetic torsional accelerogram fðtÞ ¼ 2ozðtÞ

and velocity v(t) computed by Lee and Trifunac [11], and
for v(t) consisting of SH and Love waves only. In these
synthetic calculations, because of idealized representation
of half space, it is possible to compute separately radial and
vertical accelrograms (accompanied by rocking; [15]) and
transverse translational accelerogram (accompanied by
torsion, [11]).

It can be seen from Fig. 5 that for the long-period
components (T43 s) v(t) and f(t) agree well, when
ceqiv: ¼ 3000m=s. For intermediate and short periods
(To1 s) motions, however, ceqiv. should be smaller,
decreasing from ceqiv.E2000m/s near T ¼ 1 s toward
ceqiv. ¼ 1 km/s as T ! 0. In the examples of computed
spectra in this paper we will use the oscillator periods T in
the range from 0.04 to 6.0 s, and will assume that the
torsional frequency is

ffiffiffi
3
p

times the translational frequency.
For an average c̄eqiv: ¼ 1:5 km=s and cmin ¼ bav ¼ 0.98 km/
s, s�0.65. Obviously, if ceqiv: ¼ ceqiv:ðoÞ, s in Eq. (5) should
also be a function of frequency. The empirical studies on
how ceqiv. and s should depend upon frequency and other
site and earthquake parameters will be the subject of our
future investigations. At present, this subject can be
approached only though the theoretical and synthetic
representation of dispersed strong-motion waves. Empiri-
cal estimation of s will become possible in the future when
a sufficient number of recorded rotational accelerograms
becomes available.

4. Multi-story buildings

Trifunac and Todorovska [3] have shown that the
maximum, relative, IP displacement of the ith first-story
column of a building responding to differential (horizontal
only) ground motion can be approximated by

SDCIP
i � E2½dIP

1 ðtÞmax� þ ðv
IP
maxtiÞ

2
þ

1

2
aIP
maxt

2
i

� �2
( )1=2

,

(22)
Fwhere d1(t) is the displacement of the first floor, neglecting
soil-structure interaction, rotational components of strong-
motion, and modal interaction [16–19].
ED P
ROO

4.1. Response spectra for first-story columns and OP

response

In the following, we assume that there is no coupling of
OP and torsional responses of a multi-story-building. Then
the above Eq. (22) can be generalized to estimate the
maximum relative displacement of the ith first-story
column as follows:

SDCOP
i � E2½dOP

1 ðtÞmax� þ E2½ðyOP
1 ðtÞÞmaxxi�

�
þðvOP

maxtiÞ
2
þ

1

2
aOP
maxt

2
i

� �2
)1=2

, ð23Þ

where dOP
1 ðtÞ is the OP relative response of the first-story

(proportional to ur) and yOP
1 ðtÞ is the relative rotation, also

of the first floor only, of a multi-story structure corre-
sponding to ur and y in the equivalent two-degree-of-
freedom system (Fig. 2). vOP

max and aOP
max are peak ground

velocity and peak ground acceleration in OP directions,
respectively. As in Eq. (22), Eq. (23) neglects contributions
from soil-structure interaction and modal interaction. As
noted by Trifunac and Todorovska [3], all of those
contributions can be included, after some generalizations
of the probabilistic representation of the response-to-
earthquake excitation. Such generalizations are outside
the scope of this paper, and thus we present here only the
basic concepts for the design of first-story columns.
4.2. First mode approximation

For multi-story buildings, which respond mainly in the
first mode of vibration, it is possible to approximate
relative displacement of the first-story columns in terms of
parameter d, which represents the normalized amplitude of
the first mode shape at the first floor [3], as in



ED P
ROOF

ARTICLE IN PRESS

SDEE : 2996

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

0.1

0.05

0.02

0.01

0.005

τ =

SDC (T,TT,ζ,ζT,τ,δ) - cm

10

1

102

M.D. Trifunac, V. Gicev / Soil Dynamics and Earthquake Engineering ] (]]]]) ]]]–]]] 7
d �
1:27 sin p

2N

� �
ðassuming sinusoidal mode shapeÞ;

1:5=N ðassuming straight line mode shapeÞ;

(

(24)

where N is the number of stories. Assuming that T1�N=10,
and adopting the straight mode shape approximation, d
can be expressed as [3]

d �
1:5=ð10T1Þ T1X0:15

1 T1o0:15;

(
(25)

where T1 is the period of the fundamental mode of
vibration.

