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Abstract

This paper will review LVM models, GP-LVM, CEV model, DD model, Crank-Nicolson, and other finite
difference methods, Greeks, SABR, martingales, and LSMC option pricing. The effects of changing the
volatility on paths generated by Bachelier, Black-Scholes proved no difference between these two
models. Implied volatility for all the models was higher when compared to actual volatility
for:BS,BSM, and Bachelier. Crank-Nicolson method for ATM, ITM,OTM showed higher intrinsic value
for the price after the initial stock price, but with diminishing returns, intrinsic minus extrinsic value
is zero at the last price. In Greeks analysis t was observed no put and call parity for different values of
:Delta,Gamma,rho. GP-LVM forecast proved to be closest to the actual stock price.
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1.Introduction

The market implied volatilities of stock index options have skewed structure, called volatility smile!.This
has been problem in option pricing literature, how to reconcile skewed volatility smile with Black-
Scholes model (see Black-Scholes(1973)). B-S model assumes that the index level is a random walk?
with constant volatility, but this seems to be false since if it is true then the index distribution at any
option expiration is log-normal®, and all options on the index must have same implied volatility. Implied
volatility is calculated by taking the observed option price in the market and a pricing formula such as
the Black-Scholes formula that will be introduced below and backing out the volatility that is consistent
with the option price given other input parameters such as the strike price of the option, for example
,see Kosowski,Neftci (2015).But Derman,Kani (1994) conclude that “87 crash (1987 The first

1 The relationship between implied volatility and exercise price is not constant and may look like a smile, a
skew, etc. (for simplicity are all called “smiles”) see Orlando,G., Taglialatela(2017).

2 Definition for Random walk: X;, ..., X,, is a sequence pf R valued independent and i.i.d random variables. A
random walk started at z € R% is the sequence (S,,) =0 Where So =z AS, =S,_; + X,,n = 1,X,, are
referred as steps of the random walk.

3 The stock evolution is described simple as: g = udt + odW , where p is the expected return u = r — q ,risk
free rate minus dividend, S is the stock price, dW is a Wiener process W ~ (0, dt)
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contemporary global financial crisis unfolded on October 19, 1987, a day known as “Black Monday,”
when the Dow Jones Industrial Average dropped 22.6 %), the market’s implied Black Scholes volatilities
for index options have shown a negative relationship between implied volatilities and strike prices —
out-of-the-money puts trade at higher implied volatilities than out-of-the-money calls”. Schwert (1987)
has done a time series analysis of the volatility of U. S. stock prices 1859- 1986 and compared this
volatility through time with other macroeconomic variables*,see Shiller (1988). The first explicit
general equilibrium solution to the option pricing problem for simple puts and call was presented in
Black,Scholes(BS) (1973) and Merton (BSM) (1973) all these four papers by Merton 1973 a,Merton
1973 b, Merton1973 ¢ ,Merton 1975 , provide, within the Capital Asset Pricing Model(CAPM)
framework, an elegant answer to the problem of assigning price to every option by identifying a
relation between the value of the stock and its option. LVM or Local volatility models can be traced
back to the work by Dupire (1994),and Derman,Kani (1994). They (previous papers) have realized that
under the assumption of risk neutrality a unique state-dependent diffusion process can be constructed
which is consistent with market prices for European options, where those prices are quoted®.As we
will see later when we will introduce this model in this paper g; represents diffusion coefficient which
is a function of space and time. This paper will summarize main formulae for LVM models and the
relationship between local volatilities and implied volatilities, for further discussions see Gatheral, J.
(2006), Rebonato, R. (2004),see Kienitz, Wetterau (2012). These models in order to be consistent with
the Efficient market hypothesis (EMH) see Fama (1970) (i.e. that asset prices fully reflect the
information), the unanticipated part of the stock price movements should be a martingale (conditional
expectation of the next value of the sequence, given all prior information, is equal to the present
value). With the papers by LeRoy and Porter (1981) and Shiller(1981), a literature has emerged arguing
that financial markets may be too volatile to be accounted for in terms of efficient markets hypothesis
(EMH).Later we will study Stochastic local volatility (SVM) models resented by SABR model. The
concept of an SVM applies the idea of a second source of randomness (these models are capable of
modeling not only the skew but the smile too). Therefore, we are adding another source risk to the
modelling. It is a proper assumption that the randomness of volatility is modelled dependent on the
asset. This is called leverage. CEV model® if B = 2 degenerates to B-S model. Empirical evidence (see
Beckers (1980)) has shown that the CEV diffusion process could be a better candidate for describing
the actual stock price behavior than the BS model. The exponent £ is called CEV exponent. The CEV
model furthermore can be seen as an arithmetic average of normal and logarithmic normal model’.
CEV and displaced diffusion models are related. As a rule of thumb as closer § = 1 better DD model
approximates the CEV model. The CEV and displaced diffusion processes have been posited as suitable
alternatives to a lognormal process in modelling the dynamics of market variables such as stock prices
and interest rates, see Svoboda-Greenwood, S. (2009). Some authors first of them would be Marris

4 Schwert (1987) found that the volatility of inflation, money growth, industrial production and business
failures is high during war periods, yet the volatility of stock returns is not particularly high during those
periods.

51n the financial markets, a quoted price is the last price at which a trade took place. Quoted prices is the
lowest price at which the holder of a security is willing to sell it. In other sales transactions, the quoted price is
the estimate given to provide goods or services.

B
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(1999), stated that for a linear parametrization option prices by CEV and DD model display similar
close correspondence across many ranges of strikes and maturities. The Crank-Nicolson method was
the approximation of the implicit method and the explicit method, and we are applying it later in this
paper as part of finite difference methods. This method approximation is more accurate than either
implicit or explicit method finite difference method approximations®. It has faster convergence than
implicit and explicit finite difference methods, see Kiprop,K.G.,Langata set2019).Finite difference’®
methods are used to price options by approximating continuous time differential equation that is used
to describe how an options price evolves over time, by a set of difference equations. Greeks measure
a different dimension to the risk in an option position and the aim of a trader is to manage the Greeks
so that all risks are acceptable, see Hull (2012). They are financial measures of the sensitivity of an
option’s price to its underlying determining parameters, such as volatility or the price of the underlying
asset. They are collectively called: risk measures, hedge parameters. SABR model or stochastic a, 8, p
model is a stochastic volatility model, which attempts to capture the volatility smile'® in derivatives
markets. The SABR model is an extension of the CEV model in which the volatility parameter follows
a stochastic process!'.Martingale option pricing formulae are in form of expectations which can be
efficiently solved numerically by using a Monte Carlo approach. This paper will investigate models of
Local volatility (Bachelier and Black-Scholes) introduced by Bachelier (1900),and Black-Scholes
(1973)*,versus Gaussian Process volatility model or GP-Vol is presented as an instance of GP-SSM or
Gaussian process state-space model see Tegner, Roberts (2019), and a Wu, Y. Lobato, J. M. H.,
Ghahramani,Z.(2014), and Wu, Y. Lobato, J. M. H. , Ghahramani,Z.(2014) .Next, we will introduce CEV
(Constant elasticity of variance) introduced by Cox (1975). And DD (Displaced diffusion model)
introduced by Rubisntein (1983), also see Schroder, M. (1989) and Andersen, L. ,Andreasen, J.(2000),
see Kienitz, Wetterau (2012). Later we will see how CEV and DD model are related and will investigate
CEV approximation exposed by Merino (2020). This will be followed by Crank-Nicolson finite difference
method that represents an average of the implicit method and the explicit method, see
(Crank,Nicolson (1947)).Later we will investigate Greeks this material draws heavily from Hull
(2012).Next, we will introduce SABR (Stochastic, a, 5, p model) introduced by Hagan, P.S., Kumar, D.,
Lesniewski, A.S., Woodward, D.E. (2002). Martingale option pricing will be reviewed this method was
introduced in option pricing by Ross (1976), Lévy process, followed by Monte-Carlo methods of option
pricing due to Boyle (1977),and LSMC- Least squares Monte Carlo method proposed by Longstaff and
Schwartz (2001).

