

1.ACARİS

ULUSLARARASI İBN SİNÂ

BİLİMSEL ARAŞTIRMALAR

VE İNOVASYON KONGRESİ

KONGRE KİTABI

25-26 EKİM 2025

BUHARA

[HTTPS://WWW.ACARISCONGRESS.COM/](https://www.acariscongress.com/)

1. ACARIS INTERNATIONAL IBN SINA SCIENTIFIC RESEARCHES AND INNOVATION CONGRESS BOOK

25-26 October/2025, Bukhara/ UZBEKISTAN

**EDITOR
Assoc. Prof. Dr. Gülşen İSTEK**

ISBN: 978-625-92709-8-2

All rights of this book belong to BİLSEL PUBLISHING.

The book is not intended for commercial profit.

It is responsibility of the author to abide by the publishing ethics rules.

Bu kitabın tüm hakları BİLSEL YAYINCILIK yayinevine aittir.

Kitap ticari bir kar amacı gütmemektedir.

Yayın etiği kurallarına uymak yazarın sorumluluğundadır.

<https://bilselkongreleri.com/>

30.10.2025

by BİLSEL PUBLISHING

All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

CONGRESS ID

CONGRESS TITLE

1. ACARIS INTERNATIONAL IBN SINA SCIENTIFIC RESEARCHES AND INNOVATION CONGRESS

DATE and PLACE

25-26 October/2025

Bukhara/ UZBEKISTAN

ORGANIZING COMMITTEE

Chairman of the Organizing Committee

Assoc. Prof. Dr. Gülşen İSTEK

University Academician Representative

Prof. Dr. Mehmet BAYIRLI

Balıkesir Üniversitesi

Prof. Dr. Alaaddin BOBAT

Kocaeli Üniversitesi

Dr. Öğr. Üyesi Mahmut ÇAMLICA

Bolu Abant İzzet Baysal Üniversitesi

PARTICIPANTS COUNTRY

Algeria/ Azerbaijan/France/India/Indonesia/Iran/Italy Morocco/Nigeria/

Pakistan/Romania/ /South Korea/ Argentina/

CONGRESS ORGANIZING COMMITTEE MEMBERS

Prof. Dr. Zuhal ALIM

Prof. Dr. Neriman ARAL

Prof. Dr. Mustafa ÖZ

Prof. Dr. Ayşe Nur SIR DÜNDAR

Prof. Dr. Nurhayat ATASOY

Prof. Dr. Iheanyi Omezuruuke Okonko

Prof. Dr. Elman Guliyev

Prof. Dr. Ardita Dylgjieri

Prof. Dr. Benahmed Abdelillah

Prof. Dr. Boualam Abderrahmane

Doç. Dr. Bahar ÇİFTÇİ

Doç. Dr. Gülbümser DURHAN

Doç. Dr. Yahya DOĞAR

Doç. Dr. Hilal UYSAL

Doç. Dr. Ozan Hikmet Arican

Assoc. Prof. Dr. Henry Akpojubaro Efegbere

Assoc. Prof. Dr. Girija Shankar Panigrahi

Assoc. Prof. Dr. Seyed Mehdi Talebi

Assoc. Prof. Dr. Rozina Khattak

Dr. Esra DURSUN

Dr. Uğur ERDEM

Dr. Enes CÖMERT

Dr. Onwudebelu Ugochukwu

Dr. Ioana Ioancio

Dr. Sharmistha Roy

Dr. Mirela Kapo

Dr. Erkam CÖMERT

Ömür YILDIZ

SCIENTIFIC COMMITTEE

Prof. Dr. Şükran KARACA
Sivas Cumhuriyet Üniversitesi

Prof. Dr. Yücel KABAPINAR
Marmara Üniversitesi

Prof. Dr. İnanç Özgen
Fırat Üniversitesi

Prof. Dr. Kivanç KAMBUROĞLU
Ankara Üniversitesi

Prof. Dr. Fatih Mehmet KANDEMİR
Aksaray Üniversitesi

Prof. Dr. Mehmet BAYIRLI
Balıkesir Üniversitesi

Prof. Dr. Neriman ARAL
Ankara Üniversitesi

Prof. Dr. Valbon Ademi
University of Tetovo, North Macedonia

Prof. Dr. Meziani Brahim
Djilali Bounaama University of Khemis Miliana, Algeria

Prof. Dr. Tinatin Mshvidobadze
Gori State University (Georgia)

