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this model for scattering by larger bodies with the same accuracy. The wavelet basis could be
applied in principle also to more complicated 3-D electromagnetic problems.
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Multigrid Solution Method for Electromagnetic
Field Computation

Katsumi Tsubota, Vlatko Cingoski, Kazufumi Kaneda and Hideo Yamashita
Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, 739-8527
Higashihiroshima, Japan

Abstract. We present a new solution approach for solving linear system of
algebraic equations generated by finite element method based on the
multigrid iterative scheme. The obtained convergence rate and the accuracy
of the results are very promising especially for multidimensional and highly
time-consuming computational tasks.

1. Introduction

At present, the finite element method has become one of the most efficient and widely
used numerical methods for solving various engineering problems. Its main power is mostly
connected with its universality, simplicity and flexibility to be easy applied to various
problems. Finally, recently, large-scale simulations based on the finite element method
computation has become possible caused by improvements in the numerical calculation
technology and computer performances. However, for highly complex, especially three-
dimensional computations such as fluid dynamics or transient phenomenon, usually, a large
computation time is still indispensable. Therefore, the speed-up of the computations for such
CPU demanding problems is always analyst’s desire. Recently, various algorithms for
speeding-up of the solution of a large system of equations such as those generated by the
finite element analysis has been proposed. Among them, the multigrid methods[1}-[4] attract
special interest due to their robustness, generality, easy application and fast convergence rate.
In this paper, we present an application of multigrid solution algorithm as an iterative solution
method for electromagnetic field computations.

2. Multigrid method

Multigrid method is a technique to solve linear system of equations by using several grids
with different mesh density scales. Although theoretically known for some time, practical
multigrid methods were firstly introduced in the 1970s by Brandt. It was reported that the
multigrid methods can solve elliptic partial differential equations discretized on N grid points
in O (N) operations [1], which is much faster than the other rapid solution methods which
could go as far as O (N logN) operations. Additionally, the multigrid methods can work fine
and with the same convergence speed with general elliptic equations with nonlinear
coefficients. Even for nonlinear equations they exhibits comparable computation speed.
However, there is not a single multigrid algorithm that can solve all elliptic problems. The
user has to adjust and define his problem within the global framework of the multigrid
algorithms in order to achieve a successful convergence rate.

In general contents, each multigrid method is based on three main numerical operations:
smoothing, restriction, and prolongation. Here, to simplify the multigrid method, we will
briefly describe the simplest of all multigrid methods, the so-called two grid method[1]-[4].
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2.1. Two grid method

Level #1 Level #2
Coarse grid Fine grid
Fig. 1: Grid levels. Fig. 2: Two grid method.

As its name suggests, for two grid method two separate grids have to be_ dev<?loped: one
coarse grid (Level #1) and one fine grid (Level #2) as shown in Fig. 1. The iterative process
for two grid method is schematically shown in Fig. 2. Let’s first develop the system matrix for
both grid levels [K;] and [K,], and define the system of linear equations that have to be
solved on the fine grid — Level #2 only:

[&,¥x.}={r.}, (For fine grid Level #2) @

where [K 2] is the global system matrix, { f,} is the right-hand side vector, {x,} is the -soluti.on
vector, and the subscript 2 stands for the level number. Next, we perform several iterative
steps (usually one to three) using some kind of iterative soluti(')n method, e.g. thz.a Gauss-
Seidel or the Jacobi method, on the fine grid Level #2 — this we call smoothing. The

approximated solution vector{;z} is obtained and the residual vector {r,} given with the

following equation is computed:
=[x }-{n)- @

Next, using the values of the computed residual {r;} we have to computed the appropriate
residual <g;} at the coarse grid (Level #1) — this procedure we call restriction, since we restrict
the values of the residual from the fine to the coarse grid. For this purpose, we use a

restriction operator [R]:
n}-[Rle} ®)

Knowing the residual at the coarse grid (Level #1) {1;}, next we have to compute the
correction {v,} on this level by exactly solving the following the system of equations:

[Kl]{v1}= {rl} 4 (4)
where [K,] is the global system matrix for Level #1.