8 As described in Fadugba, SE and Nwozo, CR. (2013), it can be shown that by equating the central difference

and the symmetric central differenceat F, 1 = F(t + %,S), we would end up with the Crank-Nicolson
>

method with an accuracy of O((At)?, (AS)?).

? Finite forward difference is defined as:Af,, = f,+1 — f,, and finite backward difference is Vi, = — foa
10volatility smiles are implied volatility patterns that are present in pricing financial options. It is a parameter
implied volatility that is needed to be modified for the Black—Scholes formula to fit market prices

BAF(t) = ac()F®)FAW (t); do(t) = ao(t)dZ(t); E(dW(t), dZ(t)) = pdt where p is assumed constant.

12 The Black-Scholes(1973) model is the simplest formulation for derivative pricing and is still utilized, there is
a flaw of that model when volatility surfaces, a situation which implies different underlying parameters for every
qguoted option, so in that situation Black-Scholes(1973) model is unable to correctly predict the evolution of
prices of the underlying asset, see Hirsa (2012). Despite its popularity, it is well known that the BS model suffers
from several deficiencies, such as inconsistencies with the market-observed implied volatility smile (or skew).
The Black-Scholes theory relies on two assumptions: the values of contingent claims do not depend on investor
preferences; therefore, the option can be valued as though the underlying stock’s expected return is riskless.
The risk neutral valuation is allowed because the option can be hedged with stock to create instantaneously
riskless portfolio.




2. Local volatility models (LVM)
GBM model (Geometric Brownian motion) for stock prices states!3:

equation 1
dS; = uS;dt + oS dW;

In previous g, 4 are constants. Success in applying LVM models can be attributed to Dupire, B. (1994)
and Derman, E. and Kani, |. (1994).Now, we can summarize the main formulae illustrating the
relationship between local volatilities, implied volatilities and European Call option prices. Following
results with proofs can be found in Gatheral, J. (2006), Rebonato, R. (2004) .

Theorem 1. The Dupire Formula. Now, Let C = C(K,T) be the price of a call option as a function of
strike and time to maturity. Hence the Local volatility function (LVF) satisfies;

equation 2

OC aC
+(r QK aK+qC

K?9°C
Z 9K?

0] F(T,K) =

Proof: from forward price C(T,K) = f;o(x — K)o (T, x)dx,where K is strike and T is exercise time,
and ¢(T,") is the density function. The actual market price at T = 0 would be p = C(T,K)e” —

(ftTr(s)ds) and ,u(t) =r(t) — q(t), where r(-),q(*) are possibly time varying. From forward

equation Z—(f = EW (a2(t, x)x%¢).So now from C(T,K) = f (x — K)¢(T, x)dx we have:

equation 3

g—;(T, K) = J (x — )—(T x)dx = J:O(azxztp)”(x — K)dx
2
= _EL (02x%¢p) 1dx = %GZ(T, K)K?*¢(T,K) — %02 (T, K)KZ%(T, K)

So this gives Dupire formula which is:

equation 4

o(T,K) =

13 GBM motion is defined as:y(t) = e*® where {y(t),t > 0;x(t),t > 0} ,one may also write previous
as:log(Y(t)) = X(t) = ut + oB(t).The solution to this model is given as: Y(t) = Y(0) exp [[u — l0‘2] t+

W(t)} previously Y(t) = eX®; X(t) = ut + oB(t); and we define: f(Y(t)) =1InY(t) = X(t) so now: A

at
2
;Z—{, }1, zy’; = Yz,smce uY (@), t) = u¥(t),o(Y(t),t) = a¥(t),from Ito’s formula we have: df (Y(t),t) =
{,u - EO‘ }dt + adB(t),we now know that d[In{Y(t)}] = de((tt)) [

obtain that : fo dinY (u) =f0 {y—;a }du+f odB(t). Now since B(0) =0 we have that In——

— l0‘2] dt + odB(t) from previous we
Y _
Y(0)
{u — iaz}t + 0B(t) .Form here we get solution for Y(t) = Y(0) exp {[u —50' ]t + W(t)} and X(t) =

[,u - %az] t + oB(t) = dX(t) = [u - %az] t + oB(0t).
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Previously if we differentiate C(T,K) = f;o(x — K)¢(T, x)dx twice we get :

equation 5
oc _ foo (x)dx = ®(T,K) -1
gk~ ), Pdx =T,
2%C
m=¢(7",x)

Where in previous ®(T,") is the distribution function of S,

Theorem 2. Gy6éngy theorem (see Gyongy, |. (1986)) Now, let W be and r-dimensional Brownian
motion and let :

equation 6
dX(t) = pdt + o, dW(t)

Is a d-dimensional 1t6 process where u is bounded d-dimensional adapted process and ¢ is a
bounded d X r-dimensional adapted process such that ga” is uniformly positive definite.3
deterministic measurable function fi and & such that:

equation 7

A(t, X (0)) = Elu|X(©)] v,
667(t,X(t)) = E[o,0l1X(D)] vt

And there exist solution to differential equation:
equation 8
dXAt = ﬁ(t,XAt)dt + 6(t,)?t)th

Sothat L(X,) = LX(t)Vt € R, . Gyéngy’s theorem is only valid for continuous It6 processes. It is
important to extend the result to processes with jumps.

Proof: Let following applies: u(A) = E [fooo 1A(X(t))€_f0wy(s’w)dsdt] where V Borel set A c R™

,where 1, denotes indicator function of the set,y is a non-negative t adapted stochastic process.
Denote the mimicking process by Y (t). Gydngy showed that the Green measure® of (¢, X(t)) is
identital to the Gren measure of (¢, Y (t)) .Now let y(¢) killing rate y () = 1 .so now we have:

equation 9

E Ume‘tf(t,X(t)dt] =E Ume'tf(t,Y(t))dt]
0 0

Gyogy proved his theorem by extending a result of Krylov (1984).Now, taking f(t,x) = e"ltg(x)
with this arbitrary non-negative constant A and functions g € C, (R™) we get:

4 The Green formula: E*[Tp] < +o0,Vx € D, and let f: R™ = R be a C? with compact support ,then: f(x) =
E"[f(XTD)] — J, Lef )G (x,dy) . In particular C* functions cc in D. And, f(x) = — [, L,f(¥)G (x,dy) .The
proof of Green formula is done by Dynkin’s formula and the definition of the Green measure: Ex[f(XTD)] =
flx)+ E"[fOTD Lyf(Xs)ds = f(x) + fD Lyf(y)G(x, dy)].The infinitesimal generator or Fourier multiplier

