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Fig. 6 Cogging torque. (level of sensitivity of hall element : 0.235[T], rpm : 3500)

6. CONCLUSION

In this paper, the finite element analysis taking account of the external circuit has been
carried out. We have especially focused on the switching level or the sensitivity of the hall
elements connected to the external circuit, and obtained an optimal value of the switching
level to get the maximum torque. However it would be possible to make the average torque
rise more, if the problem which have been revealed in this research should be resolved.
Thus, we have verified the influences of the external circuit on the permanent magnet motor.
In addition, it is revealed that a hall element does not necessarily sense accurate rotational
angle in terms of the numerical analysis. It is significant that the study in paying attention to
this problem will have done. )
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On the Current Input in 3D Finite Element Analysis
using Tetrahedron Edge Finite Element
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ABSTRACT

This paper considers with one of the main problems in the recently devel-
oped edge finite element method: inputting the source current. Source current
must be inputin such a manner to satisfy the solenoidal condition for each fi-
nite element,a condition essential in developing a numerically stable system of
algebraical equations. Satisfaction of the solenoidal source current condition is
especially difficult in cases where the shape of the coils is either complicated
or symmetrical along an axis, which necessitates the use of tetrahedral edge
elements.

Using electric vector potential as an auxiliary function instead of using current
density vectors directly, in this paper the authors propose a simple and efficient
algorithm for inputting the source current in the edge finite element method
with a tetrahedral finite element. In order to emphasize the usefulness of the
method, the proposed procedure is applied to one simple model. Obtained re-
sults together with conclusions are also presented.

INTRODUCTION

The edge based finite element method has become a very attractive solution for a wide
class of magnetostatic and magnetodynamic field problems [1} ~ [3]. Its degrees of freedom
are associated to the circulation of the unknown variable (usually magnetic vector potential
A, or magnetic intensity vector H) over edges of a previously constructed, regular mesh of
finite elements. Therefore, the edge finite element method differs greatly from conventional
nodal finite element methods, though computational application is very similar. Its main
advantages over the conventional nodal finite element method are:

*On leave from Electrotehnical Fauilty, University ”Kiril and Metodij”, Skopje, Macedonia.
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e Short computation time,
o Small memory requirements,
¢ Satisfying only the necessary boundary conditions on the inter-material boundaries.

Despite the aforementioned advantages, however, the edge finite element method has two
main problems:

o Lack of adequate gauging of the unknown function in analysis region [4],

o Inputting source current in a manner, that satisfies the proper solenoidal condition

divJo =0.

Both problems greatly effect the convergence of the iteration process for solving the al-
gebraical system of equations constructed by the edge finite element method. While the
convergence error can be improved (unfortunately, not beyond certain limits) by abandon-
ing the gauging procedure and arriving at a singular matrix of the system [4], a similar
procedure for the source current input can not be so easily determined. Several procedures
for improving the convergence criterion have been presented already, but they mainly deal
with the edge finite element method over a mesh of hexahedra [5] ~ [7].

In this paper the authors present a simple and straightforward computer applicable al-
gorithm for inputting the source current in the edge finite element method over a mesh of
tetrahedra. Using an electric vector potential function as the auxiliary function, the pro-
posed idea by which the edge finite element method is placed over a mesh of hexahedra [8]
is, in this paper extended and implemented over a mesh of tetrahedra.

EDGE FINITE ELEMENTS IN BRIEF

Edge finite elements belong to the family of differential forms called Whitney forms, de-
scribed for the first time in 1957 for a reason far removed from finite element analysis [9].
They were rediscovered in the mid 1970s by Nedelec [10] and Raviart and Thomas [11] as
a very useful tool in finite element analysis in the form of "mized finite elements” or ”Ned-
elec finite elements”. Recently, these finite elements, where degrees of freedom are not only
field values at mesh nodes but other field-oriented variables such as circulations along edges
or facets of the mesh, have been frequently employed in the numerical analysis of various
magnetostatic and magnetodynamic problems, especially in the three-dimensional domain.
The main reasons for their popularity are their beneficial properties such as those described
briefly in the introduction of this paper. The need exists, therefore, for their further inves-
tigation.

A. Definition

In this paragraph we will describe briefly an edge finite element, its shape functions and
generation. The general shape of a tetrahedron edge finite element is presented in Fig. 1.
The ordinary nodal shape functions for this first order tetrahedron are expressed by N;, N;,
Ny and N; where i, j, k and [ are the four nodes of the tetrahedron. In order to develop
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the shape functions for the edge finite element, it is necessary to define a field such that
its circulation along one edge of the tetrahedron is 1, and along all other edges, 0, thus
determining the shape function for that edge. The vector field is defined as

Ni; = N; VN; — N; VN;, (1)

has the aforementioned property, and therefore can be considered as a edge shape function
for edge {7,j}. By analogy, the shape functions for the other five edges can be constructed
easily. In (1) we use V as a symbol for grad. The physical interpretation of gradients V N;
and V N; and edge shape function N;; are also presented in Fig. 1.