Prof. Dr. Shemsije Demiri
High Economic School- Gostivar North Macedonia

Prof. Dr. Chaya Bagrecha
Jain Deemed to be University, India

Prof. Dr. Mohammed Waheed
Hashemite University, Jordan

Prof. Dr. Valentina Marinescu
University of Bucharest

Prof. Dr. Abdelkarim Boua
Sidi Mohamed Ben Abdellah University, Fez, Morocco

Prof. Dr. Nana Jincharadze

European University, Georgia

Prof. Dr. Khiari Reguia

Center for Scientific and Technical Research on Arid Regions (CRSTRA) Omar El

Bernaoui, Algeria

Prof. Prof. Dr. Karim Krett

Cadi Ayyad University, Moracco

Dr. Hassan Zariouh

Mohammed I University, Oujda Morocco

Prof. Dr. Marinescu Valentina

University of Bucharest,Romania

Doç. Dr. İsa KALAYCI

Hatay Mustafa Kemal Üniversitesi

Doç. Dr. Adem YOLCU

Kafkas Üniversitesi

Doç. Dr. Özcan İŞIK

Sivas Cumhuriyet Üniversitesi

Doç. Dr. İlker SUGÖZÜ

Mersin Üniversitesi

Doç. Dr. Nihan Feyman Gök

Çankırı Karatekin Üniversitesi

Doç. Dr. Hilal UYSAL

Bartın Üniversitesi

Doç. Dr. Yahya DOĞAR

İnönü Üniversitesi

Assoc. Prof. Dr. Valbona Habili Sauku

Tirana University, Albania

Assoc. Prof. Dr. Məmmədova Könül Ələddin qızı

ADPU-Azerbaijan

Assoc. Prof. Dr. Nesrine El Houari,

University of Tlemce Algeria

Assoc. Prof. Dr. Rozina Khattak

Shaheed Benazir Bhutto Women University, Pakistan

Assoc. Prof. Dr. Aliaksandr Susha,

Belarusian State University, Belarus

Assoc. Prof. Dr. Irina-Teodora Manolescu

Alexandru Ioan Cuza University of Iasi, Romania

Assoc. Prof. Dr. Vakeel Ahmad Khan,

Aligarh Muslim University, India

Assoc. Prof. Dr. Silviya Ivanova

Institute of Cryobiology and Food Technology, Bulgaria

Assoc. Prof. Dr. Mohammad Jafar Chamankar,

Urmia University/Iran

Assoc. Prof. Dr. Postolache Victoria

Alecu Russo Balti State University, Moldova

Assoc. Prof. Dr. Mokhtar Nebab

University of Boumerdes Algeria

Assoc. Prof. Dr. Gergana Gozanska Plovdiv

University “Paisii Hilendarski”, Bulgaria

Assoc. Prof. Dr. Abdullayeva Gultekin

Azerbaijan State Pedagogical University

Assoc. Prof. Dr. Ganaoui Maroua

University of Chadli Ben Djedid El-tarf and Souk Ahras university, Algeria

Dr. Miray CELEPLİ SÜTBAŞ

Akdeniz Üniversitesi

Dr. Çağdaş Salih MERİÇ

Gaziantep Üniversitesi

Dr. Mahmut ÇAMLICA

Bolu Abant İzzet Baysal Üniversitesi

Dr. Başak TUNA

Kırşehir Ahi Evran Üniversitesi

Dr. Elif AKYİĞİT ALBAYRAK

Bitlis Eren Üniversitesi

Dr. Betül AYMAN

Erciyes Üniversitesi

Dr. Göktuğ GÜL

Gazi Üniversitesi

Dr. Mirela Kapo

New York Tirana University, Albania

Dr. Zarifa NAZIRLI

Baku State University

Dr. Silva Ibrahim

University of Tirana, Boston USA

Dr. Solomon Uchechukwu Eze

Nnamdi Azikiwe University

Dr. Mirjeta Cenaj,

Sports University of Tirana, Albania

Dr. Mirjeta Cenaj

Sports University of Tirana, Albania

Dr. Mohammed Bentahar

Tahar Moulay University, Algeria

Dr. Israr Ali Khan

Institute of Numerical Sciences, Pakistan

Dr. Iosefina Blazsani-Batto

Teacher's Training Center Sibiu under Romanian Ministry of Education Romania

Dr. Blerina Xhelaj

University "Ismail Qemali" Vlora- Albania

Dr. Ramona Marinache,

University of Bucharest, Romania

Dr. Drita Avdyl

Chairwoman of National Chamber of Mediation Albania

PLANT DERIVED ESSENTIAL OILS AS ECO-FRIENDLY ALTERNATIVES OF SYNTHETIC PESTICIDES

Biljana Kovacevik¹, Sasa Mitrev², Emilija Arsov³, Natalija Markova Ruzdik⁴

¹Faculty of Agriculture, Goce Delchev University, Stip, Republic of North Macedonia, Plant Protection, biljana.kovacevik@ugd.edu.mk, ORCID 0000-0002-3361-0759

²Faculty of Agriculture, Goce Delchev University, Stip, Republic of North Macedonia, Plant Protection, sasa.mitrev@ugd.edu.mk, ORCID 0000-0003-2004-4687