In the following we assume that the first torsional mode
shape of a symmetric building can also be approximated by
a straight line. Then the relative displacement spectrum for
the first-story columns for OP response can be approxi-
mated by

SDCiðT ;TT; z; zT; t; dÞ � durðtÞ þ dyðtÞxi½

þ vðtÞti �
1

2
aðtÞt2i

�
.ð26Þ

From Eq. (2000) it is seen that for oTb1,
jyðtÞjmax�jvmaxj=ceqiv. Also,
jyðtÞjmaxxi�jvjmaxxi=ceqiv:�jvmaxjti. Then, neglecting the
contribution of the last term in Eq. (26), we can
approximate Eq. (26) by

SDCiðT ;TT; z; zT; t; dÞ � fd
2SD2
ðT ; zÞ

þ ð1þ dÞðvmaxtiÞ
2
g1=2. ð27Þ
T
91

93

95

97

99

101

103

105

107

109

111

113

ζT = 0.05

SD (T,ζ)

0.002

0.001

Period - s

ζ = 0.05

δ =  1

T / TT = 1.73
10 -1

10 -2

10 -2 1 1010 -1

Fig. 6. The newly defined SDC spectra for the S16W component of the

accelerogram recorded at station #53 of the Los Angeles Story Motion

Network during the Northridge, CA earthquake of 17 January 1994

(M ¼ 6.7), at epicentral distance 6 km. All spectra correspond to damping

ratio z ¼ 0:05 and to d ¼ 1 (one-story building). Different spectra

correspond to different values of parameter t ¼ Sx=bav ranging from

0.001 to 0.1. x is the distance of the column from point R in the

undeformed configuration, and bav is the average shear wave velocity in

the top 30m of soil. The solid lines correspond to SDC-spectra calculated

exactly, and the dashed lines to the approximate estimate via relative

spectral displacement SD, also shown in the figure, and the peak ground

velocity and acceleration.
UNCORREC4.3. Computation of SDC (T,TT,z, zT,T)

Computation of SDC(T, TT, z, zT, t, d) for the OP
response requires simultaneous numerical integration of
differential Eq. (1000) and Eq. (2000) for given values of o, oT,
z, zT, t, and d. Eq. (1000) and Eq. (2000) have the form of
classical constant-coefficient, linear, second-order differen-
tial equations specifying the response of a single-degree-of-
freedom system. Therefore, we use the well-established
procedures for computation of response spectra, which are
described in Trifunac and Lee [20,21]. These procedures
apply directly to Eq. (1000), and the required input is the
standard data file specifying absolute ground acceleration
on ground surface €u0ðtÞ versus time.

Since f0ðtÞ� � vðtÞs=bav, before solving Eq. (2000) we
‘‘multiply’’ both sides by bav/s and then solve

€xþ 2oTzT _xþ o2
Tx ¼ þo

2
TvðtÞ. (28)

After Eq. (28) has been solved for given oT and zT, to
compute y(t)xi we multiply x(t) by ti ¼ sxi=bav. It is seen
that this procedure allows us to compute the contribution
of y(t)xi to Eqs. (150) and (16) as x(t)t. In other words, it is
not necessary to specify the detailed geometry of the
structure (i.e., xi). The complete formulation can be carried
out in terms of general values of the parameter t.
5. Results and analysis

The relative response |ur|max increases with the period of
the SDOF system, T ¼ 2p=o, and as T-N,
jurðtÞjmax! ju0ðtÞjmax. The relative displacement spectrum
SDðT ; zÞ ¼ max

8t
jurðtÞj thus increases from zero to |u0(t)|max

as T changes from zero to infinity. This is shown in Fig. 6,
which illustrates SD(T, z) for the SDOF system (d ¼ 1) and
for z ¼ 0:05, for the S16W component of strong-motion
acceleration recorded during the Northridge, California,
earthquake of January 17, 1994, at Station #53 of the
University of Southern California (USC) Los Angeles



ED P
ROOF

ARTICLE IN PRESS

SDEE : 2996

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

SDC (T,TT,ζ,ζT,τ,δ) / δ SD (T,ζ)

ζ = 0.05

δ = 1

0.1

0.05

0.02

0.01

0.005

0.002

0.001

10

1

10-1

10 -2 1 10

102

10 -1

τ =

103

104

ζT = 0.05

T/TT = 1.73

Period - s

Fig. 7. Ratio of the new relative displacement spectra for columns and the

old relative displacement spectra, SDC /dSD, both shown in Fig. 6.
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Strong-motion Network [22]. This figure also shows
spectra of maximum relative displacement of columns
SDC(T, TT, z, zT, t, d) for d ¼ 1, z ¼ zT ¼ 0:05, and t in
the range from 0.001 to 0.1 (for the ith column, at distance
xi from the reference point R, ti ¼ sxi=bav). The solid lines
correspond to SDC spectra computed from Eq. (26), and
the dashed lines show approximate values of SDC
computed from Eq. (27).