Fig. 1. A general representation of tetrahedron edge finite element and its shape functions.

From (1) the main difference between nodal and edge finite elements,that is the vectorial
character of shape functions, is apparent. In the nodal finite element the vector field is
approximated by employing scalar shape functions, and each degree of freedom has its own
directions (as it is a vector). In the edge finite element, however, the unknown vector field is
approximated by vectorial shape functions (1), and some scalar quantities define over each
edge of the tetrahedron (line integrals of the approximated vector field over a certain edge).

B. Main problems in edge finite element formulation

The main problem in edge finite element formulation is developing a stable iteration process
for solving the algebraical system of equations. As already mentioned in the introduction,the
reasons for this are:

o Lack of adequate gauging of the unknown function in analysis region,

o Inputting the source current in a manner that satisfies the proper solenoidal condition
div Jg =0.

The first point influences the shape of the system matrix and its singularity and can be
avoided by gauging approximated function with an arbitrary vector field [4] (unfortunately
not without increasing computation time, effort and cost).
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The second problem is more difficult to solve as it is the result of the main properties of
the edge finite element, its shape functions and mesh generation. The solenoidal character of
the source current is the result of the nature of the approximated electromagnetic field and
therefore must be satisfied not only for each finite element but also for the entire analysis do-
main. This demand is very difficult to fulfill, especially for complicated and axis-symmetrical
shaped coils where the use of tetrahedron edge finite elements is imperative.

In this paper we propose a method, for dealing with coils of complex shape that is easy to
apply and inexpensive to compute. Next we will describe the main idea and its application.

INPUT OF SOURCE CURRENT IN EDGE FINITE ELEMENT METHOD

A. Definition of the Energy Functional

The governing equation for magnetic field distribution, which takes into account eddy
current distribution, is

0A
rot(urotA):Jo—a—b—t—, (2)
where A is magnetic vector potential, Jo is source current density vector and v and o are
permeability and conductivity coefficients, respectively. Applying the Galerkin method, (2)

can be transformed into the following energy functional

G¢=///V rotN;(urotA)dv—///‘;CN;JodUe -f-»//‘/vc N;o'aa—?dv,. ®3)

In (3) N; represents a set of vectorial edge, finite element shape functions, while V, V. and
V. represent the total volume of the analysis region, the volume constructed from source
current carrying elements and the volume of eddy current conductive material, respectively.
In our further discussion we will concentrate only on the second term in (3), inputting the
source current.

Two methods for inputting the source current are commonly employed: using the values
of the source current intensity I, and assign them to appropriate edges, or using the electric
vector potential T as an auxiliary function. A short description of both methods is given
below.

B. Using the current intensity values Iy directly

The simplified scheme for inputting the source current in an edge finite element using
current intensity values Iy is presented in Fig. 2. In the case of an ordinary constructed
mesh of hexahedra, this method is easily applicable if the direction of the source current
corresponds with the direction of some of the set of edges (here, y-direction). The values of
the source current assigned to each of the edges in the y-direction must be computed by the

following expression
[,Jonds I

I edge — -
Ne Ne

(4)
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Fig. 2. Directly inputting intensity of source current Iy for hexahedron finite element.

where I.q;. is the value of the source current assigned to each edge, s is the surface area, n
is the outward normal vector of the surface s, and n, is the number of edges. For example,
if a current with the intensity I = 10 [A] is passing through surface s as in Fig. 2, then each
of the edges (B, ® , (D and @) will have the current value Lgge = 2.5 [A]. It may seem
very easy to employ this procedure, but if the number of current-carrying elements were to
increase, this procedure would become more undesirable.

With irregular shapes of hexahedra and especially for meshes of tetraheda, the above
procedure is difficult if not impossible to employ. In Fig. 3 we present one arbitrary current-
carrying tetrahedron with the direction of the source current and a normal plane in that
direction. Since the direction of the source current does not coincide with the direction of

4 normal plane

Fig. 3. Directly inputting intensity of source current Iy for tetrahedron finite element.

any of the six edges of the tetrahedron, it is not possible to obtain the amount of the source
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close line

Fig. 4. Definition of electric vector potential T.

current that has to be assigned to each edge.

C. Proposed method using electric vector potential T as an auziliary function

This method first requires definition of the electric vector potential T as an auxiliary
function with the equation:

Jo=V x T. 6)]

For easier physical interpretation, the differential form of (5) above can be represented in

its integral form as
§ora=[[ Jods. (6)

Therefore, we define the electric vector potential T in the manner that its circulation over
a close line L must be equal to the total amount of current passing area S encircled by the
close line L (Fig. 4).

