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Abstract  

This paper will review LVM models, GP-LVM, CEV model, DD model, Crank-Nicolson, and other finite 

difference methods, Greeks, SABR, martingales, and LSMC option pricing. The effects of changing the 

volatility on paths generated by Bachelier, Black-Scholes proved no difference between these two 

models. Implied volatility for all the models was higher when compared to actual volatility 

for:BS,BSM, and Bachelier. Crank-Nicolson method for ATM, ITM,OTM showed higher intrinsic value  

for the price after the initial stock price, but with diminishing returns, intrinsic minus extrinsic value 

is zero at the last price. In Greeks analysis t was observed no put and call parity for different values of 

:Delta,Gamma,rho. GP-LVM forecast proved to be closest to the actual stock price. 
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1.Introduction 
The market implied volatilities of stock index options have skewed structure, called volatility smile1.This 

has been problem in option pricing literature, how to reconcile skewed volatility smile with Black-

Scholes model (see Black-Scholes(1973)). B-S model assumes that the index level is a random walk2 

with constant volatility, but this seems to be false since if it is true then the index distribution at any 

option expiration is log-normal3, and all options on the index must have same implied volatility. Implied 

volatility is calculated by taking the observed option price in the market and a pricing formula such as 

the Black-Scholes formula that will be introduced below and backing out the volatility that is consistent 

with the option price given other input parameters such as the strike price of the option, for example 

,see Kosowski,Neftci (2015).But Derman,Kani (1994) conclude that “87 crash (1987 The first 

 
1 The relationship between implied volatility and exercise price is not constant and may look like a smile, a 
skew, etc. (for simplicity are all called “smiles”) see Orlando,G.,  Taglialatela(2017). 
2 Definition for Random walk: 𝑋1, … , 𝑋𝑛 is a sequence pf ℝ𝑑  valued independent and i.i.d random variables. A 

random walk started at  𝑧 ∈ ℝ𝑑  is the sequence (𝑆𝑛)𝑛≥0 where 𝑆0 = 𝑧 ⋏ Sn  = Sn−1 + Xn, n ≥ 1,𝑋𝑛 are 
referred as steps of the random walk.   
3 The stock evolution is described simple as: 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊 , where 𝜇 is the expected return 𝜇 = 𝑟 − 𝑞 ,risk 

free rate minus dividend, 𝑆 is the stock price, 𝑑𝑊 is a Wiener process 𝑊 ∼ (0, 𝑑𝑡)  
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contemporary global financial crisis unfolded on October 19, 1987, a day known as “Black Monday,” 

when the Dow Jones Industrial Average dropped 22.6 %), the market’s implied Black Scholes volatilities 

for index options have shown a negative relationship between implied volatilities and strike prices – 

out-of-the-money puts trade at higher implied volatilities than out-of-the-money calls”. Schwert (1987) 

has done a time series analysis of the volatility of U. S. stock prices 1859- 1986 and compared this 

volatility through time with other macroeconomic variables4,see Shiller (1988). The  first explicit 

general equilibrium solution to the option pricing problem for simple puts and call was presented in 

Black,Scholes(BS) (1973) and Merton (BSM) (1973) all these four papers by Merton 1973 a,Merton 

1973 b, Merton1973 c ,Merton 1975 , provide, within the Capital Asset Pricing Model(CAPM) 

framework, an elegant answer to the problem of assigning price to every option by identifying a 

relation between the value of the stock and its option. LVM or Local volatility models can be traced 

back to the work by Dupire (1994),and Derman,Kani (1994). They (previous papers) have realized that 

under the assumption of risk neutrality a unique state-dependent diffusion process can be constructed 

which is consistent with market prices for European options, where those prices are quoted5.As we 

will see later when we will introduce this model in this paper 𝜎𝑙 represents diffusion coefficient which 

is a function of space and time. This paper will summarize main formulae for LVM models and the 

relationship between local volatilities and implied volatilities, for further discussions see Gatheral, J. 

(2006), Rebonato, R. (2004),see Kienitz, Wetterau (2012). These models in order to be consistent with 

the Efficient market hypothesis (EMH) see Fama (1970) (i.e. that asset prices fully reflect the 

information), the unanticipated part of the stock price movements should be a martingale (conditional 

expectation of the next value of the sequence, given all prior information, is equal to the present 

value). With the papers by LeRoy and Porter (1981) and Shiller(1981), a literature has emerged arguing 

that financial markets may be too volatile to be accounted for in terms of efficient markets hypothesis 

(EMH).Later we will study Stochastic local volatility (SVM) models resented by SABR model. The 

concept of an SVM applies the idea of a second source of randomness (these models are capable of 

modeling not only the skew but the smile too). Therefore, we are adding another source risk to the 

modelling. It is a proper assumption that the randomness of volatility is modelled dependent on the 

asset. This is called leverage. CEV model6 if 𝛽 = 2 degenerates to B-S model. Empirical evidence (see 

Beckers (1980)) has shown that the CEV diffusion process could be a better candidate for describing 

the actual stock price behavior than the BS model. The exponent 𝛽 is called CEV exponent. The CEV 

model furthermore can be seen as an arithmetic average of normal and logarithmic normal model7. 

CEV and displaced diffusion models are related. As a rule of thumb as closer 𝛽 ≈ 1  better DD model 

approximates the CEV model. The CEV and displaced diffusion processes have been posited as suitable 

alternatives to a lognormal process in modelling the dynamics of market variables such as stock prices 

and interest rates, see Svoboda-Greenwood, S. (2009). Some authors first of them would be   Marris 

 
4 Schwert (1987) found that the volatility of inflation, money growth, industrial production and business 
failures is high during war periods, yet the volatility of stock returns is not particularly high during those 
periods. 
5 In the financial markets, a quoted price is the last price at which a trade took place. Quoted prices is the 
lowest price at which the holder of a security is willing to sell it. In other sales transactions, the quoted price is 
the estimate given to provide goods or services. 

6 𝑑𝑆 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡

𝛽

2𝑑𝐵𝑡   

7 We take 𝑣 =
1

2(1−𝛽)
; 𝜏 = 𝑇 − 𝑡, 𝑥 = 𝑆(𝑡) ; 𝑝(𝑋, 𝑡; 𝑥, 𝑡) =

√𝑥𝑋1−4𝛽

(1−𝛽)𝜎𝑐𝑒𝑣
2 exp (−

𝑥2(1−𝛽)+𝑋2(1−𝛽)

2(1−𝛽)𝜎𝑐𝑒𝑣
2 ) 𝐼𝑣 (

(𝑥𝑋)1−𝛽

(1−𝛽)2𝜎𝑐𝑒𝑣
2 𝜏
), 

where 𝐼𝑣  is a Bessel function which are functions that serve as solutions to difference equation: 𝑥2
𝑑2𝑦

𝑑𝑥2
+

𝑥
𝑑𝑦

𝑑𝑥
+ (𝑥2 − 𝑛2)𝑦 = 0,but in the first kind Bessel function is given as:𝐼𝑣(𝑥) = (

𝑥

2
)
𝑣
∑

(
𝑥2

4
)
𝑘

𝑘!Γ(𝑣+𝑘+1)
 ∞

𝑘=0 ,see  

Kienitz, Wetterau (2012). 
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(1999), stated that for a linear parametrization option prices by CEV and DD model display similar 

close correspondence across many ranges of strikes and maturities. The Crank-Nicolson method was 

the approximation of the implicit method and the explicit method, and we are applying it later in this 

paper as part of finite difference methods. This method approximation is more accurate than either 

implicit or explicit method finite difference method approximations8. It has faster convergence than 

implicit and explicit finite difference methods, see Kiprop,K.G.,Langata set2019).Finite difference9 

methods are used to price options by approximating continuous time differential equation that is used 

to describe how an options price evolves over time, by a  set of difference equations. Greeks measure 

a different dimension to the risk in an option position and the aim of a trader is to manage the Greeks 

so that all risks are acceptable, see Hull (2012). They are financial measures of the sensitivity of an 

option’s price to its underlying determining parameters, such as volatility or the price of the underlying 

asset. They are collectively called: risk measures, hedge parameters. SABR model or stochastic 𝛼, 𝛽, 𝜌 

model is a stochastic volatility model, which attempts to capture the volatility smile10 in derivatives 

markets. The SABR model is an extension of the CEV model in which the volatility parameter follows 

a stochastic process11.Martingale option pricing formulae are in form of expectations which can be 

efficiently solved numerically by using a Monte Carlo approach. This paper will investigate models of 

Local volatility (Bachelier and Black-Scholes) introduced by Bachelier (1900),and Black-Scholes 

(1973)12,versus Gaussian Process volatility model or GP-Vol is presented as an instance of GP-SSM or 

Gaussian process state-space model  see Tegner, Roberts (2019), and a Wu, Y. Lobato, J. M. H., 

Ghahramani,Z.(2014), and Wu, Y. Lobato, J. M. H.  , Ghahramani,Z.(2014) .Next, we will introduce CEV 

(Constant elasticity of variance) introduced by Cox (1975). And DD (Displaced diffusion model) 

introduced by Rubisntein (1983), also see Schroder, M. (1989) and Andersen, L. ,Andreasen, J.(2000), 

see Kienitz, Wetterau (2012). Later we will see how CEV and DD model are related and will investigate 

CEV approximation exposed by Merino (2020). This will be followed by Crank-Nicolson finite difference 

method that represents an average of the implicit method and the explicit method, see 

(Crank,Nicolson (1947)).Later we will investigate Greeks this material draws heavily from Hull 

(2012).Next, we will introduce SABR (Stochastic, 𝛼, 𝛽, 𝜌 model) introduced by Hagan, P.S., Kumar, D., 

Lesniewski, A.S., Woodward, D.E. (2002). Martingale option pricing will be reviewed this method was 

introduced in option pricing by Ross (1976), Lèvy process, followed by Monte-Carlo methods of option 

pricing due to Boyle (1977),and LSMC- Least squares Monte Carlo method proposed by Longstaff and 

Schwartz (2001).   

 
8 As described in Fadugba, SE and Nwozo, CR. (2013), it can be shown that by equating the central difference 

and the symmetric central difference at 𝐹
𝑛+

1

2
,𝑚
≡ 𝐹(𝑡 +

∆𝑡

2
, 𝑆), we  would end up with the Crank-Nicolson 

method with an accuracy of 𝒪((∆𝑡)2, (∆𝑆)2). 
9 Finite forward difference is defined as:∆𝑓𝑝 ≡ 𝑓𝑝+1 − 𝑓𝑝 and finite backward difference is :∇fp ≡ 𝑓𝑝 − 𝑓𝑝−1 
10 Volatility smiles are implied volatility patterns that are present in pricing financial options. It is a parameter 
implied volatility that is needed to be modified for the Black–Scholes formula to fit market prices 
11 𝑑𝐹(𝑡) = 𝜎(𝑡)𝐹(𝑡)𝛽𝑑𝑊(𝑡); 𝑑𝜎(𝑡) = 𝛼𝜎(𝑡)𝑑𝑍(𝑡); 𝐸(𝑑𝑊(𝑡), 𝑑𝑍(𝑡)) = 𝜌𝑑𝑡 where 𝜌 is assumed constant.  
12 The  Black-Scholes(1973) model is the simplest formulation for derivative pricing and  is still utilized, there is 
a flaw of that model when volatility surfaces, a situation which implies different  underlying parameters for every 
quoted option, so in that situation Black-Scholes(1973) model is unable to correctly predict the evolution of 
prices of the underlying asset, see Hirsa (2012). Despite its popularity, it is well known that the BS model suffers 
from several deficiencies, such as inconsistencies with the market-observed implied volatility smile (or skew). 
The Black-Scholes theory relies on two assumptions: the values of contingent claims do not depend on investor 
preferences; therefore, the option can be valued as though the underlying stock’s expected return is riskless. 
The risk neutral valuation is allowed because the option can be hedged with stock to create instantaneously 
riskless portfolio. 
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2. Local volatility models (LVM)  

GBM model (Geometric Brownian motion) for stock prices states13: 

equation 1 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

In previous 𝜎, 𝜇  are constants. Success in applying LVM models can be attributed to Dupire, B. (1994) 

and Derman, E. and Kani, I. (1994).Now, we can summarize the main formulae illustrating the 

relationship between local volatilities, implied volatilities and European Call option prices. Following 

results with proofs can be found in Gatheral, J. (2006), Rebonato, R. (2004) . 