³Faculty of Agriculture, Goce Delchev University, Stip, Republic of North Macedonia, Plant Protection, emilija.arsov@ugd.edu.mk, ORCID 0000-0002-8978-4635

⁴Faculty of Agriculture, Goce Delchev University, Stip, Republic of North Macedonia, Plant Production, natalija.markova@ugd.edu.mk, ORCID 0000-0003-1465-2512

Abstract

Essential oils are natural, aromatic compounds extracted from plants, known for their complex chemistry and powerful biological activity. Over the past few decades, they've emerged as promising candidates for eco-friendly pest control substances in agriculture. With proven effectiveness against a wide range of pests, including fungi, bacteria, insects, nematodes, and mites, essential oils offer a natural alternative to synthetic pesticides. Their strength lies in their diverse chemical makeup, particularly terpenes and related compounds, which can disrupt cell membranes and vital processes in plant pathogens. However, despite encouraging research, only a few EO-based products have reached the market. Challenges such as inconsistent chemical profiles, limited biomass availability, formulation issues, and regulatory barriers continue to hinder their wider use. Still, there is growing interest in overcoming these obstacles through cultivation strategies, improved extraction methods, and advanced formulations that enhance stability and efficacy. Recent studies also show that EOs can act as elicitors, enhancing the natural defenses in plants. The paper discusses the latest scientific literature on the biological activities of EOs from medicinal plants against plant pathogens, pests, and weeds, their chemical composition, and modes of action. Additionally, the review explains both the benefits and limitations of using EOs as alternatives to synthetic pesticides, as well as the regulatory and approval processes involved.

Keywords: biopesticides, secondary metabolites, aromatic compounds, terpenes, phenylpropanoids.

1. INTRODUCTION

According to the European Pharmacopoeia, essential oils (EOs) are complex mixtures of volatile, aromatic, lipophilic compounds obtained from plant material through methods such as steam or water distillation, dry distillation, or mechanical processes without the application of heat. These compounds are predominantly localized in the leaves and flowers of higher plants and are primarily biosynthesized via enzymatic mevalonate (MVA) and methylerythritol phosphate (MEP) pathways (Siqueira et al., 2022). The commercialization of EO-based biopesticides began in the 1990s with the introduction of EcoSMART, a formulation containing oils such as peppermint, clove, rosemary, and thyme, demonstrating efficacy against a range of phytopathogens and insect pests. Recent bibliometric analysis indicates that over 60% of related studies are published within the last four years, which reflects a growing scientific interest of EOs as biopesticides (Sharma et al., 2023). The majority of these studies focus on insecticidal activity against *Lepidoptera* and emphasize oils such as lemongrass, citronella, clove, and eucalyptus (Ramasamy and Subramanian, 2022). Additional investigations have identified EOs with insecticidal, herbicidal, acaricidal, nematocidal, antibacterial, and antifungal activities (Naz et al., 2021). However, only a limited number have been approved as commercial biopesticides, underscoring the need for further research into their mechanisms of action, regulatory compliance, and integration into pest management systems.