The correction {v,} applies only for the coarse grid (Level #1), and must be interpolated
(prolongated) to the fine grid using prolongation operator [P] as follows:

f.)=[Pk.}- ®)

Finally, the better approximation of the unknown solution {;:’ }can be computed as:

- ©

new

Using this new and more accurate solution {;2 } as a new initial solution, again seve
smoothing iterations have to be performed at the fine grid giving us a new residual vec

The procedure continues in cycles until the obtained solution {rr" satisfies the used defir
accuracy. :

It can be easily notice that two grid method although the easiest of all multigrid metho
has no practical meaning. If we are looking for accurate results, the fine grid must be rat]
dense, which in return requires a coarse grid with rather large density — it can be shown t|
the best performance of the multigrid algorithm can be expected if the coarsening of the gri
is of order 2:1. Therefore, since (4) must be solved exactly for a coarse grid, a very sm
improvement in the accuracy rate and small decrease of the computation time can
observed. Hopefully, one can see that (1) and (4) have the same shape, therefore, we are at
to perform two grid solution method to solve (4) not exactly but approximately, which w
lead us to generation of three grids instead of only two. If we continue this reasoni
recursively we are able to develop multigrid method instead of two grid method, which as y
have already seen is of no practical meaning. As a matter of fact, this recursive property
multigrid methods, enable their easy and fast application to various computation problems.

2.2, Types of Multigrid Methods

As already mentioned in the beginning of this paper, there is not one single and gener
multigrid algorithm that can be applied to all problems. On contrary user has to accommoda
his/her problem within the framework of the multigrid algorithms in order to achieve desire
convergence rate and accuracy of the results. Here we will briefly address two types
multigrid algorithms: the V — cycle and the W — cycle multigrid.

Both algorithms got their names according to the shape of the cycle that each of the;
performs as can be seen from Figs. 3 and 4. Which type of cycle will be used depends on tt
analyzed problem and the shape and convergence properties of the system of linear equatior
that has to be solved. In general, W — cycle requires more operations per cycle than the V
cycle, however, this could be balanced with the less number of iterations that the W — cycl
multigrid method needs to achieve the desired accuracy of solution. In this paper we preser
the only the results of V- cycle multigrid method, while comparison with the W — cycl
multigrid method will be presented somewhere else.

Fine
SO smoothing
RO restriction
Coarse PO prol

EO exact solution

Fig. 3: V- cycle. Fig. 4: W - cycle.

2.3. Restriction and Prolongation operator

As can be seen from the above sections, the selection of the restriction and prolongatior
operators [R] and [P] are of paramount importance for obtaining stable iterative process witk
fast convergence rate. Because, the restriction operator projects the residual to the coarse gric
level and the prolongation operator interpolates correction to the fine grid level, the choice of
the restriction and prolongation operator has very important role. In finite element

discretization, usually the restriction operator is chosen such that it correspondents to the
transpose of prolongation operator:
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, [R]=[P] . @)
Additionally, it can be shown that, the matrix of the system at each finite element grid level is
dependent to each other, i.e. among the restriction operator [R], the prolongation operator

[P], the global matrix of the finer grid [K,] and global matrix of the coarser grid [KH ], the
following relationship is valid:

[K,_1]=[RIK,IP]. ®)

—@— Coarse grid level

== & == Fine grid level

Fig. 5: Relaﬁonship between the coarse grid and the fine grid.

In this paper, we used a simple injection method for restriction because each node'in the
fine grid (Level #2) corresponds to a node in the coarse grid (Level #1), or exists on the edge
in the coarse grid level as shown in Fig. 5. Therefore, we can use a linear interpolation as a
prolongation operator and automatically decide the restriction operator easily according to (7).

3. Analyzed model

In this paper, we compared computation time of V — cycle multigrid solution method
with one of the ICCG method as one of the most widely used iterative method for solution of
a linear system of equations. We also investigated convergence rate for the V — cycle
multigrid method and for the ICCG method, respectively. As a test model we used a C — type
iron core model shown in Fig. 6. The relative permeability of the magnetic core was 2000 and
the source current intensity inside the coil was 1[At]. Neumann boundary conditions were
applied along Y = 0 line and the Dirichlet boundary conditions along all other three boundary
lines. The number of nodes and finite elements for each grid level are shown in Table 1.