Theorem 1. The Dupire Formula. Now, Let 𝐶 = 𝐶(𝐾, 𝑇)  be the price of a call option as a function of 

strike and time to maturity. Hence the Local volatility function (LVF) satisfies; 

equation 2 

𝜎𝑙
2(𝑇, 𝐾) =

𝜕𝐶
𝜕𝑇

+ (𝑟 − 𝑞)𝐾 
𝜕𝐶
𝜕𝐾

+ 𝑞𝐶

𝐾2

2
𝜕2𝐶
𝜕𝐾2

 

Proof:  from forward price  𝐶(𝑇, 𝐾) = ∫ (𝑥 − 𝐾)𝜙(𝑇, 𝑥)𝑑𝑥
∞

𝐾
,where 𝐾 is strike and 𝑇 is exercise time, 

and 𝜙(𝑇,∙) is the density function. The actual market price at 𝑇 = 0 would be 𝑝 = 𝐶(𝑇, 𝐾)𝑒^ −

(∫ 𝑟(𝑠)𝑑𝑠)  
𝑇

𝑡
and 𝜇(𝑡) = 𝑟(𝑡) − 𝑞(𝑡) , where 𝑟(∙), 𝑞(∙) are possibly time varying. From forward 

equation 
𝜕𝜙

𝜕𝑡
=

1

2

𝜕2

𝜕𝑥2
(𝜎2(𝑡, 𝑥)𝑥2𝜙).So now from 𝐶(𝑇, 𝐾) = ∫ (𝑥 − 𝐾)𝜙(𝑇, 𝑥)𝑑𝑥

∞

𝐾
 we have:  

equation 3 

𝜕𝐶

𝜕𝑇
(𝑇, 𝐾) = ∫ (𝑥 − 𝐾)

𝜕𝜙

𝜕𝑇

∞

𝐾

(𝑇, 𝑥)𝑑𝑥 =
1

2
∫ (𝜎2𝑥2𝜙)′′(𝑥 − 𝐾)𝑑𝑥
∞

𝐾

= −
1

2
∫ (𝜎2𝑥2𝜙)′1𝑑𝑥 =

1

2
𝜎2(𝑇, 𝐾)𝐾2𝜙(𝑇, 𝐾) −

1

2
𝜎2 (𝑇, 𝐾)𝐾2

𝜕2𝐶

𝜕𝐾2
(𝑇, 𝐾)

∞

𝐾

 

So this gives Dupire formula which is: 

equation 4 

𝜎(𝑇, 𝐾) =
1

𝐾
 √
2
𝜕𝐶
𝜕𝑇
(𝑇, 𝐾)

𝜕2𝐶
𝜕𝑥2

(𝑇, 𝐾)
 ∎ 

 
13 GBM motion is defined as:𝑦(𝑡) = 𝑒𝑥(𝑡) where  {𝑦(𝑡), 𝑡 ≥ 0; 𝑥(𝑡), 𝑡 ≥ 0} ,one may also write previous 

as:log(𝑌(𝑡)) = 𝑋(𝑡) = 𝜇𝑡 + 𝜎𝐵(𝑡).The solution to this model is given as: 𝑌(𝑡) = 𝑌(0) exp {[𝜇 −
1

2
𝜎2] 𝑡 +

𝑊(𝑡)},previously 𝑌(𝑡) = 𝑒𝑋(𝑡); 𝑋(𝑡) = 𝜇𝑡 + 𝜎𝐵(𝑡); and we define: 𝑓(𝑌(𝑡)) = ln 𝑌(𝑡) = 𝑋(𝑡) so now:
𝜕𝑓

𝜕𝑡
=

0;
𝜕𝑓

𝜕𝑌
=

1

𝑌
;
𝜕2𝑓

𝜕𝑌2
= −

1

𝑌2
,since 𝜇(𝑌(𝑡), 𝑡) = 𝜇𝑌(𝑡), 𝜎(𝑌(𝑡), 𝑡) = 𝜎𝑌(𝑡),from Ito’s formula we have: 𝑑𝑓(𝑌(𝑡), 𝑡) =

{𝜇 −
1

2
𝜎2} 𝑑𝑡 + 𝜎𝑑𝐵(𝑡),we now know that 𝑑[ln{𝑌(𝑡)}] =

𝑑𝑌(𝑡)

𝑌(𝑡)
= [𝜇 −

1

2
𝜎2] 𝑑𝑡 + 𝜎𝑑𝐵(𝑡) from previous we 

obtain that : ∫ 𝑑𝑙𝑛𝑌(𝑢) = ∫ {𝜇 −
1

2
𝜎2} 𝑑𝑢 + ∫ 𝜎𝑑𝐵(𝑡)

𝑡

0

𝑡

0

𝑡

0
. Now since 𝐵(0) = 0 we have that ln

𝑌(𝑡)

𝑌(0)
=

{𝜇 −
1

2
𝜎2} 𝑡 + 𝜎𝐵(𝑡) .Form here we get solution for 𝑌(𝑡) = 𝑌(0) exp {[𝜇 −

1

2
𝜎2] 𝑡 + 𝑊(𝑡)} and 𝑋(𝑡) =

[𝜇 −
1

2
𝜎2] 𝑡 + 𝜎𝐵(𝑡) ⇒ 𝑑𝑋(𝑡) = [𝜇 −

1

2
𝜎2] 𝑡 + 𝜎𝐵(𝑡). 
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Previously if we differentiate 𝐶(𝑇, 𝐾) = ∫ (𝑥 − 𝐾)𝜙(𝑇, 𝑥)𝑑𝑥
∞

𝐾
 twice we get : 

equation 5 

𝜕𝐶

𝜕𝐾
= −∫  𝜙(𝑥)𝑑𝑥 = Φ(𝑇, 𝐾) − 1 

∞

𝐾

𝜕2𝐶

𝜕𝐾2
= 𝜙(𝑇, 𝑥)

 

Where in previous Φ(𝑇,∙) is the distribution function of 𝑆𝑇 , 

Theorem 2. Gyöngy theorem (see Gyöngy, I. (1986)) Now, let 𝑊 be and r-dimensional Brownian 

motion and let : 

equation 6 

𝑑𝑋(𝑡) = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊(𝑡) 

Is a d-dimensional Itô process where 𝜇 is bounded d-dimensional adapted process and 𝜎 is a 

bounded 𝑑 × 𝑟-dimensional adapted process such that 𝜎𝜎𝑇 is uniformly positive definite.∃ 

deterministic measurable function 𝜇̂ and 𝜎̂ such that: 

equation 7 

𝜇̂(𝑡, 𝑋(𝑡)) = 𝐸[𝜇𝑡|𝑋(𝑡)] ∀𝑡,

𝜎̂𝜎̂𝑇(𝑡, 𝑋(𝑡)) = 𝐸[𝜎𝑡𝜎𝑡
𝑇|𝑋(𝑡)] ∀𝑡

 

And there exist solution to differential equation: 

equation 8 

𝑑𝑋̂𝑡 = 𝜇̂(𝑡, 𝑋̂𝑡)𝑑𝑡 + 𝜎̂(𝑡, 𝑋̂𝑡)𝑑𝑊̂𝑡 

So that ℒ(𝑋̂𝑡)  = ℒ𝑋(𝑡)∀𝑡 ∈ ℝ+ . Gyöngy’s theorem is only valid for continuous Itô processes. It is 

important to extend the result to processes with jumps. 

Proof: Let following applies: 𝜇(𝐴) = 𝐸 [∫ 1𝐴(𝑋(𝑡))𝑒
−∫ 𝛾(𝑠,𝜔)𝑑𝑠

∞

0 𝑑𝑡
∞

0
] where ∀ Borel set 𝐴 ⊂ 𝑅𝑛 

,where 1𝐴 denotes indicator function of the set,𝛾 is a non-negative 𝑡 adapted stochastic process. 

Denote the mimicking process by 𝑌(𝑡). Gyöngy showed that the Green measure14 of (𝑡, 𝑋(𝑡)) is 

identital to the Gren measure of (𝑡, 𝑌(𝑡)) .Now let 𝛾(𝑡) killing rate 𝛾(𝑡) ≡ 1 .so now we have: 

equation 9 

E [∫ 𝑒−𝑡𝑓(𝑡, 𝑋(𝑡)𝑑𝑡
∞

0

] = E [∫ 𝑒−𝑡𝑓(𝑡, 𝑌(𝑡))𝑑𝑡
∞

0

] 

Gyögy proved his theorem by extending a result of Krylov (1984).Now, taking 𝑓(𝑡, 𝑥) = 𝑒−𝜆𝑡𝑔(𝑥) 

with this arbitrary non-negative constant 𝜆 and functions 𝑔 ∈ 𝐶0 (ℝ
𝑛)  we get:  

 
14 The Green formula:  𝐸𝑥[𝑇𝐷] < +∞, ∀𝑥 ∈ 𝐷 , and let 𝑓: 𝑅𝑛 → 𝑅 be a 𝐶2 with compact support ,then: 𝑓(𝑥) =

𝐸𝑥[𝑓(𝑋𝜏𝐷)] − ∫ 𝐿𝑥𝑓(𝑦)𝐺(𝑥, 𝑑𝑦)𝐷
 . In particular 𝐶2 functions ⊂⊂ in 𝐷. And, 𝑓(𝑥) = −∫ 𝐿𝑥𝑓(𝑦)𝐺(𝑥, 𝑑𝑦)𝐷

 .The 

proof of Green formula is done by Dynkin’s formula and the definition of the Green measure: 𝐸𝑥[𝑓(𝑋𝜏𝐷)] =

𝑓(𝑥) + 𝐸𝑥[∫ 𝐿𝑋𝑓(𝑋𝑠)𝑑𝑠
𝜏𝐷
0

= 𝑓(𝑥) + ∫ 𝐿𝑋𝑓(𝑦)𝐺(𝑥, 𝑑𝑦)𝐷
].The infinitesimal generator or Fourier multiplier 

operator 𝐴 of 𝑋 is 𝐴𝑓(𝑥) = lim
𝑡↓0

𝐸𝑥[𝑓(𝑋𝑡)]−𝑓(𝑥)

𝑡
 , see Dynkin E.B.(1965).  
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equation 10 

∫ 𝑒−𝜆𝑡𝑒−𝑡𝐸[𝑔𝑋(𝑡)]𝑑𝑡 = ∫ 𝑒−𝜆𝑡𝑒−𝑡𝐸[𝑔𝑌(𝑡)]𝑑𝑡
∞

0

 
∞

0

 

So previous gives us 𝐸[𝑔𝑋(𝑡)] = 𝐸[𝑔𝑌(𝑡)]∎ . Or in general lets consider n-dimensional Itô process 

𝑋𝑡 that satisfies:  

equation 11 

𝑑𝑋𝑡 = 𝛼(𝑡, 𝜔)𝑑𝑡 + 𝛽(𝑡, 𝜔)𝑑𝑊𝑡

∃ (𝑑𝑌𝑡 = 𝑎(𝑡, 𝑌𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑌𝑡)𝑑𝑊𝑡) − 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 Gyögy theorem
 

Where 𝑋𝑡 , 𝑌𝑡   have the same marginal distributions. 𝑋𝑡 . 𝑌𝑡 have the same distribution ∀𝑡.Moreover, 

𝑌𝑡 can be constructed by setting this:  

equation 12 

𝑎(𝑡, 𝑦) = 𝐸0[𝛼(𝑡, 𝜔)|𝑋𝑡 = 𝑦]

𝑏(𝑡, 𝑦)𝑏(𝑡, 𝑦)𝑇 = 𝐸0[𝛽(𝑡, 𝜔)𝛽
𝑇(𝑡, 𝜔)|𝑋𝑡 = 𝑦 ]

 

In a financial setting, 𝑋𝑡 might be risk-neutral dynamics of a particular security. Then 𝑏(𝑡, 𝑦)/𝑦 

represents the local volatility function 𝜎(𝑡,∙),because 𝑋𝑡 , 𝑌𝑡 have same marginal distributions then we 

know that European option prices can be priced correctly if we assume price dynamics are given by 

𝑌𝑡 . 