2. CHEMICAL COMPOSITION OF EOs

Essential oils (EOs) are complex mixtures of volatile organic compounds (VOCs), lacking fatty substances typically found in oils. Their chemical composition is influenced by factors such as plant physiology, climate, soil conditions, plant health, harvest timing, and extraction methods (Bakkali et al., 2008). The development of chromatographic and spectroscopic techniques has advanced the identification of EO constituents, with terpenes, terpenoids, and phenylpropanoids being the most abundant and bioactive compounds (Lee and Lee, 2018) (Table 1). Terpene synthesis occurs in plastids via the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway, with isopentenyl diphosphate and dimethylallyl diphosphate as precursors (Rodriguez and Dyer, 2019).

Table 1. Some EOs compounds and their effectiveness

compound	Chemical class	Source/Essential Oil	Effectiveness
<i>Azadirachtin</i>	Tetranortriterpenoid	Neem	Broad-spectrum insecticidal and antifungal; disrupts feeding, molting, reproduction
<i>Citronellal</i>	Monoterpeneoid aldehyde	Citronella, geranium, lemongrass	Repellent/insecticidal (mosquitoes, aphids, mealybugs, thrips); nematicidal and fungicidal activity
<i>Geraniol</i>	Monoterpeneoid alcohol	Citronella, geranium, lemongrass	
<i>Carvacrol</i>	Monoterpeneoid phenol	Oregano, thyme	Potent antifungal, anti- <i>Rhizoctonia</i> activity, insect/acarid toxicity;
<i>Camphor</i>	Monoterpeneoid ketone	Eucalyptus, rosemary	
<i>1,8-Cineole (Eucalyptol)</i>	Monoterpeneoid ether	Eucalyptus, rosemary	Antifungal, insecticidal, acaricidal; inhibits nematode egg hatching
<i>Eugenol</i>	Phenylpropanoid	Clove, cinnamon	Antifungal (e.g. <i>Colletotrichum, Fusarium</i>), insecticidal, acaricidal
<i>Trans- Anethole</i>	Phenylpropanoid	Fennel, anise, star anise	Insecticidal and nematicidal activity
<i>Linalool</i>	Monoterpeneoid alcohol	Lavender, basil, coriander	insecticidal/fumigant (stored-grain pests, thrips)
<i>Thymol</i>	Monoterpeneoid phenol	Thyme, oregano, savory	Strong antifungal (<i>Fusarium, Verticillium, Phytophthora</i>) and miticidal activity

3. ANTIMICROBIAL ACTIVITY

EOs exhibit both single and multi-target bioactivity against microorganisms, with their efficacy largely attributed to their chemical composition. While major EO compounds are often studied, bioactivity is typically enhanced by the unique chemical profiles of EOs, which depend on the plant species, plant part, and extraction method (Bakkali et al., 2008). EO's lipophilic nature allows them to penetrate microorganism cell walls, increasing permeability, and contributing to higher bioactivity, especially against gram-positive bacteria with an outer peptidoglycan layer (Zuzarte and Pimenta, 2013). For example, *Psoralea glandulosa* EO was found effective against *Clavibacter michiganensis*, a seed-borne pathogen (Singh and Kapoor, 2017). Terpene alcohols with varying carbon chain lengths, such as farnesol and nerolidol, have shown strong antibacterial properties (Costa et al., 2021). Monoterpenes, commonly found in thyme and oregano EOs, are particularly effective against plant pathogens acting by disrupting cell membranes and interfering with metabolic processes. Thymol, for instance, inhibits *Botrytis cinerea*, *Fusarium oxysporum*, and *Alternaria alternata* (Koul and Walia, 2020) while carvacrol targets *Rhizoctonia solani* (Gheorghe and Stănescu, 2020). Other monoterpenes like linalool and menthol demonstrate efficacy against root rot pathogens and postharvest molds (Dziri and Chouchen, 2021). Additionally, compounds like eucalyptol (1,8-cineole) from *Eucalyptus globulus* show effectiveness against *Verticillium dahliae* and *Xanthomonas* spp. (Morteza-Semnani and Fathi, 2007). Terpenes such as α -pinene and β -pinene, found in conifer oils, also display strong antimicrobial activity against fungi like *Fusarium* spp. and *Botrytis cinerea* (Carmona and Vila, 2019). This growing body of research highlights the potential of EOs as eco-friendly biopesticides in agriculture (Table 2).