Figure 7 shows the distribution of magnetic flux density obtained using the ICCG
solution method and the multigrid method, respectively. As can be seen, multigrid solution
method provides the same solution in comparison with the ICCG method. The convergence
rate of the V — cycle multigrid solution method is shown in Fig. 8, and as can be easily seen is
uniform, stable and fast. Additionally, the computation times for multigrid solution method
and that for the ICCG method are shown in Table 2. Figure 8 and Table 2 show that multigrid
solution method has good convergence rate and that it converges about 1.8 times faster than
the ICCG method.
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We also investigated the convergence rate of both, the multigrid method and the ICCG
method for various number of unknowns — for various sizes of the problem. Figure 9 shows
computation time for the V — cycle multigrid solution method in comparison with that for the
ICCG method when the number of nodes increases. As can be seen from Fig, 9, the multigrid

- solution method becomes more efficient as the size of the problem becomes larger. Therefore,

we may conclude that the multigrid solution method should be preferable for large system
simulations and for very CPU time consuming problem solution.

1L 1

Air
Iron core
e (Relative permeability £ ,=2000)
E
g
Table 1: The number of nodes and elements.
Number of nodes | Number of elements
Level 1 78 129
Coil (1At) Level 2 284 516
Level3 |~ 1083 2064
Z ¢ N 20 Level 4 4229 8256
llOmmIlOmm

1€ 200mm P

0.00 0.14 0.28 0.42 0.6  0.70
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Fig. 7: The distribution of flux density.
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Multigrid] ICCG
1E-06 Computation time (sec)]  2.71 4.86
1E-07 Memory (MB) 7.5 L Ing.i7
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Fig. 8: Convergence rate of multigrid.
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Fig. 9: Computation time of the number of nodes.
4. Conclusions

In this paper, we introduced the multigrid solution method for electromagnetic field
computation. We also investigated the convergence property of the multigrid solution method.
From the result, the following conclusions can be derived:
® Multigrid solution methods have very fast and stable convergence rate
® The convergence rate of the multigrid solution methods is faster in comparison with that

of the ICCG method
® Efficiency of multigrid solution method increases with the increase of the size of the

linear system of equations that has to be solved. Therefore, multigrid methods could be
very promising for solution of a large system of equations, which usually occurs in three
dimensional transient field analysis.
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3D Magnetic Field Calculation
in Permanent Magnet Machines
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Sts. Cyril & Methodius University, Faculty of Electrical Engineering
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Abstract. In this paper, a FEM modelling, required for the three dimen-
sional non-linear magnetic field calculation, on two types of permanent
magnet electrical motors is presented. The first one is controlled synchro-
nous motor and the second one is DC commutator motor. After an appropri-
ate geometrical and mathematical modelling of the machine configuration in
the whole considered domain is done, the three dimensional magnetic field
solution, by using FEM is performed. For proper determination of ‘charac-
teristics and an accurate analysis of the phenomena, as well as the perform-
ance of the permanent magnet motors, under various operating and load
conditions, it is necessary to calculate the magnetic field distribution as ex-
act as possible. The particular attention to the computation and analysis of
permanent magnet motors' torque characteristics, is included.

1. Introduction

Over the past several years the Finite Element Method (FEM), especially in the three di-
mensional domains, has become an established numerical tool for non-linear three dimen-
sional calculations of the ‘magnetic field distribution in electrical machines. Discretizing the
whole domain of the PM motors, including the end regions where the winding overhangs are
distributed, the finite element method is applied for computation of the magnetic field distri-
bution. The non-linear iterative numerical solution is carried out for different stator currents at
different rotor positions along one pole pitch, comprehending the inclusion in calculations the
magnetising characteristic and the magnetic properties of the active core materials.

The three dimensional magnetic field calculation, proceeded with computation of the
electromagnetic and electromechanical characteristics, enables to carry out a complex analysis.
of the motor performance and its behaviour under various operating and load conditions.

2. Permanent Magnet Motors

In the papcr two types of permanent magnet electrical motors are going to be analysed.
The first one is an electronically operated synchronous motor (PMSM), having rare earth
composed permanent magnets mounted on the outer rotor surface. The second one is a DC
commutator motor (PMDC), having ferrite segmental permanent magnets mounted on the in-
ner stator frame surface.

The rated data for the permanent magnet synchronous motor are: 10 Nm, 0-4000 rpm,
220V, 18 A, 6 poles. The samarium cobalt anisotropic permanent magnets are mounted on
the rotor surface, with demagnetisation characteristics B;=0.95 T and H=-720 kA/m. The
motor is an inverter fed one, supplied by current or voltage square waves. The second motor is
a conventional DC commutator motor with rated data: 80 W, 20 V, 6A, 450 rpm, 2 poles. The
segmental barium ferrite permanent magnets mounted on the stator frame are also anisoropic,
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