2.1 Bachelier and Black-Scholes model  
Pricing in Bachelier model is given as: 

equation 13 

𝐶(𝐾, 𝑇) =

{
 
 

 
 (𝑆 − 𝐾)+ +

|𝑆 − 𝐾|

4√𝜋
𝛾̃ (−

1

2
.
(𝑆 − 𝐾)2

2𝜎𝐵
2𝑇 

)  𝑆 ≠ 𝐾 

(𝑆 − 𝐾)+ +
𝜎𝐵√𝑇

√2𝜋
   otherwise 

 

In previous 𝛾̃(𝑎, 𝑏) denotes incomplete gamma Γ function15.In Black, F. ,Scholes, M. (1973) the 

authors consider the following model for an asset price:  

equation 14 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝐵𝑆𝑆𝑡𝑑𝑊𝑡

𝑆(0) = 𝑆0
 

See Kienitz,J. Wetterau,D.(2012). In Bachelier model 16previous is the same except𝜎 = 𝜎𝐵.Pricing 

European call and put option prices in the case of Bachelier model is: 

 
15 Incomplete Gamma function., i.e. the regularized incomplete gamma function 𝑃 and the regularized upper 

incomplete gamma function 𝑄 are defined by : 
𝑃(𝑥, 𝑎) =

1

Γ(𝑎)
∫  𝑡𝑎−1𝑒−𝑡𝑑𝑡 
𝑥

0

𝑄(𝑥, 𝑎) =
1

Γ(𝑎)
∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡 
∞

𝑥

,gamma function is defined by : 

Γ(𝑎) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
∞

0
. 

16 The Bachelier model is a model of an asset price under Brownian motion presented by Louis Bachelier in his 
PhD thesis : The Theory of Speculation  
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equation 15 

𝐶(𝐾, 𝑇) = (𝑆(0)𝑒−𝑑𝑇 − 𝑒−𝑟𝑇𝐾)𝒩(𝑑1) + 𝜎𝐵√𝑇𝑛(𝑑1)

𝑃(𝐾, 𝑇) = (𝑆(0)𝑒−𝑑𝑇 − 𝑒−𝑟𝑇𝐾)𝒩(−𝑑1) + 𝜎𝐵√𝑇𝑛(𝑑1)
 

Where : 𝑑1 =
𝑆(0)exp((𝑟−𝑑)𝑇)−𝐾 

𝜎√𝑇
 where 𝒩(∙) denotes CDF normal distribution and 𝑛(∙) 

corresponding PDF.For the B-S model we have: 

equation 16 

𝐶(𝐾, 𝑇) = (𝑆(0)𝑒−𝑑𝑇 − 𝑒−𝑟𝑇𝐾)𝒩(𝑑1) − 𝑒
−𝑟𝑇𝐾𝒩(𝑑2)

𝑃(𝐾, 𝑇) = (𝑆(0)𝑒−𝑑𝑇 − 𝑒−𝑟𝑇𝐾)𝒩(−𝑑1) − 𝑒
−𝑟𝑇𝐾𝒩(−𝑑2)

 

Where 𝑑1 =
log(

𝑆(0)

𝐾
)+(𝑟−𝑑+

𝜎2

2
)𝑇 

𝜎√𝑇
; 𝑑2 = 𝑑1 =

𝜎2

2
𝑇 .Next, we plot the effects of changing volatility on 

paths generated by Bachelier and Black-Scholes model.  

 

Figure 1 The effects of changing the volatility on paths generated by Bachelier, Black-Scholes 𝜎𝐵 = 0.01,0.02,0.03 and 
𝜎𝐵𝑆 = 0.05,0.2,0.4 

  

Source :Authors’ calculations based on a code available at: 

https://www.mathworks.com/matlabcentral/fileexchange/36966-risk-neutral-densities-for-financial-

models?s_tid=FX_rc2_behav  

 

 

 

3.Gaussian process Local volatility model  
In this part of the paper presented models are from Tegner, Roberts (2019), and a Wu, Y. Lobato, J. 

M. H.  , Ghahramani,Z.(2014). In the second reference model by Wu, Y. Lobato, J. M. H.  , 

Ghahramani,Z.(2014) Gaussian Process volatility model or GP-Vol is presented as an instance of GP-

SSM or Gaussian process state-space model: 

equation 17 

𝑥𝑡 ∼ 𝒩(0, 𝜎𝑡
2); 𝑣𝑡 ≔ log(𝜎𝑡

2) = 𝑓(𝑣𝑡−1, 𝑥𝑡−1) + 𝜖𝑡, 𝜖𝑡 ∼ 𝒩(0, 𝜎𝑛
2) 

https://www.mathworks.com/matlabcentral/fileexchange/36966-risk-neutral-densities-for-financial-models?s_tid=FX_rc2_behav
https://www.mathworks.com/matlabcentral/fileexchange/36966-risk-neutral-densities-for-financial-models?s_tid=FX_rc2_behav
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The previous equation defines GP-SSM. Advantages of GP-Vol model are: GP-Vol Models the 

unknown transition function in a non-parametric manner, GP-Vol reduces the risk of overfitting by 

following a full Bayesian approach. Most popular volatility model is GARCH: 

equation 18 

𝑥𝑡 ∼ 𝒩(0, 𝜎𝑡
2); 𝜎𝑡

2 = 𝛼0 +∑𝛼𝑗𝑥𝑡−𝑗
2 +∑𝛽𝑗𝜎𝑡−𝑖

2

𝑝

𝑖=1

𝑞

𝑖=1

 

Next figure graphically depicts these models. 

Figure 2  GP-Vol,GP-SSM,GARCH model vs simulated volatility  

 

Source: Author’s own calculations  

Next, we will move on Bayesian inference in GP-Vol model. In the standard Gaussian process 

regression setting, the inputs and targets are fully observed and 𝑓 can be learned using exact 

Bayesian inference, see Rasmussen, Williams (2006). This is reported not to be the case in GP-vol 

model, where the unknown parts of 𝑣𝑡 form part of the inputs and all targets. Now, let 𝜃 denote the 

model hyper-parameters17 and let 𝑓 = 𝑓(𝑣1),… . , 𝑓(𝑣𝑇) ,while directly learning the joint posterior of 

 
17 Not to be confused with machine learning where in machine learning hyperparameter is a parameter whose 
value is used to control the learning process. In Bayesian statistics, a hyperparameter is a parameter of a prior 
distribution; the term is used to distinguish them from parameters of the model for the underlying system under 
analysis.In Beta distribution 𝑝 of Bernouli distribution 0 ≤ 𝑝 ≤ 1; 𝑞 = 1 − 𝑝  ; 𝑝  is a parameter of the underlying 

system, while 𝛼; 𝛽 are parameters of prior distribution beta distr.which is 𝑓(𝑥; 𝛼, 𝛽 ) =
1

𝐵(𝛼,𝛽)
𝑥𝛼−1 (1 −

𝑥)𝛽−1 =
𝑥𝛼−1 (1−𝑥)𝛽−1

∫ 𝑢𝛼−1(1−𝑢)𝛽−1𝑑𝑢
1
0
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the unknown variables 𝑓, 𝑣1:𝑇 and 𝜃 seems to be a challenging task. But the posterior 𝑝(𝑣𝑡|𝜃, 𝑥1:𝑇) 

can be approximated with particles18, see Andrieu, C., Doucet, A. and Holenstein, R.  (2010).  

Figure 3 SMC particle filter and l Particle smoother (Forward-filtering Backward-Smoother) (FFBSm) for linear Gaussian state 
space model 

  

Source:Author’s wn calculatons and MATLAB code available at: 

https://user.it.uu.se/~thosc112/research/sequential-monte-carlo-smc.html  

For these models more can be found in papers by : Moral,D.P.,Doucet,A.(2014), Schön , T.B., 

Lindsten, F. (2014),Doucet , A. Johansen, A. M. (2011), Briers, M. , Doucet A., Maskell, S. (2010).Next 

plot shows Bayesian inference and GP-Vol model. 

Figure 4 Bayesian inference and GP-Vol model 

 

Source: Author’s own calculations 

Next,GP-LV model will be plotted,R code was executed in Jupyter with added R notebook. 

 
18 Interacting particle methods are a class of Monte Carlo methods to sample from complex high-dimensional 
probability distributions and to estimate their normalizing constants,see Moral,D.P.,Doucet,A.(2014). 

https://user.it.uu.se/~thosc112/research/sequential-monte-carlo-smc.html
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Figure 5 Implied volatility strike price and maturity  

  

Source: Author’s own calculations based on a code available at: https://github.com/martnj/GP-LV.git  

Previous code and figures are based on a paper by Tegner, Roberts (2019). 

4.CEV model 
The model has been introduced by Cox (1975) as one of the early alternatives to the geometric 

Brownian motion to model asset prices, see ,Linetsky,  Mendoza(2010). The constant elasticity of 

variance (CEV) model is a one-dimensional diffusion process that solves a stochastic differential 

equation (SDE) of following type: 

equation 19 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝑎𝑆𝑡
𝛽+1

𝑑𝐵𝑡 

Instantaneous volatility is 𝜎(𝑆) = 𝑎𝑆𝛽 ,specified to be power function of the spot price. The model 

has been introduced by Cox (1975) as one of the early alternative processes to the geometric 

Brownian motion to model asset prices. Here 𝛽 is the elasticity parameter of the local volatility, or 
𝑑𝜎

𝑑𝑆
=

𝛽𝜎

𝑆
,and 𝑎 is volatility scale parameter. When 𝛽 = 0 ,CEV model is reduced to constant volatility 

geometric Brownian motion process employed in the Black-Scholes- Merton model. And when 𝛽 =

−1 the volatility specification is that of Bachelier19, and for 𝛽 =
1

2
 this model reduces to square-root 

model of Cox,Ross (1976). Beckers, S. (1980),writes that the option pricing formula for CEV class 

contains infinite summation which makes evaluation difficult. This problem is solved by  Cox,Ross 

(1976) , who introduce alternative formulation for he option price : 

equation 20 

𝐶(𝑆, 𝜏) = (𝑆 − 𝐾𝑒−𝑟𝜏)𝑁(𝑦1) + (𝑆 + 𝐾𝑒
−𝑟𝜏)𝑁(𝑦1) + 𝑣(𝑛(𝑦1) − 𝑛(𝑦2)) 

Where 𝑁(∙) is CDF of Normal distribution, 𝑛(∙) is unit normal density distribution, also: 

 
19 The asset price has the constant diffusion coefficient, while the logarithm of the asset price has the 

𝑎

𝑆
 

volatility. 

https://github.com/martnj/GP-LV.git
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equation 21 

𝑣 = 𝜎 (
1 − 𝑒−2𝑟𝜏

2𝑟
)

1
2

𝑦1 =
𝑆 − 𝐾𝑒−𝑟𝜏

𝑣

𝑦2 =
−𝑆 − 𝐾𝑒−𝑟𝜏

𝑣

 