X —
operator A of X is Af (x) = ltilrgw, see Dynkin E.B.(1965).
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equation 10

oo

J‘me"“e‘tE[gX(t)]dt =f e MetE[gY (t)]dt
0 0

So previous gives us E[gX (t)] = E[gY(t)]m . Or in general lets consider n-dimensional It process
X, that satisfies:

equation 11

dX; = a(t,w)dt + B(t, w)dW;
3 (dY; = a(t,Yy)dt + b(t,Y,)dW,) — according to Gyogy theorem

Where X;,Y; have the same marginal distributions. X;.Y; have the same distribution Yt.Moreover,
Y; can be constructed by setting this:

equation 12

a(t' 3’) = EO [a(t, w)lXt = y]
b(t,y)b(t, )" = Eo[B(t, w)BT (t, )X, = y ]
In a financial setting, X; might be risk-neutral dynamics of a particular security. Then b(t,y)/y
represents the local volatility function o (t,"),because X;, Y; have same marginal distributions then we

know that European option prices can be priced correctly if we assume price dynamics are given by
Y; .

2.1 Bachelier and Black-Scholes model
Pricing in Bachelier model is given as:

equation 13

|S—K|~< 1 (5—1()2)
(S—K)* + 7l-=.=—") sk

4 2" 202T
)= ", N
(S—K)* +—2— otherwise
V2m

In previous 7(a, b) denotes incomplete gamma I function®.In Black, F. ,Scholes, M. (1973) the
authors consider the following model for an asset price:

equation 14

dS(t) = uS(t)dt + ogsS;dW;
S(0) =S,

See Kienitz,). Wetterau,D.(2012). In Bachelier model **previous is the same excepto = og.Pricing

European call and put option prices in the case of Bachelier model is:

15 Incomplete Gamma function., i.e. the regularized incomplete gamma function P and the regularized upper

1 (X goq -
P(x,a) =ﬁfo t*le~tdt

__1 (® . a-1,-t
Q(x,a)—r(a)fx t*le~tdt

incomplete gamma function Q are defined by : ,gamma function is defined by :

I'(a) = fooo t*letdt.
16 The Bachelier model is a model of an asset price under Brownian motion presented by Louis Bachelier in his
PhD thesis : The Theory of Speculation



equation 15

C(K,T) = (S(0)e™ — e ™TK)N(dy) + 05/T(d1)
P(K,T) = (S(0)e=%T — e TK)N'(—d,) + 05,/T,(dy)

_ 5(0) exp((r—-d)T)-K

Where : d; = e where V' (+) denotes CDF normal distribution and n(+)
corresponding PDF.For the B-S model we have:
equation 16
C(K,T) = (S(0)e T — e "TK)N'(dy) — e "TKN (d,)
P(K,T) = (S(0)e 4T — e "TK)N'(—dy) — e "TKN'(—d)
log(¥)+<r—d+%2)T o2
Where d; = s ;dy =dq = 7T .Next, we plot the effects of changing volatility on

paths generated by Bachelier and Black-Scholes model.

Figure 1 The effects of changing the volatility on paths generated by Bachelier, Black-Scholes oz = 0.01,0.02,0.03 and
ogs = 0.05,0.2,0.4
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Source :Authors’ calculations based on a code available at:
https://www.mathworks.com/matlabcentral/fileexchange/36966-risk-neutral-densities-for-financial-
models?s tid=FX rc2 behav

3.Gaussian process Local volatility model

In this part of the paper presented models are from Tegner, Roberts (2019), and a Wu, Y. Lobato, J.
M. H. , Ghahramani,Z.(2014). In the second reference model by Wu, Y. Lobato, J. M. H. ,
Ghahramani,Z.(2014) Gaussian Process volatility model or GP-Vol is presented as an instance of GP-
SSM or Gaussian process state-space model:

equation 17

xe ~ N (0, Gtz)i Uy = log(gtz) = f(We—1,X¢e1) + €, 60 ~ N(O, 0-1%)


https://www.mathworks.com/matlabcentral/fileexchange/36966-risk-neutral-densities-for-financial-models?s_tid=FX_rc2_behav
https://www.mathworks.com/matlabcentral/fileexchange/36966-risk-neutral-densities-for-financial-models?s_tid=FX_rc2_behav

The previous equation defines GP-SSM. Advantages of GP-Vol model are: GP-Vol Models the
unknown transition function in a non-parametric manner, GP-Vol reduces the risk of overfitting by
following a full Bayesian approach. Most popular volatility model is GARCH:

equation 18

q p
2Y. 2 _ 2 2
xX¢ ~N(0,0f);0f = ay + Z ajx;_j + Z Bioi—;
i=1 i=1

Next figure graphically depicts these models.

Figure 2 GP-Vol,GP-SSM,GARCH model vs simulated volatility

Gaussian Process Local Volatility Model Gaussian Process State Space Model for Option Pricing
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Source: Author’s own calculations

Next, we will move on Bayesian inference in GP-Vol model. In the standard Gaussian process
regression setting, the inputs and targets are fully observed and f can be learned using exact
Bayesian inference, see Rasmussen, Williams (2006). This is reported not to be the case in GP-vol
model, where the unknown parts of v; form part of the inputs and all targets. Now, let 8 denote the
model hyper-parameters*” and let f = f(v;), ..., f (vy) ,while directly learning the joint posterior of

17 Not to be confused with machine learning where in machine learning hyperparameter is a parameter whose
value is used to control the learning process. In Bayesian statistics, a hyperparameter is a parameter of a prior
distribution; the term is used to distinguish them from parameters of the model for the underlying system under
analysis.In Beta distribution p of Bernouli distribution 0 < p < 1;q = 1 — p ; p is a parameter of the underlying

——x%1(1-

system, while a; are parameters of prior distribution beta distr.which is f(x;a,8) = o)

xa—1 (1_x)[)’—1

p-1 X U7X
x) fol u®1(1-u)B~1du



the unknown variables f, v;.7 and 6 seems to be a challenging task. But the posterior p(v;10, x1.1)
can be approximated with particles®, see Andrieu, C., Doucet, A. and Holenstein, R. (2010).

Figure 3 SMC particle filter and | Particle smoother (Forward-filtering Backward-Smoother) (FFBSm) for linear Gaussian state
space model

Sequential Monte Carlo Particle Filter

3
=== True State . e
o Observations PF ost.
10 4 — Estimated State .
. ] 2
. 2] A
_____ SN \
., . N
8 ® s’e 0 7 1 A
. =
. '/" " %j’
L) =
6 ©
g % 0 r
5 e Y °® \
Y S \ /
4 = J ‘
1 Y f
|
2
2t
0
3 L
0 10 20 30 40 50 0 10 20 30 40 50 60 70 80 90 100
Time Step time

Source:Author’s wn calculatons and MATLAB code available at:
https://user.it.uu.se/~thosc112/research/sequential-monte-carlo-smc.html

For these models more can be found in papers by : Moral,D.P.,Doucet,A.(2014), Schén, T.B.,
Lindsten, F. (2014),Doucet, A. Johansen, A. M. (2011), Briers, M., Doucet A., Maskell, S. (2010).Next
plot shows Bayesian inference and GP-Vol model.