For the S16W component of strong-motion recorded at
USC station #53, peak amplitudes were u0max

¼ 12:4 cm
vmax ¼ 59.8 cm/s, and amax ¼ 381 cm/s2 (4.88 in., 23.5 and
150 in./s2, respectively). Fig. 6 shows that the short period
amplitudes of SDC tend toward a constant. For these short
periods, the peak relative displacement of the columns is
dominated by ð1þ dÞvmaxt and the peak shear forces in the
first-story columns will result from this pseudo-static
deformation caused by differential motions.

Fig. 6 has the same appearance as Fig. 6 in Trifunac and
Todorovska [3] except that the amplitudes of the constant
regions of SDC now have larger amplitudes because of the
contribution from torsional response. For short periods,
where the pseudo static terms dominate in the response,
this factor of increase is equal to 1þ d. For d ¼ 1, this is
equal to 2.0.

Fig. 7 shows the amplitude factor SDC(T, TT, z, zT, t, d)/
d SD (T, z) for z ¼ zT ¼ 0:05, d ¼ 1, with t in the range
0.001–0.1, and for T=TT ¼ 1:73. For T ¼ 0:1 s, for
example, this factor is in the range 1.1 (for t ¼ 0:001) to
65 (for t ¼ 0:1). If we consider the same example as in [3]
one-story building with natural period T�0:1 s, torsional
period TT ¼ 0:058, damping z ¼ zT ¼ 0:05, at a site with
bav ¼ 300m=s and with building plan dimensions equal to
30m) we will have tmax ¼ 1:� 15:=300 ¼ 0:05, and the
amplification factor for OP response, combined with the
contribution from torsional response, SDC (0.1, 0.058,
0.05, 0.05, 0.05, 1.0)/SD(0.1, 0.05)E32. For IP response
(longitudinal) and for the same hypothetical example,
Trifunac and Todorovska [3] estimated the amplification
factor for the largest shear in the columns to be about 20.
Soil structure interaction, combined with the non-linear
response of the soil and structure, may change these factors
significantly, but these large factors nevertheless help
explain why the corner columns of long and stiff structures
often experience so much damage.

Figs. 8 and 9 show SDC spectra and the ratio SDC/dSD
for a multi-story building, for z ¼ zT ¼ 0:05, and the
response associated with the first mode only. These spectra
depend upon parameter d, which we approximate by d ¼
1:5ð10T1Þ (see Eq. (25)). From Fig. 9, it can be seen that the
amplification factor SDC/dSD experiences its minimum
near the peak of dSD and then grows again for longer T1. If
we have 10-story structure with T1 ¼ 1 s, TT ¼ 0:058 s, and
z ¼ zT ¼ 0:05, and we assume that bav ¼ 300m=s and that
the building plan dimensions are, say, �30m (100 feet), we
will have tffi(1)(30/2)/300 ¼ 0.05. Fig. 9 then shows that
the first-story end columns can experience double the
maximum shear force relative to the results when wave
propagation and strain in the soil are ignored.
For large t the maximum relative displacements of the

first-story columns are dominated by the pseudo static
response to ground deformation, for all periods. This
occurs when ti4dSDðT ; zÞ=½vmaxð1þ dÞ1=2�, as illustrated in
Figs. 8 and 9 for t ¼ 0:05 and 0.10.
6. Excitation by short waves

The forgoing analysis is valid for excitation by waves
that are very long relative to the length of structure L. This
is so because we have approximated the ground motion by
a second-order Taylor series of the form

uðtÞ ¼ u0ðtÞ þ
qu

qx
xi þ

1

2

q2u
qx2

x2
i , (30)

which involves the average motion u0(t) (see Eq. (3)), linear
strain qu/qx, and curvature q2u/qx2 terms only. This
approximation imposes an upper limit on xi, so that
xiol=4, and since xi�L=2 it is necessary that l42LU The
two-degree-of-freedom model shown in Fig. 2 can be
excited by any ground motion, but then Eq. (10) and Eq.
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Fig. 8. Same as Fig. 6 but for multi-story buildings. The parameter d is a

function of the period, d ¼ 1:5=10T .

SDC (T,TT,ζ,ζT,τ,δ) / δ SD(T,ζ)
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Fig. 9. Ratio of the new relative displacement spectra for columns and the

old relative displacement spectra, SDC/dSD, both shown in Fig. 8.