Table 2. Some EOs based commercial biopesticides for plant protection

EO source	Commercial name	Producer	Effective against
<i>Allium sativum</i>	GC-3	JH Biotech, California Inc.,	Powdery Mildew
<i>Clove oil</i> <i>Garlic oil</i>	GC-Mite	JH Biotech, California Inc.,	various mites and insects
<i>Clove oil</i>	BIOXEDA, Matratec, WeedZap	Xeda International Brandt, JH Biotech, Inc.	Fungicide, bioherbicide
<i>Thyme oil</i>	Tymox	Laboratoire M2	powdery mildew, gray mold and fire blight
<i>Rosmarinus officinalis</i>	EcoTrol Plus (10%) Hexacide (5%) Sporan (17.6%)	EcoSMART Technologies Inc.	Mites, aphids, beetles, thrips, whiteflies, caterpillars, mealybugs
<i>Orange oil</i>	GreenMatch	Pomerix	Aphids, whiteflies, soft-bodied insects
<i>Neem essential oil combined with Beauveria bassiana (a fungal biopesticide)</i>	Naturalis-L	Agrigrem Ltd.	Whiteflies, aphids, and thrips
<i>Beauveria bassiana and rosemary EO</i>	Botani MAXX	Gard Certis Biologicals	aphids, thrips, and spider mites
<i>Rosemary, geraniol and peppermint EOs</i>	Ecotec	Brandt Consolidated, Inc.	Mites, thrips, and aphids

4. LIMITATIONS AND CHALLENGES

One of the main advantages of essential oils is their natural origin, which makes them biodegradable and generally safer for the environment than synthetic pesticides. They tend to have low toxicity to humans, animals, and beneficial insects such as bees, making them an appealing choice for integrated pest management (Aydin and Duman, 2017). Moreover, essential oils can act against a broad spectrum of pests and pathogens. For instance, neem oil is widely used to deter insect pests, while tea tree and thyme oils are known for their antifungal effects (Koul and Walia, 2018). Their use also contributes to reducing chemical residues in food and soil, promoting healthier ecosystems. However, essential oils also have several limitations. Their efficacy is often lower and less consistent than that of conventional pesticides, as their volatile nature causes them to degrade quickly when exposed to sunlight or high temperatures. This short persistence means they need to be applied more frequently, which can increase labor and costs. Additionally, the production of essential oils can be expensive, and large-scale application may not be economically viable for all farmers. Another drawback is the potential for phytotoxic effects, as high concentrations or improper application can harm plant tissues (Calvo and Jaramillo, 2019). Overall, while essential oils represent a promising and environmentally friendly alternative for plant protection, their practical use still faces challenges related to stability, cost, and standardization that need to be addressed before they can fully replace synthetic pesticides.

5. CONCLUSION

Essential oils (EOs) have demonstrated efficacy against a range of plant pests and diseases, including fungi, insects, and nematodes. Their synergistic effects lower the risk of resistance development, positioning them as promising biopesticides. However, challenges such as biomass availability, chemical instability, formulation difficulties, and potential phytotoxicity hinder their widespread use. Addressing these issues could be facilitated through plant domestication and cultivation, which may improve chemical stability (chemotype consistency) and biomass production. Advanced formulations could also mitigate volatility and enhance chemical stability, optimizing EOs for practical use. Recent studies have also explored the indirect effects of EOs, such as priming, which enhances plant defense mechanisms. Research on EO-induced priming, particularly in response to fungal pathogens, has shown promising results. Notably, seed coating with EOs has demonstrated priming effects in *Solanum lycopersicum* seedlings against *Fusarium oxysporum*, triggering metabolic and epigenetic changes with minimal EO usage and long-lasting effects. These findings underscore the potential of EOs in biopesticide development, but further research is necessary to elucidate the influence of EO composition on plant responses to biotic stress. This knowledge will be critical for optimizing EO applications and maximizing their effectiveness in agriculture.