Figure 4 Bayesian inference and GP-Vol model

Bayesian Inference in GP-Vol Model

2.501
= True Volatility

=== GP-Vol Model|

Volatility

Time

Source: Author’s own calculations

Next,GP-LV model will be plotted,R code was executed in Jupyter with added R notebook.

18 Interacting particle methods are a class of Monte Carlo methods to sample from complex high-dimensional
probability distributions and to estimate their normalizing constants,see Moral,D.P.,Doucet,A.(2014).
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Figure 5 Implied volatility strike price and maturity
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Source: Author’s own calculations based on a code available at: https://github.com/martnj/GP-LV.git

Previous code and figures are based on a paper by Tegner, Roberts (2019).

4.CEV model

The model has been introduced by Cox (1975) as one of the early alternatives to the geometric
Brownian motion to model asset prices, see ,Linetsky, Mendoza(2010). The constant elasticity of

variance (CEV) model is a one-dimensional diffusion process that solves a stochastic differential
equation (SDE) of following type:

equation 19

dS, = uS,dt + aSP*' dB,

Instantaneous volatility is a(S) = aSP ,specified to be power function of the spot price. The model
has been introduced by Cox (1975) as one of the early alternative processes to the geometric

Brownian motion to model asset prices. Here (8 is the elasticity parameter of the local volatility, or
do

i ?a,and a is volatility scale parameter. When = 0 ,CEV model is reduced to constant volatility
geometric Brownian motion process employed in the Black-Scholes- Merton model. And when 8§ =
—1 the volatility specification is that of Bachelier®®, and for f = %this model reduces to square-root

model of Cox,Ross (1976). Beckers, S. (1980),writes that the option pricing formula for CEV class

contains infinite summation which makes evaluation difficult. This problem is solved by Cox,Ross
(1976) , who introduce alternative formulation for he option price :

equation 20

C(S, 1) =(S—Ke ™)N(y1) + (S+ Ke ")N(y;) + v(n(y) — n(y,))

Where N (+) is CDF of Normal distribution, n(-) is unit normal density distribution, also:

1% The asset price has the constant diffusion coefficient, while the logarithm of the asset price has the%
volatility.
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equation 21

1

1— e—er 2
v:(;(_Zr )

_ S—Ke™
Y1 = "

_ —-S—Ke™™
V2 = "

4.1 Displaced diffusion model (DD)

DD model had been presented by Rubisntein (1983).DD model can be presented in following
manner:

equation 22

DS, = u(S¢ + a)dt + opp (S¢ + a)dW;.
S(0) =S5, ’
The only parameter different than the standard Black-Scholes(1973) model is a > 0.This is called
displacement parameter hence the name of the pricer.Pricng formulae in DD model is given as see
also Rebonato (2002):

equation 23

C(K,T)=e""T((S(0) + a)NV'(dy) — K* NV (dy))
P(K,T) = e "T(K*N(—d,) — (S(0) + @)V (—dy))
Where K* = K + a and where :

equation 24

2

log (S—(Olg*_l_ a) + ULZ)—DT
O'DD\/T

For time dependent volatility we replace aj3pwith v3, (o, t;) := fttol oipu(du) ,parity between

Black-Scholes and DD model means : Cpp (K, T) = Cps(K, T).Rebonato (2004) shows that European

call option ATM (at the money) prices can be recovered reasonably:
equation 25

dy = id2=d1—UgnT

o g 1—-0fsT 2
ot 1-gsytaoms) T
DD dynamics is applied to del the skew in Libor markets see Joshi, Rebonato (2001).Now, the

dynamics of forward rate F;(t) in the spot measure is:

Opp =

equation 26

7 (Fe(®) + @) (aPP)"
1 + Tka(t)

dFO) +a) = () + )P (©) ).
k=0

The corresponding volatility in previous is al-DD (t),this controls the overall level of volatility while a
is the skew of volatility. DD model convenient form is:

11



equation 27
dS(t) = app(aS(t) + (1 —a)L)dW (t)
The DD model can be seen as an approximation of normal and log-normal model.

equation 28

ds(t) ~ 0, (S(0) + o/ (S(O)S(t) — S(0))aW (t) )

And therefore, by setting opp == % B = GL’(S(O)) a;é(zz))) ; L = 5(0) and by setting ap,p =

ocpvS(0)P~1,a = B,L = 5(0), shows that displaced diffusion model can be well approximated by a
CEV model.

4.2 CEV and DD models
To see how CEV and DD models are related see Marris,D.(1999), and Svoboda,S.(2006).First,we take
the following model:

equation 29

ds() = (nS(&) +S(0)(1 —n)aMdw (t)
n, o™ are constant parameters. The DD model fits here b a = S(O)ln;77 and aP? = noM ,and after
taking o™ = S(0)#~15Ywe can find that :

equation 30

O(S(t)ﬂ(acev)zdt a(S(t) + a)(aPP)?dt
350 s(O)=s(0) = 35(0) lsc)=sc0)

As f = 1 ,DD model approximates CEV model. The following is displaced CEV model:

equation 31

ds(t) = (S() + a)Pdw (t)
S(0) = S,

One the next plot we show comparisons between CEV and DD-CEV model®.This plot contains 5
separate lines of stock price plotted versus delta time and difference it is shown between forecast of
CEV model pricing and DD-CEV model. The larger the time delta the larger is the difference between
the CEV and DD-CEV model predictions.

20 Here the pricing is still possible in closed form (see, for instance, Andersen, L. and Piterbarg, V. (2010).
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Figure 6 CEV vs DD-CEV model

CEV vs. DD-CEV Model Simulations
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Source: authors’ own calculations

4.3 CEV approximation

Corollary 1. This is CEV exact formula. Let S; be a process described in dS; = uS;dt + an“dBt
then Vt € [0, T],we can express call option fair value Crt see Merino (2020)

equation 32

T
Cre = Cps(B — DE, [ f e @O Cys (u,5,,08 ) (T - wo?s; P Vau
t

4 B - 1)§2B -3)
_ 2
N B 21) E,

E¢

T
f e WO (u, Swr 05_1) (T — u)a‘*Sf('B_l)du]
t
T
U e" W OT(C 5 (u, Su af_l) (T - u)zaﬁStG(B_l)du] + (B
t
T
~ 1DE, U e “OACs (w, Sy 08 1) (T - u)a‘*s;‘(ﬁ‘”du]
t

So, we will write:

equation 33
E [er(T_t)CES (T' St 05_1)] = Cps(t, St UStB_l + Ucgy) + Ulcpy) + (Ulcgy)

Corollary 2. Let S; be a process described in dS; = uS,dt + anHdBt then vt € [0,T],we can
express call option fair value approximation Cftapprox see Merino (2020

21 The exact formula can be seen in Cox (1975), Emmanuel, Macbeth (1982),Schroder (1989).
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equation 34
1 _ _
Crtapprox = Cos (T:5r.0SE ™) + 2 (B = Dro2s P Ve (1,5, 0807 (1 - )2

1 . _

+7 (8- DB - )t P (s (t, S, o8P 1) (T — t)?
1 _ _

+z(B~ 1)2665°¥ 11200 (t, S, aSP 1) (T — t)3
1 _ i}

+ (B~ DotsH P VATC (t, S,,oSF 1) (T -2 +e

Where €, is error term, now we have that €, < (8 — 1)2I1(¢t, T, r, 0, 8) and I is increasing function

on every parameter. Proof is derived in Merino (2020). Next plot, shows put and call parity in Vanila
option pricing with the CEV model (with different deltas(0.75,1,1.1) and their comparison with Black-

Scholes result, and the error in put call parity for numerically calculated CEV model.

