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Abstract—1In this paper, a new dynamically adjustable ge-
netic algorithm for inverse shape optimization of electrical
devices is proposed. The algorithm starts with initial pop-
ulation which is not entirely randomly defined and dynam-
ically changes the position and the width of the searching
space as the searching procedure evolves with time and the
objective function approaches its optimum. The proposed
algorithm is successfully applied for inverse shape optimiza-
tion of a die mold press machine and for pole shape opti-
mization of a rotating machine. To achieve smooth pole face
the optimized shape is defined using several control points
and ordinary spline functions.
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I. INTRODUCTION

For optimization and design of shapes and parameters of
various electromagnetic devices, in general, two classes of
optimization methods can be utilized: direct optimization
methods and inverse optimization methods. Direct meth-
ods are usually very time consuming and require treatment
of one variable as a parameter while other variables are
changeable. On the other hand, inverse optimization meth-
ods although faster than direct methods, they are very case
sensitive and problem dependable.

Recently, various deterministic and probabilistic search-
ing methods, such as simulated annealing, neural net-
works, genetic algorithms, artificial life (A-life), evolu-
tionary strategies, etc., have been widely employed in
various scientific fields for identifying optimal solutions.
Among them, the genetic algorithms (GAs) have emerged
as very practical and robust optimization tools and search-
ing methods [1].
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Genetic algorithms belong to the group of probabilis-
tic searching methods and they have a high probability
of locating the global optimum in the multidimensional
searching space discarding all existing local optima. The
implementation of GAs for inverse optimization of electro-
magnetic devices has been recently proposed [2], [3]. The
robustness of the method, its ability to deal directly with
optimization variables without any derivatives and usage
of an encoded binary representation of the optimization
variables rather than the variable itself, are very promising
and advantageous.

In this paper, a novel searching procedure for inverse
shape optimization using dynamically adjustable GAs is
introduced. The main features of the proposed method
are:

o The solution space for the optimization variables
changes dynamically as the optimization process
evolves;

o The interval of the searching space is flexible; as the op-
timization process evolves with time the solution space

“ becomes smaller and narrower increasing the sensitiv-
ity of the searching algorithm;

¢ To achieve smoothness of the optimized surface, sev-
eral control points are established inside the solution
space and a third order spline functions are used for
surface modeling.

¢ The initial population of chromosomes (strings) is not
defined entirely randomly, but according to user de-
fined rules;

In what follows, the proposed dynamically adjustable
GA is presented in detail. Each of its features is described
entirely and its influence on the searching procedure and
obtained solutions is discussed. Finally, two successful ap-
plications of the proposed dynamically adjustable GA is
presented: for inverse shape optimization of a die mold
press machine for production of oriented magnetic materi-
als, and for shape optimization of a pole face of rotating
machine which model was previously presented in [2].

II. DYNAMICALLY ADJUSTABLE GAs

A. Dynamic adjustment of the searching space

The main feature of the proposed method is its ability
to adjust its searching space dynamically, i.e. as the opti-
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Fig. 1. Encoding procedure.

mization process evolves with time. Before we describe this
property in detail, let us first define simply the encoding
procedure employed.

For encoding the coordinates of each control point in the
two-dimensional space where we search for the optimum,
a simple binary encoding procedure is used (see Fig. 1).
Therefore, for each control point several discrete values in
the entire searching space are allowed. For example, in
Fig. 1 a three-bits encoding procedure is shown. For the
initial value of a gene that represents encoded value of the
first control point we have binary string 101, which back to
the decimal space results with control point at position 5.
The same procedure applies for all other genes i.e. other
control points.

Now, let us examine how the proposed GA can dynam-
ically adjust itself to the searching space. As an example,
let’s have an optimal solution of the inverse optimization
problem for the n — th generation given with gray dashed
line in Fig. 2. In the same figure, the global optimum of the
treated problem is given with black continuous line. The
gray dashed line of this temporary solution is obtained us-
ing spliné approximation and utilizing coordinates of each
control point obtained from the string with the largest fit-
ness value among all strings at n — th generation. The
solution of one particular control point is given with a cir-
cle in Fig. 2. If this optimal solution lies at the one of
both terminal nodes of the searching interval, as in Fig. 2,
better solution can not be obtained using this searching
space. Therefore, since this temporary solution is not yet
an optimum, the searching procedure must continue, how-
ever, over a new searching space. The new searching space
is established in the manner that the previously obtained
solution (circle in Fig. 2) is placed at the center of a new
searching space for the next generation n + 1. Because,
in fact the searching procedure has discrete character, this
method enables faster convergence rate of the searching
process.