REFERENCES

1. Siqueira, E. A., Silva, A. B., & Souza, T. C. (2022). Biological activity and chemical characterization of essential oils from plants. *Molecules*, 26(23), 5610. <https://doi.org/10.3390/molecules26235610>.
2. Sharma, R. P., Singh, B., & Kumar, P. (2023). Recent trends in the application of essential oils as biopesticides: A bibliometric analysis. *Environmental Science and Pollution Research*, 30(12), 12134-12148. <https://doi.org/10.1007/s11356-023-26940-8>
3. Ramasamy, S., & Subramanian, S. (2022). Insecticidal activity of essential oils against insect pests of crops. *Horticultural Research*, 9(2), 152-158.
4. Naz, T., Saleem, M., & Batool, S. (2021). Essential oils as biopesticides for sustainable agriculture: Efficacy, mechanisms, and applications. *Plants*, 10(16), 2916. <https://doi.org/10.3390/plants10162916>
5. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). *Biological effects of essential oils – A review*. *Food and Chemical Toxicology*, 46(2), 446-475. <https://doi.org/10.1016/j.fct.2007.09.106>
6. Lee, S. G., & Lee, J. H. (2018). Chemical composition and biological activities of essential oils from different plant species: A review. *Molecules*, 23(6), 1401. <https://doi.org/10.3390/molecules23061401>
7. Rodriguez, E., & Dyer, R. (2019). Biosynthesis of terpenes: The MEP pathway. In S. G. Rollin (Ed.), *Biosynthesis of Secondary Metabolites in Plants* (pp. 75-101). Springer. https://doi.org/10.1007/978-3-030-27072-6_5.
8. Zuzarte, M., & Pimenta, R. (2013). Antibacterial activity of essential oils: A review of their mechanisms of action and applications. *Plant Therapy*, 1(3), 128-138. <https://doi.org/10.1111/pt.12006>
9. Singh, R., & Kapoor, M. (2017). *Antimicrobial potential of essential oils from Psoralea species*. *Phytopathology*, 107(4), 337-343. <https://doi.org/10.1094/PHYTO-07-16-0226-R>
10. Costa, E. R., Bittencourt, A. S., & Araujo, A. L. (2021). *Farnesol and nerolidol: Essential oils and their potential for antimicrobial applications*. *Journal of Essential Oil Research*, 33(6), 456-464. <https://doi.org/10.1080/10412905.2021.1964612>
11. Koul, O., & Walia, S. (2020). Thymol and its role in controlling fungal diseases in crops. *Crop Protection*, 130, 105053. <https://doi.org/10.1016/j.cropro.2019.105053>.

1. ACARIS INTERNATIONAL IBN SINA SCIENTIFIC RESEARCHES AND INNOVATION CONGRESS 25-26 October/2025

12. Gheorghe, I., & Stănescu, U. (2020). *Antifungal activity of carvacrol against soilborne plant pathogens*. *Scientific Reports*, 10(1), 304. <https://doi.org/10.1038/s41598-019-57391-1>.

13. Dziri, S., & Chouchen, F. (2021). Essential oils for postharvest treatment: Efficacy of linalool and menthol in controlling fungal pathogens. *Postharvest Biology and Technology*, 174, 111439. <https://doi.org/10.1016/j.postharvbio.2021.111439>.

14. Morteza-Semnani, K., & Fathi, B. (2007). *Antibacterial and antifungal activity of eucalyptol from *Eucalyptus globulus*. *Journal of Agricultural and Food Chemistry*, 55(22), 9037-9041. <https://doi.org/10.1021/jf071937e>.

15. Carmona, E. R., & Vila, J. (2019). *Antimicrobial activity of α -pinene and β -pinene from conifer oils*. *Fitoterapia*, 137, 104198. <https://doi.org/10.1016/j.fitote.2019.104198>.

16. Aydin, S., & Duman, O. (2017). Safety and environmental benefits of using essential oils in pest management. *Pest Management Science*, 73(4), 787-794. <https://doi.org/10.1002/ps.4412>.

17. Koul, O., & Walia, S. (2018). *Role of essential oils in pest management: A review*. *Biological Control*, 130, 147-153. <https://doi.org/10.1016/j.biocontrol.2018.01.009>.

18. Calvo, J. A., & Jaramillo, M. (2019). *Volatility and stability of essential oils in pest control applications: Limitations and improvements*. *Journal of Essential Oil Research*, 31(5), 394-401. <https://doi.org/10.1080/10412905.2019.1628875>