Figure 7 Vanila put and call option pricing for strike K = 10 and comparison with B-S results and error in put-call parity for
numerically calculated CEV

Error in the put-call parity for numerically calculated CEV model

\1IOaniIIa put and call option pricing with the CEV model for strike K =10
———-delta=0.75 error
delta = 1.00 1k average error
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Source: authors’ own calculations based on code available at:
https://github.com/fhqvst/cev/tree/master/figures

;X = 100;n = 100;m = 500;K = 10;
}, o = 0.5;

Parameters for estimation of this model were: T =
g = @x)x — K; r = 0.02; deltas = {0.75,1, 1.

SN

5. Crank-Nicolson and other finite difference methods (FDMs) with Galerkin Method of
Weighted Residuals (GMWR)

The Crank-Nicolson finite difference method represents an average of the implicit method and the
explicit method. For Crank-Nicolson see (Crank,Nicolson (1947)).For the implicit method forward and

. o Of _ fumi—fiy Of _ Fujes—Tij- .
backward difference approximations are: % = 1,1+A1$ = ,'% = ”’“AS =%, where f; ; is the value of

option at the (i, j) point, and AS is the change in stock-price. For the explicit method previous

X . i 9 f . _f. . 62 f . +f. i _zf. . L.
notation is given as: OF _ JuwvjmiTiwnjun  O7F _ Tyt ivnjm1 72 ijon o0 ) (2012). Finite
as 248 as2 As2

. . . . .. C N 9%f _ fijertfij-1—2fij . _
difference approximation at implicit method at (i, j) is given as: 352 = aez s since S =

JAS we can rearrange and knowing previous like:
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equation 35

- i =2
fl+1] fl]-f-(T—q)jASfLﬂ-l fl] 1+ 2]2A52f1,1+1 fl,] 1 fl] f”
At 2AS 2 AS?
firrj = Qjfiv1j-1 + bifivaj + Cifijra
Where :
equation 36

1 1,
ajzz(r—q)]At——a] At
bj = 1+ c?j%At + it

1 1,
cjz—z(r—q)]At——J] At

or in explicit difference method the difference equation is given as:

equation 37
fz+11 fu +r—q) .ASfi+1.j+1 + fir1,j-1 4 10_2 2752 firr,j+1 + fixrjo1 — 2f1+11 rf
At 1 248 277 ASZ Lj

fij = @ fixr,j-1 + bj fisr,j + ¢ fivr,jr1

Where q is dividend yield, r is risk free interest rate. Or in previous:

equation 38
ot ( 1( )'At+1 2'2A1:>
G T A\ 2V T VAT
by = —— (1 —0?%j2At
j = Trra LoD
o1 (1 )Ab+122M>
G = Tarac\a 0~ DAL+ 507

Finite difference methods were first applied by Schwartz, E. S. (1977). This equation f;44 j =
a;fiv1,j-1 + bjfiz1,j + ¢jfij+1 (implicit difference method) and this equation f; ; = a*fi11j-1 +
bj fi+1,j *+ ¢ fis1,j+1 , the Crank-Nicolson method averages these two equations:

equation 39

fij * fic1j = @ificrjo1 t bificyj + Gificrjer Y a5 fijo1 H b fij + ¢ fijaa
9ij = fij = 4 fij-1 = bifij = G fijn
9ij = Qifi—1,j-1 + bjfi1j + Cifi—1j+1 — fi-1,j

Crank-Nicolson method is similar in implementation to finite difference method, but his advantage is

. . . . . a a
in faster convergence?. The goal is to discretize Black-Scholes-Merton equation: a_); + rSa—’; +

22 |n matrix form Crank-Nicolson method is: CF,_; = DF;+ K;_; + K;,i =1,..n and the equation

asi—afi_1j-1+ (1 = bj)fie1j — €fi-1j+1 = @fij-1 + (1 — bj)fij + Cf; j+1.Previous equation is only stable
if: | C1D |l < 1 this is Crank-Nicolson Finite Difference Stability Condition. Previous shows the infinity norm
of the product of the matrices C~D. Heuristically, if the infinity norm ofC™1D is less than 1 then successive
values of F; in || C™!D ||,< 1 get smaller and smaller, and hence the algorithm converges, or is stable. In

previous a; = %(crzj2 —7j); by = —%(02]'2 +7);¢ = %(0'2]'2 + 7).
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9?2 o N
%0252 # =rf, now we use central approximation for df /3t and central approximation for df /dS

and standard approximation ford?f /952 :

equation 40
of, 1. .
;tzv] — fl,] 8];1—1,] + 0(5t2)
afi-%'i 1[0fi-1,j , Ofij 1[fi-1j+1tfi-1j-1 , fij+1tfij-1 2
as :5[ as +as]:E[ 285 T s ]+0(6S)
of. 1. 2 2
-3 1[5 fi-1,j , O fi,j] _ 1[fi—1,j+1—Zfi—1,j+fi—1,j—1 fi,j+1_2fi,j+fi,j—1] 2
asz 2| osz + sz 1~ 2 92 + as2 ++0(65%)

Hence the Crank-Nicolson method converges at the rates of O(§t2) and O(8S2). This is a faster rate
of convergence than either the explicit method, or the implicit method. Next we will show
comparisons between Crank-Nicolson vs Implicit FD model vs explicit FD model for ATM,ITM,0TM
options®.

Figure 8 ATM (At-The-Money), ITM (In-The-Money), and OTM (Out-Of-The-Money) option pricing comparisons Crank-
Nicolson vs intrinsic and extrinsic value

ATM Option ITM Option OTM Option
100 4 — Crank-Nicolson (ATM) —— Crank-Nicolson (ITM) —— Crank-Nicolson (OTM)
Intrinsic Value 100 4 Intrinsic Value ; Intrinsic Value
—— Extrinsic Value 4 —— Extrinsic Value g 75 4 —— Extrinsic Value
75 A
50
50 4
50
25 4 25 A
Lo [ v
5] 5] 5]
& £ &
5 O s 91 s o
y=] = y=]
=8 o o
[s] s} [s]
—25 - —25 4
—50
50 4
—~50 4
_754
—~75 1
—100 4
=100 1
T T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Stock Price Stock Price Stock Price

Source: Author’s own calculations

In this case Crank-Nicolson model provides higher intrinsic value?* for the ATM case and ITM and
OTM case for the price after the initial stock price, but with diminishing returns, intrinsic minus

ZBIn an ATM option, the difference between the strike price and the current market price is minimal. For call
options, stock price is above the agreed upon strike price. For put options, stock price is below the agreed upon
strike price. For call options, an ITM option has a strike price below the current market price. For put options, it
has a strike price above the current market price.If the strike price is higher than the underlying stock price, the
option is out-of-the-money (OTM), OTM options typically do not have intrinsic value and rely on extrinsic value
(time value and volatility) for any potential profit. For call options, stock price is below the agreed upon strike
price. For put options, stock price is above the agreed upon strike price.