We will now use this property for each facet of a tetrahedron, which leads to a set of four
equations with six unknowns T; ~ T (Fig. 5)

T, +Ts —Ts =1 (7
Ty —Te — Te = I ®)
T, - Ty —-Th =1 9)
Ty + Te - Ts = A : (10)

In order to satisfy the solenoidal condition of the source current through each tetrahedron,
however the system of equations (7) ~ (10) is overdetermined, as only three values of the
integral on the right side of (6) are independent (the fourth one is a linear combination of
the other three).

From the space of six edges of each tetrahedron we will now construct two subspaces:
one subspace of tree graph edges and another of co-tree graph edges, each with three edges.
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Fig. 5. Electric vector potential and current density vector representation.

Assigning arbitrary values to the tree edges (e.g. edges T;,T; and T3 are assigned value
zero) leads to the desired system of equations: three equations with three unknown values
for electric vector potential T associated with the co-tree edges. Solving the set of equations
(7) ~ (9), the following values for electric vector potential T are obtained

T={000 —L I, — L}, (11)

where ¢ stands for transpose.
It is apparent that in this procedure only three values of the right side integral (6) need

to be computed, which leads to computation of the normal vectors for three facets of each
tetrahedron, a process that is both inexpensive and fast.

D. Algorithm

Below a simplified procedure of the proposed algorithm is presented. With minor changes,
this algorithm can be applied easily for any type or order of edge finite elements.

PROPOSED ALGORITHM FOR CURRENT INPUT

e Step 1 — Defining the current-carrying tetrahedron 3;
o Step 2 — Defining the direction of the source current Iy in tetrahedron i;

o Step 3 — Using nodal coordinate data computing normal vectors on three of the
tetrahedron’s facets (e.g. ny,n; and ny);

o Step 4 — Defining the subspaces of tree and co-tree graph edges from the space of all
six edges of tetrahedron ;
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o Step 5 — Assigning arbitrary values (usually zero) to all tree-graph edges;

o Step 6 — Computing the right hand side integrals (6) for only three facets of the tetra-
hedron (the same facets as those for which the normal vectors are already computed
in Step 3);

. Step 7 — Solving the set of equations (7) ~ (9) for unknown electric vector potential

T.

The above algorithm can be further simplified using the uniform assignment of edges in
the process of their generation. In that case, for each current-carrying element, we construct
the same tree graph (e.g. edges @), @ and () , then in Step 7 of the above algorithm, the
system of equations (7) ~ (9), with no further computation, directly degenerates into the
desired solution:

T5 = I3
Ts = ——Iz (12)
T4 = —11
APPLICATION

In order to verify the procedure described above, we analyzed a simple axis symmetrical
model with ferromagnetic material shown in Fig. 6. The axis symmetrical coil was modeled
using current slices (Fig. 6a).

Coil

Direction of the
source current Jo

Current slice

X

a)

Fig. 6. Analyzed model a) plane view b) front view.

In addition, in order to determine the influence of a number of current-carrying elements
over satisfaction of the solenoidal character of the source current in the entire analysis region,
four different division maps were constructed, as shown in Fig. 7.
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Model 1x2

Model 2x3 Model 3x5
Fig. 7. Division maps of the coil.

From the algorithm described above, it is clear that one of the main concerns is obtaining
accurately the direction of the source current for each current-carrying finite element. Toward
that end we employed two methods:

e Method 1 — Computing the direction of the source current for any finite element
separately at its centroid (Fig. 8), and

:I: Direction of the
source current

AZ

."ﬁtﬁrbidT(Xt,yt,Z')

Zp CL LIy

Fig. 8. Definition of source current direction by Method 1.

e Method 2 — Assigning the same direction of the source current for a group of finite
elements that belong to the same current slice (see Fig. 6a).
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The obtained convergence rate of the ICCG procedure given as

b - AX|
b~

Error =

(13)

for each model is presented in Fig. 9. From the results, it is evident that using electric
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Fig. 8. Convergence rate of ICCG iteration procedure.

vector potential T as an auxiliary function for inputting the source current i.n connectlo.n
with Method 2 for determining of the direction of the source current in eac.h .ﬁmte element is
favorable over Method 1. The iteration process uniformly converge. The minimum error d?es
not depend on the division map of the coil, but only on how the source current direction
is determined. The division map (number of current-carrying elements) affects only the
number of iterations in the ICCG procedure (CPU time).
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FINAL REMARKS AND CONCLUSIONS

In this paper the authors presented a simple and efficient algorithm for inputting the source
current in the edge based finite element method in a manner that satisfies the solenoidal char-
acter of the current in each finite element. This algorithm is presented only for tetrahedron
finite elements for which some other procedures such as inputting directly the values of source
current vector Jo are rarely if ever applicable. The algorithm requires only the values and
direction of the source current density vector and nodal coordinate data, thus it arrives at
the ordinary procedure for inputting the source current in conventional nodal finite element
analysis. Finally, this algorithm is very useful for inputting the source current in the coils
with both complicated and axis-symmetrical shapes, cases in which precisely satisfying the
solenoidal character of source current is impossible.
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