4.1 Displaced diffusion model (DD) 
 
DD model had been presented by Rubisntein (1983).DD model can be presented in following 
manner: 
 
equation 22 

 
𝐷𝑆𝑡 = 𝜇(𝑆𝑡 + 𝑎)𝑑𝑡 + 𝜎𝐷𝐷𝑡(𝑆𝑡 + 𝑎)𝑑𝑊𝑡

𝑆(0) = 𝑆0
;   

The only parameter different than the standard Black-Scholes(1973) model is 𝑎 > 0.This is called 
displacement parameter hence the name of the pricer.Pricng formulae in DD model is given as see 
also Rebonato (2002):  
  
equation 23 

𝐶(𝐾, 𝑇) = 𝑒−𝑟𝑇((𝑆(0) + 𝑎)𝒩(𝑑1) − 𝐾
∗𝒩(𝑑2))

𝑃(𝐾, 𝑇) = 𝑒−𝑟𝑇(𝐾∗𝒩(−𝑑2) − (𝑆(0) + 𝑎)𝒩(−𝑑1))
 

Where 𝐾∗ = 𝐾 + 𝑎 and where : 
  
equation 24 

𝑑1 =
log (

𝑆(0) + 𝑎
𝐾∗

) +
𝜎𝐷𝐷
2

2
𝑇 

𝜎𝐷𝐷√𝑇
; 𝑑2 = 𝑑1 − 𝜎𝐷𝐷

2 𝑇 

For time dependent volatility we replace 𝜎𝐷𝐷
2 with 𝜈𝐷𝐷

2 (𝑡0, 𝑡1) ≔ ∫ 𝜎𝐷𝐷
2 𝑢(𝑑𝑢)

𝑡1
𝑡0

 ,parity between 

Black-Scholes and DD model means : 𝐶𝐷𝐷(𝐾, 𝑇) = 𝐶𝐵𝑆(𝐾, 𝑇).Rebonato (2004) shows that European 
call option ATM (at the money) prices can be recovered reasonably: 
equation 25 

 𝜎𝐷𝐷 ≈
𝑆0

𝑆0+𝑎
;  𝜎𝐵𝑆

1−
1

24
𝜎𝐵𝑆
2 𝑇

1−
1

24
(
𝑆0

𝑆0+𝑎
𝜎𝐵𝑆)

2
𝑇

                 

DD dynamics is applied to del the skew in Libor markets see Joshi, Rebonato (2001).Now, the 

dynamics of forward rate 𝐹𝑖(𝑡) in the spot measure is: 

equation 26 

𝑑(𝐹𝑖(𝑡) + 𝑎) = (𝐹𝑖(𝑡) + 𝑎)𝜎𝑖
𝐷𝐷(𝑡)∑

𝜏𝑘(𝐹𝑘(𝑡) + 𝑎)(𝜎𝑘
𝐷𝐷)

𝑇

1 + 𝜏𝑘𝐹𝑘(𝑡)

𝑖

𝑘=0

 

The corresponding volatility in previous is   𝜎𝑖
𝐷𝐷(𝑡),this controls the overall level of volatility while 𝑎 

is the skew of volatility. DD model convenient form is: 
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equation 27 

𝑑𝑆(𝑡) = 𝜎𝐷𝐷(𝑎𝑆(𝑡) + (1 − 𝑎)𝐿)𝑑𝑊(𝑡) 

The DD model can be seen as an approximation of normal and log-normal model. 

equation 28 

𝑑𝑆(𝑡) ≈ 𝜎𝐿 (𝑆(0) + 𝜎𝑙
′(𝑆(0)𝑆(𝑡) − 𝑆(0))𝑑𝑊(𝑡)) 

And therefore, by setting 𝜎𝐷𝐷 ≔
𝜎𝐿(𝑆(0))

𝑆(0)
 ,𝛽 = 𝜎𝐿

′(𝑆(0))
𝑆(0)

𝜎𝐿(𝑆(0))
; 𝐿 = 𝑆(0) and by setting 𝜎𝐷𝐷 =

𝜎𝐶𝐸𝑉𝑆(0)
𝛽−1, 𝑎 = 𝛽, 𝐿 = 𝑆(0), shows that displaced diffusion model can be well approximated by a 

CEV model. 

4.2 CEV and DD models  
To see how CEV and DD models are related see Marris,D.(1999), and Svoboda,S.(2006).First,we take 

the following model: 

equation 29 

𝑑𝑆(𝑡) = (𝜂𝑆(𝑡) + 𝑆(0)(1 − 𝜂))𝜎𝑀𝑑𝑊(𝑡) 

𝜂, 𝜎𝑀 are constant parameters. The DD model fits here b 𝑎 = 𝑆(0)
1−𝜂

𝜂
  and 𝜎𝐷𝐷 = 𝜂𝜎𝑀 ,and after 

taking 𝜎𝑀 = 𝑆(0)𝛽−1𝜎𝑐𝑒𝑣we can find that : 

equation 30 

𝜕(𝑆(𝑡)𝛽(𝜎𝑐𝑒𝑣)2𝑑𝑡

𝜕𝑆(𝑡)
|𝑆(𝑡)=𝑆(0) =

𝜕(𝑆(𝑡) + 𝑎)(𝜎𝐷𝐷)2𝑑𝑡

𝜕𝑆(𝑡)
|𝑆(𝑡)=𝑆(0) 

As 𝛽 ≈ 1  ,DD  model approximates CEV model. The following is displaced CEV model: 

equation 31 

𝑑𝑆(𝑡) = (𝑆(𝑡) + 𝑎)𝛽𝑑𝑊(𝑡)

𝑆(0) = 𝑆0
 

One the next plot we show comparisons between CEV and DD-CEV model20.This plot contains 5 

separate lines of stock price plotted versus delta time and difference it is shown between forecast of 

CEV model pricing and DD-CEV model. The larger the time delta the larger is the difference between 

the CEV and DD-CEV model predictions.  

 
20 Here the pricing is still possible in closed form (see, for instance, Andersen, L. and Piterbarg, V. (2010). 
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Figure 6 CEV vs DD-CEV model  

 

Source: authors’ own calculations  

4.3 CEV approximation  
 

Corollary 1. This is CEV exact formula. Let 𝑆𝑡 be a process described in 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝑎𝑆𝑡
𝛽+1

𝑑𝐵𝑡 

then ∀𝑡 ∈ [0, 𝑇] ,we can express call option fair value 𝐶𝑓𝑡 see Merino (2020) 

equation 32 

𝐶𝑓𝑡 = 𝐶𝐵𝑆(𝛽 − 1)𝔼𝑡 [∫ 𝑒𝑟(𝑢−𝑡)Γ𝐶𝐵𝑆̂ (𝑢, 𝑆𝑢, 𝜎𝑢
𝛽−1

) (𝑇 − 𝑢)𝜎2𝑆𝑡
2(𝛽−1)

𝑑𝑢
𝑇

𝑡

]

+
(𝛽 − 1)(2𝛽 − 3)

2
𝔼𝑡 [∫ 𝑒𝑟(𝑢−𝑡)Γ𝐶𝐵𝑆̂ (𝑢, 𝑆𝑢, 𝜎𝑢

𝛽−1
) (𝑇 − 𝑢)𝜎4𝑆𝑡

4(𝛽−1)
𝑑𝑢

𝑇

𝑡

]

+
(𝛽 − 1)2

2
𝔼𝑡 [∫ 𝑒𝑟(𝑢−𝑡)Γ𝐶𝐵𝑆̂ (𝑢, 𝑆𝑢, 𝜎𝑢

𝛽−1
) (𝑇 − 𝑢)2𝜎6𝑆𝑡

6(𝛽−1)
𝑑𝑢

𝑇

𝑡

] + (𝛽

− 1)𝔼𝑡 [∫ 𝑒𝑟(𝑢−𝑡)ΛΓ𝐶𝐵𝑆̂ (𝑢, 𝑆𝑢, 𝜎𝑢
𝛽−1

) (𝑇 − 𝑢)𝜎4𝑆𝑡
4(𝛽−1)

𝑑𝑢
𝑇

𝑡

] 

So, we will write: 

equation 33 

𝔼 [𝑒𝑟(𝑇−𝑡)𝐶𝐵𝑆̂ (𝑇, 𝑆𝑇 , 𝜎𝑢
𝛽−1

)] = 𝐶𝐵𝑆(𝑡, 𝑆𝑡, 𝜎𝑆𝑡
𝛽−1

+ (𝐼𝐶𝐸𝑉) + (𝐼𝐼𝐶𝐸𝑉) + (𝐼𝐼𝐼𝐶𝐸𝑉) 

Corollary 2. Let 𝑆𝑡 be a process described in 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝑎𝑆𝑡
𝛽+1

𝑑𝐵𝑡 then ∀𝑡 ∈ [0, 𝑇] ,we can 

express call option fair value approximation21 𝐶𝑓𝑡𝑎𝑝𝑝𝑟𝑜𝑥 see Merino (2020) 

 

 
21 The exact formula can be seen in Cox (1975), Emmanuel, Macbeth (1982),Schroder (1989). 
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equation 34 

𝐶𝑓𝑡𝑎𝑝𝑝𝑟𝑜𝑥 = 𝐶𝐵𝑆 (𝑇, 𝑆𝑇 , 𝜎𝑆𝑡
𝛽−1

) +
1

2
(𝛽 − 1)𝑟𝜎2𝑆𝑡

2(𝛽−1)
Γ𝐶𝐵𝑆̂ (𝑡, 𝑆𝑡, 𝜎𝑆𝑡

𝛽−1
) (𝑇 − 𝑡)2

+
1

4
(𝛽 − 1)(2𝛽 − 3)𝜎4𝑆𝑡

4(𝛽−1)
Γ𝐶𝐵𝑆̂ (𝑡, 𝑆𝑡, 𝜎𝑆𝑡

𝛽−1
) (𝑇 − 𝑡)2

+
1

6
(𝛽 − 1)2𝜎6𝑆𝑡

6(𝛽−1)
Γ2𝐶𝐵𝑆̂ (𝑡, 𝑆𝑡 , 𝜎𝑆𝑡

𝛽−1
) (𝑇 − 𝑡)3

+
1

2
(𝛽 − 1)𝜎4𝑆𝑡

4(𝛽−1)
ΛΓ𝐶𝐵𝑆̂ (𝑡, 𝑆𝑡 , 𝜎𝑆𝑡

𝛽−1
) (𝑇 − 𝑡)2 + 𝜖𝑡 

Where 𝜖𝑡  is error term, now we have that 𝜖𝑡 ≤ (𝛽 − 1)
2Π(𝑡, 𝑇, 𝑟, 𝜎, 𝛽) and Π is increasing function 

on every parameter. Proof is derived in Merino (2020). Next plot, shows put and call parity in Vanila 

option pricing with the CEV model (with different deltas(0.75,1,1.1) and their comparison with Black-

Scholes result, and the error in put call parity for numerically calculated CEV model. 