2 Intrinsic value is the price difference between the current stock price and the strike price. An option's time
value or extrinsic value of an option is the amount of premium above its intrinsic value.
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extrinsic value is zero at the last price. Next, we will compare Finite difference method for option
pricing with Black-Scholes equation for put and call options and finite element (FE) approximations.

Figure 9
Black-Scholes Model - Call Option Pricing
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Source :Author’s own calculations based on a MATLAB code available at:
https://github.com/EricJXShi/Black-Scholes-FEM

Previous models use Classical Black-Scholes and transformed B-S model:

equation 41

Now we d

ov_ v 1 25262V V=0
ot "as 297 a2 TV T
oF 1 ,9°F
—_— = =% —
dt 2 Ox?
finer =T — t and PDE b L0V e 1 2620 s 0 Bound
ennert = an ecomes:. ot T 3s 20' 352 rv = u.boundaary

conditions for put and call options are :

equation 42

V(0,7) =0,V(c0,7) =S — Ke "5, V(S,0) = max(S — K, 0) .... Boundary conditions for call options
V(0,7) = Ke ", V(oo,7) = 0,V(S,0) = max(K — S, 0) .... Boundary conditions for put options
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Theoretical solution for Call option price is: Call =sN(d;) — Ke "*N(d,) whered; =

optionpyrice

S a2 S a2
w and d, = M .Now Applying Galerkin Method of Weighted Residuals (GMWR)
ovT 2 0'\/?
_OV gV L2620V
to——-— 15— + S 652 rV =0, resultsin :
equation 43

fs; A Sav 1252021/ P\ ds = o0
o\ Tt Pas 27 sz T N =

S¢,S% are limits of integration. The residual equation is:

R = av+1 Zszazv OV
ot 277 952" as

Where V can be approximated ~ by the following:

equation 44
2
V(S0 = ) N(S) Vi@
i=1
This equation f:ﬁ ( w S + L o282 % _ rV) N; dS = 0 transforms into:
1

052

equation 45

K J 4
[KT- >~
Now applying Crank-Nicolson result to previous equation:

equation 46

T+HAT _ yT
i o

(K- L—— = 6(la] = [C]- VF*7) + (1 = 6) - [a] = [€] - V)

J

Where 8 = %and a is a byproduct from using integration by parts and was canceled in the

derivation.The matrices in previous equation are defined as:

equation 47
1
K] = 7f N;N;dn, N;is a column vector of the element of shape f — nctions.
-1
[C]—AS 2 Sa’Nd +1 flszaNaNd + leNd
=7 0= | SHghdn+z0° | Soegg dntr | NiNidn)

[a] = 70% 52N < )|

D Galerkin Method of Weighted Residuals (GMWR) to the stock price dimension and CrankNicolson
to the time dimension

For Galerkin method see,
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6.Greeks

Let (0, Sy) denotes fair price at T = 0 European call option with strike price E and time to maturity
T, then the Black-Scholes valuation formula is given as®:

equation 48
V(0.5) = So log(%)+(r+%02)T I log(%)+(r—%az)T
)] = - e
0 0 CT\/7: CT\/i:
= SoN(dy) — Ee TN (d5)
So 1.2 So 12
Where : d; = log(E)Zs;+za Jr ;dy = log(E);(/; cialld = d, — 0+/T. Each Greek letter measures a

different dimension to the risk in an option position and the aim of a trader is to manage the Greeks
so that all risks are acceptable, see Hull (2012).Risk free rate is r and stock volatility is . The partial
derivatives of V = V (0, S,) with respect to these variables is extremely important in practice. In the
next table we will present definitions for Greeks in Black-Scholes model :

Table 1 Greeks and their definitions in Black-Scholes model

Greek Definition in Black -Scholes model
Delta A av
— =N
55 = V@D
Gamma T 0’V N'(d,)
éaj;g 5;0(7\/7;
Theta © av SoN'(d)o
€ta = _g_ﬂ(e—ﬂ]\f(d_)
oT ; 2T
Vv
veeav = SpVTN (@)
Rho p av _
— =KTe "
o7 e " N(do)

Source: textbook definitions of Greeks in Black-Scholes model

Delta measures sensitivity to a small change in the price of the underlying asset. The delta of a
European option is therefore sensitive to: the time to expiry (t),the volatility of the underlying ( o)the

S e L .
moneyness (E)‘ Gamma measures the change of rate of delta. A short position in option is negative
gamma. In this case, the trader will need to sell stocks if the stock price goes down and buy stocks if

the stock price goes up to be delta hedged (sell low — buy high). While Rho measures sensitivity to the
applicable risk-free interest rate. As the delta, it is positive for calls and negative for puts. Theta

measures the sensitivity to the passage of time. The financial definition of Theta O is: —% and with

this definition, if you are “long an option, then you are short theta. “And Vega measures the sensitivity
to volatility. The need to understand Vega only became important after trading options became as
liquid as it is today. The formulas produced so far for Delta, Theta, Gamma, Vega, and Rho have been
for a European option on a non-dividend-paying stock. Next table shows how this change when the
stock pays a continuous dividend yield at rate gq.

S(0)

. . 1 (x y? 1 aT
25 In this section NV (x) = \/T_nf_m exp (7) dy anddy = - [log (T) +rT+—
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Table 2Greek letters for European options on an asset that provides a yield at rate q

Greek letter Call option Put option
Delta A e 9T (N(d,) e 9T[(N(dy) — 1]
Gamma T N'(dy)e T N'(dy)e™ 9"
SoVT SoVT
Theta (¢ SoN,(dl)O'e_qT SoN,(dl)Je_qT
2VT 24T
+qSoN(dy)e?” +qSoN(=d;)ed”
—rKe ""N(d,) —rKe "TN(—d;)
Vega v SoVTN'(d,)e 9" SoVTN'(dy)e™ "
Rho p KTe "TN(d,) —KTe"™"N(—d,)
Source: textbook definitions of Greeks in Black-Scholes model, see Hull (2012)
ln(s—°)+ r+‘T—2 T ln(ﬁ)+ r—”—z T
Where d; = % andd, = % =d; —oVT.And: c = SyN(d,) — Ke "TN(d,),

p = Ke "TN(—d,) — SyN(—d,). Next, graphically are presented Greeks versus stock price.

Figure 10 Greeks versus stock price
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Source : Authors’ own calculations

6.1 Relationship between Delta, Theta, and Gamma
The price of a single derivative dependent on a non-dividend-paying stock must satisfy
the differential equation dS = uSdt + oSdz.
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Previous is stock price process. Suppose now that f is the price of a call option or other derivative
contingent on S. The variable f must be some function of S and t.Hence from the assumptions :
dS = uSdt + aSdz and it follows from Ité's lemma (see 1t6 (1951)) ,and Kiyosi (1944)% that
(derivation includes expansion in Taylor series),if I1 is a twice differentiable scalar function V (t, P)

equation 49

al_[ av 1 0%V

T ot
dll = ov Sav+1 25262V+85 +< SaV+8 )d
=\t THas 2972 552 TOH 925 T0%)4

— (u2dt? + 2u;0.dtdS, + o? dS?*t) + -

Where in previous = V (S, t) option price at time t,and w(P, t) is the value of option, &§-stocks
value of portfolio I1 = V + 8S change in portfolio is given as: dIl = dV + 6VS .