µ2, ρ2

µ1, ρ1

A

B

L = 40 m

z

x

y

h1=3m

h2=7m

Fig. 10. Continuous two-dimensional analog of the models shown in Fig.

1a and 2, represented here by a ‘‘soft’’ layer (m2, r2, h2 ¼ 7m),

corresponding to the first story columns, and a ‘‘hard’’ layer (m1, r1,
h1 ¼ 3m), representing the upper part(s) of the structure.
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UNCORRECT(20), must be solved for multiple inputs ui(t), i ¼ 1,2,3 ,y, n.
Therefore, Eq. (1000) and Eq. (2000) will be valid only when
the ground motion can be described by average displace-
ment u0 and average rotation f0, which, as has been
already noted, is possible when lb2LU

An alternative is to consider a model that can be
analyzed using wave-propagation methods. Such a model
is shown in Fig. 10. It consists of a two-dimensional slab
with two layers, supported by half space, at y ¼ h1 þ h2.
For OP waves in the half space, propagating in the x-
direction, the plate is forced to follow this motion u(x, t) at
y ¼ h1 þ h2. The OP response inside the plate v(x, y, t)
must satisfy the wave equation

1

b2
q2v
qt2
¼

q2v
qx2
þ

q2v

qy2
, (29)

where r is the density of the plate material and m is the
rigidity per unit of length, such that b2 ¼ m=r.

The studies of the response of the model in Fig. 10 using
wave-propagation techniques are outside the scope of this
paper (e.g., see [23]). Here, we present only an example in
order to (1) illustrate the range of the validity of the
vibrational approach adopted in this paper and (2) suggest
the physical nature of the solution when lb2L is not
satisfied. To obtain a solution resembling the vibrational
solution for the model shown in Fig. 2, we assume that the
top layer is essentially ‘‘rigid’’ (we take
b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m1=r1

p
¼ 2000m=s). The bottom layer is taken to

be ‘‘soft,’’ so that b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m2=r2

p
¼ 100m=s, a value typical

of experimentally determined shear-wave velocities in
buildings [24,25].
We assume that the motion of the half space consists of a

single half-sine pulse, with peak displacement amplitude
a ¼ 10 cm and duration td, that is propagating with
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Lw = 20 m

t = 0.05 s t = 0.10 s 

t = 0.20 s t = 0.235 s 

t = 0.15 s

t = 0.27 s

Fig. 11. Out of plane deformation (in z direction) of the model shown in Fig. 10, at six instants t ¼ 0.05, 0.1, 0.15, 0.20, 0.235 and 0.27 s, during passage of

ground motion pulse, which propagates along x axis. Pulse duration is 0.1 s, it propagates with horizontal phase velocity of 200m/s and has the wavelength

of 40m.

M.D. Trifunac, V. Gicev / Soil Dynamics and Earthquake Engineering ] (]]]]) ]]]–]]]10
UNCORRECThorizontal phase velocity c:

w0 ¼ a sin
p
td

t�
x

c

	 

H t�

x

c

	 

�H t�

x

c
� td

	 
h i
: (30)

The half-wave-length of this pulse is Lw ¼ tdc.
We solve Eq. (29) by the method of finite differences and

compute maximum relative displacement between points A

and B (see Fig. 10) to simulate the maximum relative
displacement of column 1, at x1 ¼ �L=2, in Fig. 2.

Fig. 11 illustrates the nature of the finite difference
solution for the model in Fig. 10, excited by the pulse w0 in
Eq. (30), when td ¼ 0:1 s, c ¼ 200m=s, and Lw ¼ 20m. Fig.
11 shows the displacement field v(x,y,t) in the ‘‘building’’ at
t ¼ 0.05, 0.1, 0.15, 0.2, 0.235 and 0.27 s. At t ¼ 0.05 s, only
half of the ground-motion pulse has entered into the
building. At t ¼ 0.270, only its tail is still seen near
x ¼ 40m. As the pulse propagates in the positive x

direction, most deformations take place in the ‘‘soft’’
layer. The top ‘‘rigid’’ mass experiences mainly translation
and rotation.