Figure 7 Vanila put and call option pricing for strike 𝐾 = 10 and comparison with B-S results and error in put-call parity for 
numerically calculated CEV 

 

Source: authors’ own calculations based on code available at: 

https://github.com/fhqvst/cev/tree/master/figures  

Parameters for estimation of this model were: 𝑇  =
1

2
; 𝑋   =  100; 𝑛   =  100;𝑚   =  500; 𝐾   =  10; 

𝑔  =  @(𝑥) 𝑥 −  𝐾; 𝑟   =  0.02; 𝑑𝑒𝑙𝑡𝑎𝑠 =  {0.75, 1, 1.1}; 𝜎 =  0.5; 

5. Crank-Nicolson and other finite difference methods (FDMs) with Galerkin Method of 

Weighted Residuals (GMWR) 
The Crank-Nicolson finite difference method represents an average of the implicit method and the 

explicit method. For Crank-Nicolson see (Crank,Nicolson (1947)).For the implicit method forward and 

backward difference approximations are: 
𝜕𝑓

𝜕𝑆 
=

𝑓𝑖,𝑗+1−𝑓𝑖,𝑗

∆𝑆
 ; 
𝜕𝑓

𝜕𝑆 
=

𝑓𝑖,𝑗+1−𝑓𝑖,𝑗−1

∆𝑆
, where 𝑓𝑖,𝑗 is the value of 

option at the (𝑖, 𝑗) point, and ∆𝑆 is the change in stock-price. For the explicit method previous 

notation is given as: 
𝜕𝑓

𝜕𝑆 
=

𝑓𝑖+1,𝑗+1−𝑓𝑖+1,𝑗+1

2∆𝑆
 ; 
𝜕2𝑓

𝜕𝑆2 
=

𝑓𝑖+1,𝑗+1+𝑓𝑖+1,𝑗−1−2𝑓𝑖,𝑗−1

∆𝑆2
 , see Hull (2012). Finite 

difference approximation at implicit method at (𝑖, 𝑗) is given as: 
𝜕2𝑓

𝜕𝑆2
=

𝑓𝑖,𝑗+1+𝑓𝑖,𝑗−1−2𝑓𝑖,𝑗

∆𝑆2
 ; since 𝑆 =

𝑗∆𝑆 we can rearrange and knowing previous like: 
 

https://github.com/fhqvst/cev/tree/master/figures
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equation 35 

𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗

∆𝑡 
+ (𝑟 − 𝑞)𝑗∆𝑆

𝑓𝑖.𝑗+1 + 𝑓𝑖,𝑗−1

2∆𝑆
+
1

2
𝜎2𝑗2∆𝑆2

𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 − 2𝑓𝑖,𝑗

∆𝑆2
= 𝑟𝑓𝑖,𝑗

𝑓𝑖+1,𝑗 = 𝑎𝑗𝑓𝑖+1,𝑗−1 + 𝑏𝑗𝑓𝑖+1,𝑗 + 𝑐𝑗𝑓𝑖,𝑗+1

 

Where : 

equation 36 

𝑎𝑗 =
1

2
(𝑟 − 𝑞)𝑗∆𝑡 −

1

2
𝜎2𝑗2∆𝑡

𝑏𝑗 = 1 + 𝜎
2𝑗2∆𝑡 + 𝑟∆𝑡 

𝑐𝑗 = −
1

2
(𝑟 − 𝑞)𝑗∆𝑡 −

1

2
𝜎2𝑗2∆𝑡

 

or in explicit difference method the difference equation is given as:  

equation 37 

𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗

∆𝑡 
+ (𝑟 − 𝑞)𝑗∆𝑆

𝑓𝑖+1.𝑗+1 + 𝑓𝑖+1,𝑗−1

2∆𝑆
+
1

2
𝜎2𝑗2∆𝑆2

𝑓𝑖+1,𝑗+1 + 𝑓𝑖+1,𝑗−1 − 2𝑓𝑖+1,𝑗

∆𝑆2
= 𝑟𝑓𝑖,𝑗

𝑓𝑖,𝑗 = 𝑎
∗𝑓𝑖+1,𝑗−1 + 𝑏𝑗

∗𝑓𝑖+1,𝑗 + 𝑐𝑗
∗𝑓𝑖+1,𝑗+1

 

Where 𝑞  is dividend yield, 𝑟 is risk free interest rate. Or in previous: 

equation 38 

{
 
 

 
 𝑎∗ =

1

1 + 𝑟∆𝑡
(−

1

2
(𝑟 − 𝑞)𝑗∆𝑡 +

1

2
𝜎2𝑗2∆𝑡)

𝑏𝑗
∗ =

1

1 + 𝑟∆𝑡
(1 − 𝜎2𝑗2∆𝑡)

𝑐𝑗
∗ =

1

1 + 𝑟∆𝑡
(
1

2
(𝑟 − 𝑞)𝑗∆𝑡 +

1

2
𝜎2𝑗2∆𝑡 )

 

Finite difference methods were first applied by Schwartz, E. S. (1977). This equation 𝑓𝑖+1,𝑗 =

𝑎𝑗𝑓𝑖+1,𝑗−1 + 𝑏𝑗𝑓𝑖+1,𝑗 + 𝑐𝑗𝑓𝑖,𝑗+1 (implicit difference method) and this equation 𝑓𝑖,𝑗 = 𝑎
∗𝑓𝑖+1,𝑗−1 +

𝑏𝑗
∗𝑓𝑖+1,𝑗 + 𝑐𝑗

∗𝑓𝑖+1,𝑗+1 , the Crank-Nicolson method averages these two equations: 

equation 39 

𝑓𝑖,𝑗 + 𝑓𝑖−1,𝑗 = 𝑎𝑗𝑓𝑖−1,𝑗−1 + 𝑏𝑗𝑓𝑖−1,𝑗 + 𝑐𝑗𝑓𝑖−1,𝑗+1 + 𝑎𝑗
∗𝑓𝑖,𝑗−1 + 𝑏𝑗

∗𝑓𝑖,𝑗 + 𝑐𝑗
∗𝑓𝑖,𝑗+1

𝑔𝑖,𝑗 = 𝑓𝑖,𝑗 − 𝑎𝑗
∗𝑓𝑖,𝑗−1 − 𝑏𝑗

∗𝑓𝑖,𝑗 − 𝑐𝑗
∗𝑓𝑖,𝑗+1

𝑔𝑖,𝑗 = 𝑎𝑗𝑓𝑖−1,𝑗−1 + 𝑏𝑗𝑓𝑖−1,𝑗 + 𝑐𝑗𝑓𝑖−1,𝑗+1 − 𝑓𝑖−1,𝑗

 

 Crank-Nicolson method is similar in implementation to finite difference method, but his advantage is 

in faster convergence22. The goal is to discretize Black-Scholes-Merton equation: 
𝜕𝑓

𝜕𝑡
+ 𝑟𝑆

𝜕𝑓

𝜕𝑆
+

 
22 In matrix form Crank-Nicolson method is: 𝐶𝐹𝑖−1 = 𝐷𝐹𝑖 + 𝐾𝑖−1 + 𝐾𝑖 , 𝑖 = 1, . . 𝑛 and the equation 

was:−𝑎̅𝑓𝑖−1,𝑗−1 + (1 − 𝑏̅𝑗)𝑓𝑖−1,𝑗 − 𝑐̅𝑓𝑖−1,𝑗+1 = 𝑎̅𝑓𝑖,𝑗−1 + (1 − 𝑏̅𝑗)𝑓𝑖,𝑗 + 𝑐̅𝑓𝑖,𝑗+1.Previous equation is only stable 

if: ∥ 𝐶−1𝐷 ∥∞≤ 1 this is Crank-Nicolson Finite Difference Stability Condition. Previous shows the infinity norm 
of the product of the matrices 𝐶−1𝐷. Heuristically, if the infinity norm of𝐶−1𝐷 is less than 1 then successive 
values of 𝐹𝑖  in ∥ 𝐶−1𝐷 ∥∞≤ 1  get smaller and smaller, and hence the algorithm converges, or is stable. In 

previous 𝑎̅𝑗 =
𝛿𝑡

4
(𝜎2𝑗2 − 𝑟𝑗); 𝑏̅𝑗 = −

𝛿𝑡

2
(𝜎2𝑗2 + 𝑟); 𝑐𝑗̅ =

𝛿𝑡

4
(𝜎2𝑗2 + 𝑟𝑗).  
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1

2
𝜎2𝑆2 

𝜕2𝑓

𝜕𝑆2
= 𝑟𝑓 , now we use central approximation for 𝜕𝑓/𝜕𝑡 and central approximation for 𝜕𝑓/𝜕𝑆 

and standard approximation for𝜕2𝑓/𝜕𝑆2 : 

equation 40 

𝜕𝑓
𝑖−
1
2
,𝑗

𝜕𝑡
=

𝑓𝑖,𝑗−𝑓𝑖−1,𝑗

𝛿𝑡 
+ 𝒪(𝛿𝑡2)

𝜕𝑓
𝑖−
1
2
,𝑗

𝜕𝑆
=

1

2
[
𝜕𝑓𝑖−1,𝑗

𝜕𝑆 
+
𝜕𝑓𝑖,𝑗

𝜕𝑆 
] =

1

2
[
𝑓𝑖−1,𝑗+1+𝑓𝑖−1,𝑗−1

2𝛿𝑆 
+
𝑓𝑖,𝑗+1+𝑓𝑖,𝑗−1

2𝛿𝑆 
] + 𝒪(𝛿𝑆2)

𝜕𝑓
𝑖−
1
2
,𝑗

𝜕𝑆2
=

1

2
[
𝜕2𝑓𝑖−1,𝑗

𝜕𝑆2 
+
𝜕2𝑓𝑖,𝑗

𝜕𝑆2 
] =

1

2
[
𝑓𝑖−1,𝑗+1−2𝑓𝑖−1,𝑗+𝑓𝑖−1,𝑗−1

𝜕𝑆2
+
𝑓𝑖,𝑗+1−2𝑓𝑖,𝑗+𝑓𝑖,𝑗−1

𝜕𝑆2
] + +𝒪(𝛿𝑆2)

  

Hence the Crank-Nicolson method converges at the rates of 𝒪(𝛿𝑡2) and 𝒪(𝛿𝑆2). This is a faster rate 

of convergence than either the explicit method, or the implicit method. Next we will show 

comparisons between Crank-Nicolson vs Implicit FD model vs explicit FD model for ATM,ITM,OTM 

options23. 

Figure 8 ATM (At-The-Money), ITM (In-The-Money), and OTM (Out-Of-The-Money) option pricing comparisons Crank-
Nicolson vs intrinsic and extrinsic value  

 

Source: Author’s own calculations  

In this case Crank-Nicolson model provides higher intrinsic value24 for the ATM case and ITM and 

OTM case for the price after the initial stock price, but with diminishing returns, intrinsic minus 

 
23In an ATM option, the difference between the strike price and the current market price is minimal. For call 
options, stock price is above the agreed upon strike price. For put options, stock price is below the agreed upon 
strike price.  For call options, an ITM option has a strike price below the current market price. For put options, it 
has a strike price above the current market price.If the strike price is higher than the underlying stock price, the 
option is out-of-the-money (OTM), OTM options typically do not have intrinsic value and rely on extrinsic value 
(time value and volatility) for any potential profit. For call options, stock price is below the agreed upon strike 
price. For put options, stock price is above the agreed upon strike price. 
24 Intrinsic value is the price difference between the current stock price and the strike price. An option's time 
value or extrinsic value of an option is the amount of premium above its intrinsic value. 
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extrinsic value is zero at the last price. Next, we will compare Finite difference method for option 

pricing with Black-Scholes equation for put and call options and finite element (FE) approximations.  