Lemma 1. Ité's lemma : Let z(u) be a Wienner process %’ and then:

equation 50

t t 1 t
Vo= | A wdz) ~ | fulat,wdu 3 [ fulatu), wa

Where V, = f(z(t), )I0<T=T -t <T,f € C**((0,0) x [0,T])

Theorem 2 . 1t0's lemma : Now let f (¢, x) be a smooth function of two variables,and let X; be a
stochastic process satisfying dX; = y;dt + a,dB; where B, is Brownian motion, .Then we have:

equation 51

of of 2f> dt + — of dB

Proof. Now we have

equation 52

of  of 1 02%f

df(t,Xt) = a—dt + a—dXt + Em(dxt)z
of of f af
<6t e o i1 o aXz)dt + 0y S dB, + - dtdBy + - (AD)? ... A dtdB;

~(dt)’m
Now for the discrete versions AS = uSAt + 0SAz and:

equation 53

_(9f f f 22 af
Af_(65”5+6t+2652 S At+aSJSAz

26 |n mathematics, I1té's lemma is an identity used in Itd calculus to find the differential of a time-dependent
function of a stochastic process.

27 Wienner process is a continuous-time stochastic process W (t) for t >= 0 with W (0) = 0 and such that the
increment W (t) — W (s) is Gaussian with mean 0 and variance t — s for any 0 <= s < t, and increments for
nonoverlapping time intervals are independent. Brownian motion (i.e., random walk with random step sizes) is
the most common example of a Wiener process.
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Now substituting AS = uSAt + 6SAz and Af = (a—qu +a—f zgs]; 2g2 )At + == O'SAZ into

change of portfolio equation AIl = —Af + fAS it comes from portfolio value: [l = —f + fS we
get:

equation 54
d 102
All = (——f—— ! 252>At

Since Az All is riskless for time At .So this follows AIl = rI1At ,and substituting IT1 and AIl into AIl =
rIIAt we get :

equation 55

f . 10% of of of 0%
(at+zasz“252>“— (r-555)ac= g+ rsghe 5 2525 =0

This is Black-Merton-Scholes equation.
Figure 11 Black-Scholes-Merton option pricing
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So now:
equation 56
on, on 1,0 _
9t etz ez T
Since :
equation 57
0 oIl A oIl =
" es T

We have that :

1
0 +TSA+§O'252F =7l
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For a delta neutral portfolio, A= 0 we have that:0 + %O’ZSZF = rll,see Hull,J.(2012). Next, we will

compare stock-option prices for different option pricing methods and actual volatility vs implied
volatility for different option pricing methods.

7.Stock-price vs Option price and Implied volatility vs Actual volatility for different option
pricing methods

In this section we will graphically depict stock-price vs option price for different option pricing
methods and actual volatility vs Implied volatility for different option pricing methods.

Figure 12 Stock-price vs option price for different option pricing methods: Black-Scholes,Black-Scholes-
Mertton,Bachelier,CEV,GPL,GP-STATE-SPACE,SABR, martingale option pricing, Monté Carlo option pricing

Stock Price vs. Option Prices for AAPL

o
\f%\r-" “"\M "'J/\\V
IARCA W A

125 4

—— Actual Stock Price

——- Black-Scholes Option Price

===~ Black-Scholes-Merton Option Price

- Bachelier Option Price

——- CEV Option Price
Gaussian Process Volatility Model

=== Gaussian Process State-Space Model
SABR Option Price

=== Martingale Pricing Option Price

——- Monte Carlo Pricing Option Price

=

5]

=)
L
1
]

Price / Volatility

<
a
L

50 +

T T T
0 50 100 150 200 250
Time

Figure 13 actual volatility vs Implied volatility for different option pricing methods: Black-Scholes,Black-Scholes-
Mertton,Bachelier,CEV,GPL, SABR,martingale option pricing, Monté Carlo option pricing
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The highest volatility was depicted by GP-volatility model, and it is somehow following the actual
stock price/volatility. While in some models, namely CEV methods of option pricing volatility might
be close to infinite since price/volatility result is near zero. As we defined it implied volatility is the
market's forecast of a likely movement in a security's price, Black-Scholes, and Black-Scholes -Merton
model exert implied volatility above actual volatility, also CEV model shows similar pattern of implied
volatility, while SABR and Martingale option pricing with Bachelier show implied volatility below
actual volatility. Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E. (2002). SDEs of the model
are given as:

equation 58

ds, = o,SPaw,
do; = oyvdZ;
S(0) =S,
a(0) =g,
(DW,,dZ,) — pdt

Here S, is the spot asset price and gy is the spot value of volatility. The other model parameters are
the CEV parameter (constant elasticity of variance?) 3, the volatility of volatility v and the correlation
p between the Brownian motions W and Z driving the asset and the volatility dynamics. The original

SABR pricing formulae is given as:
equation 59

(1-p)*a§ PBvI,
o (K,T) = — Jo z <1+( %+ 5 T
SABR (5K)12B< G- 3) log ( ) (195()) log (K) )x(Z) 24(SK)*=F L

4(SK) 2
22 3p
vi— >T+ )

v ﬂ
—(fK) 2 logf — -
Where z = d; and x(z) = 10g{M

— - } for the special case of ATM (at the money)

options :
equation 60

— 2 2 _ 2
oarm = 05(f. f) = [( A) . 1_phav 2= %0 Vz] Lex +-}

faa- B){ f2-2B+Zf(1—ﬁ)+ 24

Martingales® are out of the reach for this paper, but we will define E[Z|F,] where F, is -algebra,
which denotes the conditional expectation of Z given all the information that is available to us on the
nth stage. The symbol F,, denotes subsets of S or collection of all events A *. Martingale is a zero
drift process: d8 = gdZ see Ross (1976).And E(6;) = 6, .Now if f, g are prices of securities traded
we define: ¢ = f/g where g is numeraire.

28 Constant elasticity of variance (CEV)model is a stochastic volatility model that attempts to capture stochastic
volatility and the leverage effect. The standard CEV model : dS; = uS;dt + o, S dW,, $(0) = S,.This model
is due: Schroder, M. (1989) and Andersen, L. ,Andreasen, J.(2000), see Kienitz, Wetterau (2012)

29 A sequence of random variables X, X; with finite means such that conditional expectations of X,,,; given

Xo, X1, X5, ..., X, are equal to X, i.e. (X;411Xo, .., Xn) = X,

30 This F, is a o-algebra, which means that any finite or countable union of elements of F,, is again in F,, and
that the complement of a set in F, is again in F,.
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Theorem 3: The equivalent martingale measure result shows that, when there are no arbitrage
opportunities, ¢ is a martingale for some choice of the market price of risk.

Proof: suppose that ar, o, are volatilities of prices f, g.Derivative price is df = ufdt + ofdZ where
p =71+ Ao sothatdf = (r + Ao)fdt + ofdZ or in a world where market price of risk is o, we
have:

equation 61

df = (r +Aagaf)fdt +osfdZ
dg = (r + o?)gdt + o,9dZ

Using Itd’s lemma we get:

equation 62

2

o’f
dinf = <r + 0405 — T) dt + ofdZ

0.2
ding = <r + 79> dt + o,dZ

2
And :d (lng) = —@dt + (af - ag)dZ. By It6’s lemma d (g) = (O'f - ag)gdZ This shows

that 5 is a martingale and proves the equivalent martingale measure result’! m.