Fig. 12 shows an example of the relationship between the
maximum relative displacement (between points A and B in
Fig. 10) computed by finite differences versus the estimate
of the same displacement in terms of vmax t, and for the
values t ¼ 0:05 and 0.10. It can be seen that for L/
Lw ¼ 2L/lv0.15, or for l\13L, and t ¼ 0:1, the max-
imum pseudo-static deformation of the column at x1 ¼
EL=2 is adequately approximated by
ffiffiffi
2
p

vmaxt (see Eq. (17)).
As the wavelength in the soil becomes shorter that is, as L/
Lw increases the relative motion becomes smaller thanffiffiffi
2
p

vmaxt and asymptotically tends toward ‘‘dmax’’ (a in Eq.
(30) is equal to dmax) the peak amplitude of the ground
displacement pulse.
The example in Fig. 12 confirms that Eq. (27) leads to a

good approximation of SDC amplitudes and quantifies the
general statement that lbL by requiring l to be about one
order of magnitude larger than L.
7. Summary and conclusions

We showed that the linear out-of-plane earthquake
response of long structures supported by individual
columns, experiencing differential motions at their founda-
tion can be described by a new form of response spectrum.
This spectrum is defined (1) for relative displacement of a
two-degree-of-freedom system with respect to a point R the
displacement of which u0(t) is a weighted average of the
motion at the base of the columns, and (2) for torsional
response relative to the rotation of ground at R about the
vertical axis. For computation of the peak relative
displacement of columns that are at a distance xi from
the reference point R, the six-parameter relative displace-
ment spectra SDCðT ;TT; B; BT; t; dÞ must be used. Relative
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Fig. 12. Comparison of maximum relative displacements u1 and un at x1

and xn of the model shown in Fig. 2, described by straight line, 1.41 tvmax,

with maximum relative displacement between points A and B, in the

corresponding continuous model (see Fig. 10), during passage of ground

motion pulse with peak displacement amplitude dmax ¼ 10, as computed

by finite difference. The results for selected ratios of the length of the

‘‘building’’ L, and of the pulse, Lw, corresponding to t ¼ 0.05 and 0.1

approach asymptotically the slope defined by 1.41 tvmax as L=Lw ! 0,

and the constant dmax as L=Lw !1.
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UNCORRECto the classical displacement spectra SD(T,z) which is
defined in terms of two parameters (natural period and
fraction of critical damping), four additional parameters
are required for SDC: d, representing the ratio of the peak
relative response of the first-story to the response of the
equivalent single-degree-of-freedom system; t ¼ sxi=bAV

proportional to the time required for a wave to propagate
from reference point R to the ith column, with velocity of
shear waves in the soil beneath the structure bAV; TT, the
torsional period; and zT, fraction of critical damping of the
torsional response. Thus defined relative displacement
spectrum for the design of columns is valid for ground
motions with waves one order of magnitude longer than
the length of the structure, L�2xmax.

As already noted in Paper I, the popularity of the
classical linear response spectrum method is due to its
simplicity, in which all structures are described only by
their natural period T and the fraction of critical damping
z. In Paper I, we showed that the response spectrum
method can be extended to apply to the IP response of long
structures and to the differential excitation of columns.
That extension required the addition of two parameters (d
and t). In this paper, we showed that with the addition of
D P
ROOF

four additional parameters TT, zT, d and t such a
generalization is possible for out-of-plane response as well.
In the present formulation, as in Paper I, these additional
parameters are not specifically related to the geometry of
the structure, the structural system, or the materials used,
and therefore our generalization of the response spectrum
method maintains the simplicity of the original response
spectrum concept. It is hoped that this extension will be
useful in design by facilitating estimation of the out-of-
plane peak bending and shear forces in the first-story
columns of structures.
The amplitudes of the SDC spectrum for out-of-plane

response to recorded ground motion can be computed by
evaluating relative translation and relative torsion with the
Duhamel’s integrals [21,26] and then adding the contribu-
tion from strain in the ground, and torsional rotation of
the ground in terms of the ground velocity _u0ðtÞ (see Eq.
(26)). SDC can also be computed from empirical scaling
equations [27–30] for relative spectral displacement, SD (T,
z), and peak ground velocity and acceleration vmax and
amax [31,32], using Eqs. (26) and (27). For design
applications, SDC spectra can be evaluated for a scenario
earthquake or though probabilistic seismic hazard analysis
[33–36].
For brevity, in the analysis of multi-story structures we

illustrated the relative motion of the first-story, considering
only the first mode of response. Using the results and
formulation of Gupta and Trifunac [16–19], parameter d
can be generalized to include the contribution of all modes
of the response.
Based on the results presented in Paper I for in-plane

motions, and the formulation presented in this paper for
out-of-plane motions, we conclude that the concept of
response spectrum can be generalized to include the effects
of differential ground motions. Modifications are required
only for the short-period structures and are very simple to
implement in terms of the peak ground velocity, vmax, and
‘‘travel time,’’ t, needed for the wave to traverse
approximately one-half the length of the structure. These
modifications show that the classical response spectrum
does not provide conservative estimates for base shear
factors of stiff structures, with moderate and large
horizontal dimensions, supported by individual columns
positioned on soft surface soils.
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