Figure 9 

 

Source :Author’s own calculations based on a MATLAB code available at: 

https://github.com/EricJXShi/Black-Scholes-FEM  

 

Previous models use Classical Black-Scholes and transformed B-S model:  

equation 41 

∂V

∂t
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− 𝑟𝑉 = 0

𝜕𝐹

𝜕𝜏
=
1

2
𝜎2
𝜕2𝐹

𝜕𝑥2

 

Now we define 𝜏 = 𝑇 − 𝑡 and PDE becomes:  −
∂V

∂t
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− 𝑟𝑉 = 0.Boundary 

conditions for put and call options are : 

equation 42 

𝑉(0, 𝜏) = 0, 𝑉(∞, 𝜏) = 𝑆 − 𝐾𝑒−𝑟𝜏, 𝑉(𝑆, 0) = max(𝑆 − 𝐾, 0)… . Boundary conditions for call options

𝑉(0, 𝜏) = 𝐾𝑒−𝑟𝜏, 𝑉(∞, 𝜏) = 0, 𝑉(𝑆, 0) = max(𝐾 − 𝑆, 0)… . Boundary conditions for put options
 

https://github.com/EricJXShi/Black-Scholes-FEM
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Theoretical solution for Call option price is: 𝐶𝑎𝑙𝑙𝑜𝑝𝑡𝑖𝑜𝑛𝑝𝑟𝑖𝑐𝑒 = 𝑠𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑡𝑁(𝑑2) where 𝑑1 =

ln(
𝑆

𝐾
)+(𝑟+

𝜎2

2
)

𝜎√𝜏
 and 𝑑2 =

ln(
𝑆

𝐾
)+(𝑟−

𝜎2

2
)𝜏

𝜎√𝜏
.Now Applying Galerkin Method of Weighted Residuals (GMWR) 

to −
∂V

∂t
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− 𝑟𝑉 = 0, results in : 

equation 43 

∫ (−
∂V

∂t
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− 𝑟𝑉)𝑁𝑖  𝑑𝑆

𝑆2
𝑒

𝑆1
𝑒

= 0 

𝑆1
𝑒 , 𝑆2

𝑒 are limits of integration. The residual equation is: 

𝑅 =
∂V

∂t
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 

Where 𝑉 can be approximated ∼ by the following: 

equation 44 

𝑉̃(𝑆, 𝜏) =∑𝑁𝑖(𝑆) ∙ 𝑉𝑖(𝜏)

2

𝑖=1

 

This equation ∫ (−
∂V

∂t
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− 𝑟𝑉)𝑁𝑖  𝑑𝑆

𝑆2
𝑒

𝑆1
𝑒 = 0 transforms into: 

equation 45 

[𝐾] ∙
𝜕𝑉𝑗

𝜕𝜏
+ [𝐶] ∙ 𝑉𝑗 = [𝛼] 

Now applying Crank-Nicolson result to previous equation: 

equation 46 

[𝐾] ∙
𝑉𝑗
𝜏+∆𝜏 − 𝑉𝑗

𝜏

∆𝜏 
= 𝜃([𝛼] − [𝐶] ∙ 𝑉𝑗

𝜏+∆𝜏) + (1 − 𝜃) ∙ [𝛼] − [𝐶] ∙ 𝑉𝑗
𝜏)  

Where 𝜃 =
1

2
 and 𝛼  is a byproduct from using integration by parts and was canceled in the 

derivation.The matrices in previous equation are defined as: 

equation 47 

[𝐾] =
∆𝑆

2
∫ 𝑁𝑗𝑁𝑖𝑑𝜂,𝑁𝑗𝑖𝑠 𝑎 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠ℎ𝑎𝑝𝑒 𝑓 − 𝑛𝑐𝑡𝑖𝑜𝑛𝑠.
1

−1

[𝐶] =
∆𝑆

2
((𝜎2 − 𝑟)∫ 𝑆

𝜕𝑁𝑗

𝜕𝑆
𝑁𝑖𝑑𝜂 +

1

2
𝜎2  ∫ 𝑆2

𝜕𝑁𝑗

𝜕𝑆 

𝜕𝑁𝑖
𝜕𝑆 

𝑑𝜂 + 𝑟∫ 𝑁𝑗𝑁𝑖𝑑𝜂) 
1

−1

1

−1

1

−1

[𝛼] =
1

2
𝜎2 𝑆2𝑁𝑖  (

𝜕𝑉̃

𝜕𝑆
) |𝑆1

𝑆2  

 

For Galerkin method see , 

D Galerkin Method of Weighted Residuals (GMWR) to the stock price dimension and CrankNicolson 

to the time dimension 
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6.Greeks 
 

Let 𝑉(0, 𝑆0) denotes fair price at 𝜏 = 0 European call option with strike price 𝐸 and time to maturity 

𝑇 , then the Black-Scholes valuation formula is given as25: 

equation 48 

𝑉(0, 𝑆0) = 𝑆0𝒩(
log(

𝑆0
𝐸
) + (𝑟 +

1
2
𝜎2)𝑇 

𝜎√𝑇
) − 𝐸𝑒−𝑟𝑇𝒩(

log(
𝑆0
𝐸
) + (𝑟 −

1
2
𝜎2)𝑇 

𝜎√𝑇
)

= 𝑆0𝒩(𝑑1) − 𝐸𝑒
−𝑟𝑇𝒩(𝑑2)  

Where : 𝑑1 =
log(

𝑆0
𝐸
)+(𝑟+

1

2
𝜎2)𝑇 

𝜎√𝑇
; 𝑑2 =

log(
𝑆0
𝐸
)+(𝑟−

1

2
𝜎2)𝑇 

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇. Each Greek letter measures a 

different dimension to the risk in an option position and the aim of a trader is to manage the Greeks 

so that all risks are acceptable, see Hull (2012).Risk free rate is 𝑟 and stock volatility is 𝜎. The partial 

derivatives of 𝑉 = 𝑉(0, 𝑆0) with respect to these variables is extremely important in practice. In the 

next table we will present definitions for Greeks in Black-Scholes model : 

Table 1 Greeks and their definitions in Black-Scholes model  

Greek  Definition in Black -Scholes model  

Delta Δ 𝜕𝑉

𝜕𝑆0
= 𝒩(𝑑+) 

Gamma  Γ 𝜕2𝑉

𝜕𝑆0
2 =

𝒩′(𝑑+)

𝑆0𝜎√𝑇
 

Theta Θ 
−
𝜕𝑉

𝜕𝑇
= −

𝑆0𝒩
′(𝑑+)𝜎

2√𝑇
− 𝑟𝐾𝑒−𝑟𝑇𝒩(𝑑−) 

Vega 𝜈 𝜕𝑉

𝜕𝜎
= 𝑆0√𝑇𝒩

′(𝑑+) 

Rho 𝜌 𝜕𝑉

𝜕𝑇
= 𝐾𝑇𝑒−𝑟𝑇𝒩(𝑑−) 

Source: textbook definitions of Greeks in Black-Scholes model  

 

Delta measures sensitivity to a small change in the price of the underlying asset. The delta of a 
European option is therefore sensitive to: the time to expiry (𝑡),the volatility of the underlying ( 𝜎)the 

moneyness ( 
𝑆

𝐾
). Gamma measures the change of rate of delta. A short position in option is negative 

gamma. In this case, the trader will need to sell stocks if the stock price goes down and buy stocks if 
the stock price goes up to be delta hedged (sell low – buy high). While Rho measures sensitivity to the 
applicable risk-free interest rate. As the delta, it is positive for calls and negative for puts. Theta 

measures the sensitivity to the passage of time. The financial definition of Theta Θ is: −
𝜕𝑉

𝜕𝑇
 and with 

this definition, if you are “long an option, then you are short theta. “And Vega measures the sensitivity 
to volatility. The need to understand Vega only became important after trading options became as 
liquid as it is today. The formulas produced so far for Delta, Theta, Gamma, Vega, and Rho have been 
for a European option on a non-dividend-paying stock. Next table shows how this change when the 
stock pays a continuous dividend yield at rate 𝑞.  

 
25 In this section 𝒩(𝑥) ≔

1

√2𝜋
∫ exp (

𝑦2

2
) 𝑑𝑦  

𝑥

−∞
and 𝑑± =

1

𝜎√𝑇
[log (

𝑆(0)

𝐾
) + 𝑟𝑇 ±

𝜎2𝑇

2
] 
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Table 2Greek letters for European options on an asset that provides a yield at rate q 

Greek letter  Call option  Put option  

Delta Δ 𝑒−𝑞𝑇(𝑁(𝑑1) 𝑒−𝑞𝑇[(𝑁(𝑑1) − 1] 
Gamma  Γ 𝑁′(𝑑1)𝑒

−𝑞𝑇

𝑆0√𝑇
 

𝑁′(𝑑1)𝑒
−𝑞𝑇

𝑆0√𝑇
 

Theta Θ 
−
𝑆0𝑁

′(𝑑1)𝜎𝑒
−𝑞𝑇

2√𝑇
+ 𝑞𝑆0𝑁(𝑑1)𝑒

𝑞𝑇

− 𝑟𝐾𝑒−𝑟𝑇𝑁(𝑑2) 

−
𝑆0𝑁

′(𝑑1)𝜎𝑒
−𝑞𝑇

2√𝑇
+ 𝑞𝑆0𝑁(−𝑑1)𝑒

𝑞𝑇

− 𝑟𝐾𝑒−𝑟𝑇𝑁(−𝑑2) 
Vega 𝜈 𝑆0√𝑇𝑁

′(𝑑1)𝑒
−𝑞𝑇 𝑆0√𝑇𝑁

′(𝑑1)𝑒
−𝑞𝑇 

Rho 𝜌 𝐾𝑇𝑒−𝑟𝑇𝑁(𝑑2) −𝐾𝑇𝑒𝑟𝑇𝑁(−𝑑2) 

Source: textbook definitions of Greeks in Black-Scholes model, see Hull (2012) 

Where 𝑑1 =
ln(

𝑆0
𝐾
)+(𝑟+

𝜎2

2
)𝑇

𝜎 √𝑇 
 and 𝑑2 =

ln(
𝑆0
𝐾
)+(𝑟−

𝜎2

2
)𝑇

𝜎 √𝑇 
= 𝑑1 − 𝜎√𝑇. And: 𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒

−𝑟𝑇𝑁(𝑑2), 

𝑝 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1).  Next, graphically are presented Greeks versus stock price. 

 

Figure 10 Greeks versus stock price  

 

Source : Authors’  own calculations 

6.1 Relationship between Delta, Theta, and Gamma 
The price of a single derivative dependent on a non-dividend-paying stock must satisfy 

the differential equation 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧. 
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Previous is stock price process. Suppose now that 𝑓  is the price of a call option or other derivative 

contingent on 𝑆. The variable 𝑓 must be some function of 𝑆 and 𝑡.Hence from the assumptions : 

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 and it follows from Itô's lemma (see  Itô (1951)) ,and  Kiyosi (1944)26 that 

(derivation includes expansion in Taylor series),if Π is a twice differentiable scalar function 𝑉(𝑡, 𝑃) 

equation 49 

𝑑Π =
𝜕Π

𝜕𝑡
𝑑𝑡 +

𝜕𝑉

𝜕𝑡
(𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑆𝑡) +

1

2

𝜕2𝑉

𝜕Π2
(𝜇𝑡
2𝑑𝑡2 + 2𝜇𝑡𝜎𝑡𝑑𝑡𝑑𝑆𝑡 + 𝜎𝑡

2 𝑑𝑆2𝑡 ) + ⋯ 

𝑑Π = (
𝜕𝑉

𝜕𝑡
+ 𝜇

𝑆𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉 

𝜕𝑆2 
+ 𝛿𝜇𝑆) + (𝜎𝑆

𝜕𝑉

𝜕𝑆
+ 𝛿𝜎) 𝑑𝑧 

Where in previous = 𝑉(𝑆, 𝑡) option price at time 𝑡,and 𝑤(𝑃, 𝑡)  is the value of option,   𝛿-stocks  

value of portfolio Π = 𝑉 + 𝛿𝑆  change in portfolio is given as: 𝑑Π = 𝑑𝑉 + 𝛿𝑉𝑆 . 