For this model see more in "u(2012) | et w{ is additive martingale adjustment variable. This
adjustment is chosen such that the discounted and dividend d adjusted price process

—exp(—(r — d)t)S is a martingale, and this is given by w{ (t) = E[L(T)].Here L(t) is a Leévy
process- L let be is an infinite divisible random variable Vt € [0, 00].L can be written as the sum of a
diffusion, a continuous Martingale and a pure jump process; i.e:

equation 63

L, =at+oB; + flx xdN, + flx xdN, (-, dx),Vt >0

<1 |=1

In previous expression a € R, B, is the standard Brownian motion, N is defined to be the Poisson
random measure of the Lévy process. Levy -Khintchine formula: from the previous property it can be
shown that for V7 = 0 one has that :

equation 64

Ele™te] = e(—m(u)
Y(u) = —iau + %Zuz + f|x|z1(1 — e )dv(x) + f|x|<1(1 + e™¥ + jux)dv(x)

a € R; 0 € [0,0); v > 0 borel measure and ¢ is Lévy measure. More so v(-) = E[N,(:,4)],see
Applebaum (2004). So additive martingale adjustment for Black-Scholes model is :

equation 65

a 0-2
wgs (t) = —7t

31 In a risk neutral world ;—O =E, (f—T) where E; denotes the expected value in a world that is forward risk

0 gr
neutral with respect to g.
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Monte-Carlo are simulation methods. Now, let’s consider problem of computing expectation:6 =
E[f(X)],X ~ f(X).Monte Carlo simmulation (MC) approach specifies generating N independent
draws from the distributionf (X), X3, ..., X;, and approx.:

equation 66

EIF (O] ~ Oy = Zf(X)

By the law of large numbers, the approximation §N converges to the true value as N — oo .Monte
Carlo estimates @), is unbiased: E[éN] = 6 by the Central limit theorem we have :

equation 67

v =0 N(0,1),62% = Var[f(X)]

Boyle (1977) is the first researcher to introduce Monte Carlo simulation into finance. Monte Carlo
(MC) simulation is the primary method for pricing complex financial derivatives, such as contracts
whose payoff depends on several correlated assets or on the entire sample path of an asset price,
see Q,Jia (2009). The option price u is written as an integral that represents the mathematical
expectation of the discounted payoff under a so-called risk-neutral probability measure.

equation 68

1 1
w=u(f) = j j F oy omrtie)dity dupy = | f)du = E[FQU)]
0 0 (0,1t

u(S(t)) is the option payout function. Feynman-Kac formula connects the solutions of a specific class
of partial differential equations to an expectation which establishes the mathematical link between
the PDE formulation of the diffusion problems we encounter in finance and Monte CarIo simulations.
Feynman-Kac formula- Suppose 3P(t, x) that satisfies -2 + f(t, ) — + pz(t x)— —R(x)P +
h(t,x) =0 s.t P(t,x) = P (x). Then AW (t) and a measure Q where solutlon is given as P(t,x) =
E, [ftTV(t' wh(u,x@W))du +V(t, Y(x(O)IF]; t < T dx(t) = f(t,x(t))dt +

p(t,x(£))dW (£);V(t,u) = exp (— ftuR(x(s)ds) given that ftT Eq [(p(s,x(s))g—i(s,x(s))]z Tt] .
Longstaff and Schwartz (2001),have proposed LSM Least squares Monte Carlo method.Here we
consider price time zero price V;(h) depending on a payoff and stopping time 7. We have: V.(h) =
esupprstoppingtimeVT(h)-

Theorem 3. Doob’s Optional Stopping Theorem :Suppose that X; is a known constant, that

Xy, X1, X5, ... is a martingale, and that T is a bounded stopping time. Then E[X; | = Xp.If (X, &) isa
martingale and T is stopping time,and if 7 is finite i.e. P(t < ) = 1 and E[|X;|] < o and

li_r){)lo ]E[XnH{T>n}] = 0 ,then we have that the martingale property is preserved under random
_:topping.

Proof: It can be see that X; = X;x, + (X7 — Xp,) - [z5ny,5ince T A nis bounded stopping time,we
know that martingale property is preserved hence, E[X; | = E[X,] + IE[XT . ]I{T>n}] —

[E[Xn . H{T>n}].Here we can see Tlll_r)go ]E[Xn]I{T>n}] =0and IE[XT . ]I{T>n}] = Yren+1 IE[XT . H{Tzk}] so
that we know that limit rlll—{lgo Y+l ]E[XT . H{Tzk}] = 0,we have that E[X; | = E[X,] asn — oo mFor

more on martingales see Grimmett, G. R.; Stirzaker, D. R. (2001).
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Figure 14 Monte Carlo least squares option pricing
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8.Conclusion

This paper reviewed LVM models, GP-LVM, CEV model, DD model, Crank-Nicolson, and other finite
difference methods, Greeks, SABR, martingales, and LSMC option pricing. The effects of changing the
volatility on paths generated by Bachelier, Black-Scholes were estimated, and the results proved
similar patterns in the scenario of o low and ¢ high compared to the base scenario for both models.
GP-Vol, GP-SSM, GARCH model vs simulated volatility graph favored GP-Vol, GP-SSM over GARCH
model when contrasting their forecast vs simulated volatilities. Vanila options put and call pricing
with different deltas (0.75,1,1.1) showed that results are most similar to the Black-Scholes when
delta=1. Crank-Nicolson model provides higher intrinsic value for the ATM case and ITM and OTM
case for the price after the initial stock price, but with diminishing returns, intrinsic minus extrinsic
value is zero at the last price. Comparison of Finite difference method (FD) for option pricing with
Black-Scholes equation for put and call options and finite element (FE) approximations proved that
FD is identical to B-S approximation, while there is a gap between Black-Scholes call option pricing at
T =T ,B-S approximates higher strike prices compared to FE method. When we compared Greeks we
observed that there is no put and call parity in delta A (low put and call prices are reported for low
values of delta) for negative delta. For Theta (Theta indicates the amount an option's price would
decrease as the time to expiration decreases, all else equal) call and put price increase when 8 is
lowered (Theta, usually expressed as a negative number for long positions, indicates how much the
option's value will decline every day up to maturity), and for rho (represents the rate of change
between an option's value and a 1% change in the interest rate) is negative for long puts but puts
and call increase with p ,for Gamma (measures the rate of change of the Delta of the option with
respect to a move in the underlying asset) higher spot price is associated with lower gamma I', in the
case of Vega v spot price exerts concave relationship when compared to the measure of implied
volatility (Vega).In Vanna call options have positive vanna while put have negative vanna, negative
vanna reading indicates that as volatility increases, the portfolio delta becomes more negative and
spot price reaches maximum, in the case of volga (a second-order derivative indicating the change in
vega with respect to change in volatility) association between Volga and stock price is convex. The
conclusion in this paper is that Gaussian process Local volatility model (GP-LVM) forecast proved to
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be closest to the actual stock price when compared with B-S,Bachelier,CEV,GP-Vol,GP-SSM,SABR,M-
C,and martingale option pricing. While implied volatility was lower than actual volatility in
SABR,martingale, and M-C option pricing methods. And implied volatility was higher than implied
volatility in Black-Scholes, Black-Scholes-Merton model, and Bachelier.
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