Lemma 1. Itô's lemma :  Let 𝑧(𝑢) be a Wienner process 27 and then: 

equation 50 

𝑉𝑡 − 𝑉0 = ∫ 𝑓𝑥(𝑧(𝑢), 𝑢)𝑑𝑧(𝑢) − ∫ 𝑓𝜏(𝑧(𝑢), 𝑢)𝑑𝑢 +
1

2
∫ 𝑓𝑥,𝑥(𝑧(𝑢), 𝑢)𝑑𝑢
𝑡

0

 
𝑡

0

𝑡

0

 

Where 𝑉𝑡 = 𝑓(𝑧(𝑡), 𝜏)𝑙 0 ≤ 𝜏 ≡ 𝑇 − 𝑡 ≤ 𝑇, 𝑓 ∈ 𝐶
2,1((0,∞) × [0, 𝑇]) 

Theorem 2 . Itô's lemma :  Now let 𝑓(𝑡, 𝑥) be a smooth function of two variables,and let 𝑋𝑡 be  a 

stochastic process satisfying 𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡 where 𝐵𝑡 is Brownian motion, .Then we have: 

equation 51 

𝑑𝑓(𝑡, 𝑋𝑡) = (
𝜕𝑓

𝜕𝑡
+ 𝜇𝑡

𝜕𝑓

𝜕𝑥
+
1

2
𝜎𝑡
2
𝜕2𝑓

𝜕𝑥2
)𝑑𝑡 +

𝜕𝑓

𝜕𝑥
𝑑𝐵𝑡 

Proof. Now we have 

equation 52 

𝑑𝑓(𝑡, 𝑋𝑡) =
𝜕𝑓

𝜕𝑡
𝑑𝑡 +

𝜕𝑓

𝜕𝑥
𝑑𝑋𝑡 +

1

2

 𝜕2𝑓

𝜕𝑋2
(𝑑𝑋𝑡)

2

= (
𝜕𝑓

𝜕𝑡
+ 𝜇𝑡

𝜕𝑓

𝜕𝑥
+
1

2
𝜎𝑡
2
 𝜕2𝑓

𝜕𝑋2
)𝑑𝑡 + 𝜎𝑡  

𝜕𝑓

𝜕𝑥
𝑑𝐵𝑡 +⋯𝑑𝑡𝑑𝐵𝑇 +⋯(𝑑𝑡)

2……∄ 𝑑𝑡𝑑𝐵𝑇

+⋯(𝑑𝑡)2∎ 

Now for the discrete versions ∆𝑆 = 𝜇𝑆∆𝑡 + 𝜎𝑆∆𝑧 and: 

equation 53 

∆𝑓 = (
𝜕𝑓

𝜕𝑆
𝜇𝑆 +

𝜕𝑓

𝜕𝑡
+
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)∆𝑡 +

𝜕𝑓

𝜕𝑆
𝜎𝑆∆𝑧 

 
26 In mathematics, Itô's lemma is an identity used in Itô calculus to find the differential of a time-dependent 
function of a stochastic process. 
27 Wienner process is a continuous-time stochastic process 𝑊(𝑡) for 𝑡 >= 0 with 𝑊(0) = 0 and such that the 
increment 𝑊(𝑡) −𝑊(𝑠) is Gaussian with mean 0 and variance 𝑡 − 𝑠 for any 0 <= 𝑠 < 𝑡, and increments for 
nonoverlapping time intervals are independent. Brownian motion (i.e., random walk with random step sizes) is 
the most common example of a Wiener process. 
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Now substituting ∆𝑆 = 𝜇𝑆∆𝑡 + 𝜎𝑆∆𝑧 and  ∆𝑓 = (
𝜕𝑓

𝜕𝑆
𝜇𝑆 +

𝜕𝑓

𝜕𝑡
+
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)∆𝑡 +

𝜕𝑓

𝜕𝑆
𝜎𝑆∆𝑧 into 

change of portfolio equation ∆Π = −∆𝑓 +
𝜕𝑓

𝜕𝑆
∆𝑆 it comes from portfolio value: Π = −𝑓 +

𝜕𝑓

𝜕𝑆
𝑆 we 

get : 

equation 54 

∆Π = (−
𝜕𝑓

𝜕𝑡
−
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)∆𝑡  

Since ∄𝑧 ∆Π  is riskless for time ∆𝑡 .So this follows ∆Π = 𝑟Π∆𝑡 ,and substituting Π  and ∆Π into ∆Π =

𝑟Π∆𝑡 we get : 

equation 55 

(
𝜕𝑓

𝜕𝑡
+
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)∆𝑡 = 𝑟 (𝑓 −

𝜕𝑓

𝜕𝑆
𝑆)∆𝑡 ⇒

𝜕𝑓

𝜕𝑡 
+ 𝑟𝑆

𝜕𝑓

𝜕𝑆
+
1

2
 𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
= 𝑟𝑓 

This is Black-Merton-Scholes equation. 

Figure 11 Black-Scholes-Merton option pricing  

 

So now: 

equation 56 

𝜕Π

𝜕𝑡
+ 𝑟𝑆

𝜕Π

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2Π

𝜕𝑆2
= 𝑟Π  

Since : 

equation 57 

Θ =
𝜕Π

𝜕𝑡
; ∆=

𝜕Π

𝜕𝑆
; Γ = 𝑟Π 

We have that : 

Θ + 𝑟𝑆∆ +
1

2
𝜎2𝑆2Γ = 𝑟Π 
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For a delta neutral portfolio, ∆= 0 we have that:Θ +
1

2
𝜎2𝑆2Γ = 𝑟Π,see Hull,J.(2012). Next, we will 

compare stock-option prices for different option pricing methods and actual volatility vs implied 

volatility for different option pricing methods. 

7.Stock-price vs Option price and Implied volatility vs Actual volatility for different option 

pricing methods 
 

In this section we will graphically depict stock-price vs option price for different option pricing 

methods and actual volatility vs Implied volatility for different option pricing methods. 

Figure 12 Stock-price vs option price for different option pricing methods: Black-Scholes,Black-Scholes-
Mertton,Bachelier,CEV,GPL,GP-STATE-SPACE,SABR,martingale option pricing, Monté Carlo option pricing      

  

Figure 13 actual volatility  vs Implied volatility  for different option pricing methods: Black-Scholes,Black-Scholes-
Mertton,Bachelier,CEV,GPL, SABR,martingale option pricing, Monté Carlo option pricing 
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The highest volatility was depicted by GP-volatility model, and it is somehow following the actual 

stock price/volatility. While in some models, namely CEV methods of option pricing volatility might 

be close to infinite since price/volatility result is near zero. As we defined it implied volatility is the 

market's forecast of a likely movement in a security's price, Black-Scholes, and Black-Scholes -Merton 

model exert implied volatility above actual volatility, also CEV model shows similar pattern of implied 

volatility, while SABR and Martingale option pricing with Bachelier show implied volatility below 

actual volatility. Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E. (2002). SDEs of the model 

are given as:  

equation 58 

{
 
 

 
 𝑑𝑆𝑡 = 𝜎𝑡𝑆𝑡

𝛽
𝑑𝑊𝑡

𝑑𝜎𝑡 = 𝜎𝑡𝑣𝑑𝑍𝑡
𝑆(0) = 𝑆0
𝜎(0) = 𝜎0

〈𝐷𝑊𝑡 , 𝑑𝑍𝑡〉 − 𝜌𝑑𝑡 

  

 
Here 𝑆0 is the spot asset price and 𝜎0 is the spot value of volatility. The other model parameters are 
the CEV parameter (constant elasticity of variance28) 𝛽, the volatility of volatility 𝜈 and the correlation 
ρ between the Brownian motions 𝑊 and 𝑍 driving the asset and the volatility dynamics. The original 
SABR pricing formulae is given as: 
equation 59 

 𝜎𝑆𝐴𝐵𝑅(𝐾, 𝑇) ≈
𝜎0

(𝑆𝐾)
1−𝛽
2 (1+

(1−𝛽)2

24
log2(

𝑆

𝐾
)+

(1−𝛽)4

1920
log4(

𝐹

𝐾
)+..)

𝑧

𝑥(𝑧)
 (1 + (

(1−𝛽)2𝜎0
2

24(𝑆𝐾)1−𝛽
+

𝜌𝛽𝜈𝜎0

4(𝑆𝐾)
1−𝛽
2  

+

𝜈2
2−3𝜌2

24
)𝑇 +⋯)  

 

Where 𝑧 =
𝜈

𝛼
(𝑓𝐾)

1−𝛽
2 𝑙𝑜𝑔𝑓

𝐾
 ; and 𝑥(𝑧) = log {

√1−2𝜌𝑧+𝑧2+𝑧−𝜌

1−𝜌 
} for the special case of ATM (at the money) 

options :  
equation 60 

𝜎𝐴𝑇𝑀 = 𝜎𝐵(𝑓, 𝑓) =
𝛼

𝑓(1 − 𝛽)
{1 + [

(1 − 𝛽)2

24
+

𝛼2

𝑓2−2𝛽 
+
1

4

𝜌𝛽𝛼𝜈

𝑓(1 − 𝛽)
+
2 − 3𝜎2

24
𝜈2] 𝑡𝑒𝑥  +. } 

Martingales29 are out of the reach for this paper, but we will define 𝐸[𝑍|ℱ𝑛] where ℱ𝑛 is 𝜎-algebra, 

which denotes the conditional expectation of 𝑍 given all the information that is available to us on the 

nth stage. The symbol ℱ𝑛 denotes subsets of 𝑆 or collection of all events 𝒜 30. Martingale is a zero 

drift process: 𝑑𝜃 = 𝜎𝑑𝑍 see Ross (1976).And 𝐸(𝜃𝑡) = 𝜃0 .Now if 𝑓, 𝑔 are prices of securities traded 

we define: 𝜙 = 𝑓/𝑔 where 𝑔 is numeraire.  

 
28 Constant elasticity of variance (CEV)model is a stochastic volatility model that attempts to capture stochastic 

volatility and the leverage effect. The standard CEV model : 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑐𝑒𝑣  𝑆𝑡
𝛽
𝑑𝑊𝑡, 𝑆(0) = 𝑆0.This model 

is due: Schroder, M. (1989) and Andersen, L. ,Andreasen, J.(2000), see Kienitz, Wetterau (2012) 
29 A sequence of random variables 𝑋0, 𝑋1with finite means such that conditional expectations of 𝑋𝑛+1 given 
𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑛 are equal to 𝑋𝑛 i.e. ⟨𝑋𝑛+1|𝑋0, . . , 𝑋𝑛⟩ = 𝑋𝑛 
30 This ℱ𝑛 is a 𝜎-algebra, which means that any finite or countable union of elements of ℱ𝑛  is again in ℱ𝑛, and 
that the complement of a set in ℱ𝑛 is again in ℱ𝑛.  
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Theorem 3: The equivalent martingale measure result shows that, when there are no arbitrage 

opportunities, 𝜙 is a martingale for some choice of the market price of risk. 

Proof: suppose that 𝜎𝑓 , 𝜎𝑔 are volatilities of prices 𝑓, 𝑔.Derivative price is 𝑑𝑓 = 𝜇𝑓𝑑𝑡 + 𝜎𝑓𝑑𝑍 where 

𝜇 = 𝑟 + 𝜆𝜎 so that 𝑑𝑓 = (𝑟 + 𝜆𝜎)𝑓𝑑𝑡 + 𝜎𝑓𝑑𝑍 or in a world where market price of risk is 𝜎𝑔 we 

have: 

equation 61 

𝑑𝑓 = (𝑟 + 𝜆𝜎𝑔𝜎𝑓)𝑓𝑑𝑡 + 𝜎𝑓𝑓𝑑𝑍 

𝑑𝑔 = (𝑟 + 𝜎𝑔
2)𝑔𝑑𝑡 + 𝜎𝑔𝑔𝑑𝑍

 

Using Itô’s lemma we get: 

equation 62 

𝑑𝑙𝑛𝑓 = (𝑟 + 𝜎𝑔𝜎𝑓 −
𝜎2𝑓

2
)𝑑𝑡 + 𝜎𝑓𝑑𝑍

𝑑𝑙𝑛𝑔 = (𝑟 +
𝜎𝑔
2

2
)𝑑𝑡 + 𝜎𝑔𝑑𝑍 

 

And :𝑑 (ln
𝑓

𝑔
) = −

(𝜎𝑓−𝜎𝑔)
2

2
𝑑𝑡 + (𝜎𝑓 − 𝜎𝑔)𝑑𝑍. By Itô’s lemma 𝑑 (

𝑓

𝑔
) = (𝜎𝑓 − 𝜎𝑔)

𝑓

𝑔
𝑑𝑍 This shows 

that 
𝑓

𝑔
 is a martingale and proves the equivalent martingale measure result31 ∎. 

 For this model see more in Hull (2012). Let 𝜔𝐿
𝑎 is additive martingale adjustment variable. This 

adjustment is chosen such that the discounted and dividend 𝑑 adjusted price process 

−exp(−(𝑟 − 𝑑)𝑡)𝑆  is a martingale, and this is given by 𝜔𝐿
𝑎(𝑡) = 𝔼[𝐿(𝑇)].Here 𝐿(𝑡) is a Lèvy 

process- 𝐿 let be is an infinite divisible random variable ∀𝑡 ∈ [0,∞].𝐿 can be written as the sum of a 

diffusion, a continuous Martingale and a pure jump process; i.e: 

equation 63 

                     𝐿𝑡 = 𝑎𝑡 + 𝜎𝐵𝑡 + ∫ 𝑥𝑑𝑁̃𝜏|𝑥|<1
+ ∫ 𝑥𝑑𝑁𝜏|𝑥|≥1

(∙, 𝑑𝑥), ∀𝑡 ≥ 0 

In previous expression 𝑎 ∈ ℜ , 𝐵𝑡 is the standard Brownian motion, 𝑁  is defined to be the Poisson 
random measure of the Lèvy process. Lèvy -Khintchine formula: from the previous property it can be 
shown that for ∀𝜏 ≥ 0 one has that :  
equation 64 

𝐸|𝑒𝑖𝑛𝐿𝑡| = 𝑒^(−𝜏𝜓(𝑢)

𝜓(𝑢) = −𝑖𝑎𝑢 +
𝜎2

2
𝑢2 + ∫ (1 − 𝑒𝑖𝑢𝑥)𝑑𝑣(𝑥) + ∫ (1 + 𝑒𝑖𝑢𝑥 + 𝑖𝑢𝑥)𝑑𝑣(𝑥)

|𝑥|<1|𝑥|≥1

  

𝑎 ∈ ℜ; 𝜎 ∈ [0,∞); 𝑣 > 0 borel measure and 𝜎 is Lèvy measure. More so 𝑣(∙) = 𝐸[𝑁1(∙, 𝐴)],see 

Applebaum (2004). So additive martingale adjustment for Black-Scholes model is : 

equation 65 

𝜔𝐵𝑆 
𝑎 (𝑡) = −

𝜎2

2
𝑡 

 
31 In a risk neutral world 

𝑓0

𝑔0
= 𝐸𝑔 (

𝑓𝑇

𝑔𝑇
) where 𝐸𝑔 denotes the expected value in a world that is forward risk 

neutral with respect to 𝑔. 
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Monte-Carlo are simulation methods. Now, let’s consider problem of computing expectation:𝜃 =

𝐸[𝑓(𝑋)], 𝑋 ∼ 𝑓(𝑋).Monte Carlo simmulation (MC) approach specifies generating 𝑁 independent 

draws from the distribution𝑓(𝑋), 𝑋1, … , 𝑋𝑛 and approx.: 

equation 66 

𝐸[𝑓(𝑋)] ≈ 𝜃𝑁 ≡
1

𝑁
∑𝑓(𝑋𝑖)

𝑁

𝑖=1

 

By the law of large numbers, the approximation 𝜃𝑁 converges to the true value as 𝑁 → ∞ .Monte 

Carlo estimates 𝜃𝑁 is unbiased: 𝐸[𝜃𝑁] = 𝜃 by the Central limit theorem we have : 

equation 67 

√𝑁
𝜃𝑁 − 𝜃

𝜎
⇒ 𝒩(0,1), 𝜎2 = 𝑉𝑎𝑟[𝑓(𝑋)] 

Boyle (1977) is the first researcher to introduce Monte Carlo simulation into finance. Monte Carlo 

(MC) simulation is the primary method for pricing complex financial derivatives, such as contracts 

whose payoff depends on several correlated assets or on the entire sample path of an asset price, 

see Q,Jia (2009). The option price 𝜇 is written as an integral that represents the mathematical 

expectation of the discounted payoff under a so-called risk-neutral probability measure. 

equation 68 

𝜇 = 𝜇(𝑓) = ∫ …∫ 𝑓(𝑢0, … , 𝑢𝑡−1)𝑑𝑢0…𝑑𝑢𝑡−1 = ∫ 𝑓(𝑢)𝑑𝑢 = 𝐸[𝑓(𝑈)]
(0,1)𝑡

1

0

1

0

 

𝑢(𝑆(𝑡)) is the option payout function. Feynman-Kac formula connects the solutions of a specific class 

of partial differential equations to an expectation which establishes the mathematical link between 
the PDE formulation of the diffusion problems we encounter in finance and Monte Carlo simulations.  

Feynman-Kac formula- Suppose ∃𝒫(𝑡, 𝑥) that satisfies :
𝜕𝒫

𝜕𝑡
+ 𝑓(𝑡, 𝑥) 

𝜕𝒫

𝜕𝑥
+
1

2
𝜌2(𝑡, 𝑥)

𝜕2𝒫

𝜕𝑥2
− 𝑅(𝑥)𝒫 +

ℎ(𝑡, 𝑥) = 0  s.t 𝒫(𝑡, 𝑥) = 𝜓(𝑥). Then ∃𝑊̃(𝑡) and a measure 𝒬 where solution is given as 𝒫(𝑡, 𝑥) =

𝐸𝒬[∫ 𝒱(𝑡, 𝑢)ℎ(𝑢, 𝑥(𝑢))𝑑𝑢 + 𝒱(𝑡, 𝑇)𝜓(𝑥(𝑡))|ℱ𝑡]; 𝑡 < 𝑇
𝑇

𝑡
 𝑑𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡 +

𝜌(𝑡, 𝑥(𝑡))𝑑𝑊̃(𝑡);𝒱(𝑡, 𝑢) = exp (−∫ 𝑅(𝑥(𝑠)𝑑𝑠)
𝑢

𝑡
 given that ∫ 𝐸𝒬 [(𝜌(𝑠, 𝑥(𝑠))

𝜕𝒫

𝜕𝑥
(𝑠, 𝑥(𝑠))]

2
|ℱ𝑡] 

𝑇

𝑡
. 

Longstaff and Schwartz (2001),have proposed LSM Least squares Monte Carlo method.Here we 
consider price time zero price 𝑉𝜏(ℎ) depending on a payoff and stopping time 𝜏. We have: 𝑉𝜏(ℎ) =
𝑒𝑠𝑢𝑝𝑝𝜏𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝑡𝑖𝑚𝑒𝑉𝜏(ℎ).  

Theorem 3. Doob’s Optional Stopping Theorem :Suppose that 𝑋0 is a known constant, that 

𝑋0, 𝑋1, 𝑋2, . .. is a martingale, and that 𝑇 is a bounded stopping time. Then 𝐸[𝑋𝑇 ]  =  𝑋0.If (𝑋, 𝔉) is a 

martingale and 𝜏 is stopping time,and if 𝜏 is finite i.e. ℙ(𝜏 < ∞) = 1 and 𝔼[|𝑋𝜏|] < ∞ and 

lim
𝑛→∞

𝔼[𝑋𝑛𝕀{𝜏>𝑛}] = 0 ,then we have that the martingale property is preserved under random 

stopping. 

Proof: It can be see that 𝑋𝜏 = 𝑋𝜏∧𝑛 + (𝑋𝜏 − 𝑋𝑛) ∙ 𝕀{𝜏>𝑛},since 𝜏 ∧ 𝑛 is bounded stopping time,we 

know that martingale property is preserved hence, 𝔼[𝑋𝜏 ] = 𝔼[𝑋0] + 𝔼[𝑋𝜏 ∙ 𝕀{𝜏>𝑛}] −

𝔼[𝑋𝑛 ∙ 𝕀{𝜏>𝑛}].Here we can see lim
𝑛→∞

𝔼[𝑋𝑛𝕀{𝜏>𝑛}] = 0 and 𝔼[𝑋𝜏 ∙ 𝕀{𝜏>𝑛}] = ∑ 𝔼[𝑋𝜏 ∙ 𝕀{𝜏=𝑘}]
∞
𝑘=𝑛+1   so 

that we know that limit lim
𝑛→∞

∑ 𝔼[𝑋𝜏 ∙ 𝕀{𝜏=𝑘}]
∞
𝑘=𝑛+1 = 0,we have that 𝔼[𝑋𝜏 ] = 𝔼[𝑋0] as 𝑛 → ∞ ∎For 

more on martingales see Grimmett, G. R.; Stirzaker, D. R. (2001).  
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Figure 14  Monte Carlo least squares option pricing  

 

Source: Authors’ own calculation  

8.Conclusion  
This paper reviewed LVM models, GP-LVM, CEV model, DD model, Crank-Nicolson, and other finite 

difference methods, Greeks, SABR, martingales, and LSMC option pricing. The effects of changing the 

volatility on paths generated by Bachelier, Black-Scholes were estimated, and the results proved 

similar patterns in the scenario of 𝜎 low and 𝜎 high compared to the base scenario for both models. 

GP-Vol, GP-SSM, GARCH model vs simulated volatility graph favored GP-Vol, GP-SSM over GARCH 

model when contrasting their forecast vs simulated volatilities. Vanila options put and call pricing 

with different deltas (0.75,1,1.1) showed that results are most similar to the Black-Scholes when 

delta=1. Crank-Nicolson model provides higher intrinsic value for the ATM case and ITM and OTM 

case for the price after the initial stock price, but with diminishing returns, intrinsic minus extrinsic 

value is zero at the last price. Comparison of Finite difference method (FD) for option pricing with 

Black-Scholes equation for put and call options and finite element (FE) approximations proved that 

FD is identical to B-S approximation, while there is a gap between Black-Scholes call option pricing at 

𝜏 = 𝑇 ,B-S approximates higher strike prices compared to FE method. When we compared Greeks we 

observed that there is no put and call parity in delta ∆  (low put and call prices are reported for low 

values of delta) for negative delta.  For Theta (Theta indicates the amount an option's price would 

decrease as the time to expiration decreases, all else equal) call and put price increase when 𝜃 is 

lowered (Theta, usually expressed as a negative number for long positions, indicates how much the 

option's value will decline every day up to maturity), and for rho (represents the rate of change 

between an option's value and a 1% change in the interest rate) is negative for long puts but puts 

and call increase with 𝜌 ,for Gamma (measures the rate of change of the Delta of the option with 

respect to a move in the underlying asset) higher spot price is associated with lower gamma Γ , in the 

case of Vega 𝜈 spot price exerts concave relationship when compared to the measure of implied 

volatility (Vega).In Vanna call options have positive vanna while put have negative vanna , negative 

vanna reading indicates that as volatility increases, the portfolio delta becomes more negative and 

spot price reaches maximum, in the case of volga (a second-order derivative indicating the change in 

vega with respect to change in volatility) association between Volga and stock price is convex. The 

conclusion in this paper is that Gaussian process Local volatility model (GP-LVM) forecast proved to 
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be closest to the actual stock price when compared with B-S,Bachelier,CEV,GP-Vol,GP-SSM,SABR,M-

C,and martingale option pricing. While implied volatility was lower than actual volatility in 

SABR,martingale, and M-C option pricing methods. And implied volatility was higher than implied 

volatility in Black-Scholes, Black-Scholes-Merton model, and Bachelier. 
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