B. Contraction of the searching space

In addition to dynamically adjusting its searching space
from generation to generation, the proposed algorithm also
dynamically changes the width of this searching space. For
each or for several consequently searching steps the inter-
val of the searching space becomes smaller and narrower as
shown in Fig. 3. This further improves searching charac-
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Fig. 3. Contraction of the searching space.

teristic of the proposed GA making it more sensitive. The
amount of contraction of the searching space can be defined
by the user.

C. Definition of the initial population

As mentioned in the introduction, the initial popula-
tion for the proposed GA is not entirely randomly defined;
rather, for each control point, it must satisfy the following
criteria:

o It must contain two initial strings with encoded infor-
mation for the largest and smallest value of optimiza-
tion variable from the entire searching interval;

o It must contain one initial string with encoded infor-
mation for the value of the optimization variable at
the center of the searching interval;

o All other strings can be defined randomly.

Using this procedure the initial population becomes
“richer ” with good optimization properties and localizing
of the global optimum becomes easier.



Control of the
objective functio

__ Parameters

; Reproduction §

Crossover

Mutation

Fitness

Lo oPtimal sha 7

Fig. 4. Data flow of the proposed inverse optimization method.

D. Data flow

Simplified data flow of the proposed inverse optimiza-
tion method using dynamically adjustable GA is presented
in Fig. 4. Initially, the user defines the optimization pa-
rameters and the objective function. Then, the searching
process is executed using the proposed dynamically ad-
justable GA according to some predefined rules and the
three common operators of the GA itself: reproduction,
crossover and mutation. The probability for occurrence
of the crossover and mutation operations must be defined
by the user. After obtaining a set of temporary optimal
solutions for each control point, the shape of the model
that has to be optimized can be obtained using ordinary
spline functions. Next, the finite element analysis (FEA)
is performed in order to verify the obtained solution, i.e.
to compute the fitness of the obtained population and the
value of the objective function. If the fitness and the value
of the objective function satisfy the previously defined stop-
ping criterion, the optimal shape of the device is obtained
and the searching process is finished. Otherwise, a new
searching procedure is estabhsh utilizing new generation of
strings.

III. APPLICATIONS
A. Inverse Optimization of a Die Mold Press

The usage of oriented magnetic materials have been in-
creased recently, especially in production of anisotropic
permanent magnets. For inverse shape optimization of a
model of a die press machine shown in Fig. 5a which can
be used for production of oriented magnetic materials, we
applied the proposed dynamically adjustable GA. The die
molds in the model shown in Fig. 5b are set in order to
generate the radial flux distribution inside the press cavity.
As can be seen from Fig. 5b that shows the enlarged area
around the cavity and die molds, the optimization goal was
to obtain an optimal shape of die molds along lines P; -
P,, and P; - P,, and to generate desired radla.l magnetic
flux density distribution along the cord AB given as:

B, 1.5cos(8) (T)
B, 1.5sin(8) (T)

(1)

where, @ is the position angle for each observation point
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Fig. 5. Model of a die mold press machine.

along cord AB measured from the z-axis. For optimization
purposes, a several control points were set along these two
lines. The initial finite element mesh around die molds and
the cavity area together with several control optimization
points marked with o are shown in Fig. 6a. Additionally,
special control points with reduced movement abilities and
marked with sign e are also introduced and can be seen
in Fig. 6a too. Point 6" can move only in z-direction and
always has the same y-coordinate with point 6, while points
7' and 7” can move only in y-direction and have always the
same z-coordinate with control point 7. For minimization
we considered the following objective function

& | Bal) — BG)
°=% T mm | @)

where By(i) and B(3) are the desired and the numerically
obtained values of magnetic flux density B at control point
i, and NCP is the total number of control points. The
parameters of the GA optimization process are given in
Table I. For evaluation of the string fitness and the ob-
Jective function 2-D FEA was executed. To decrease the
total computation time, the finite element mesh was only
rearranged around each control point without remeshing
the entire analysis domain. The optimized shape of the die
mold area with the generated finite element mesh is pre-
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Fig. 6. Finite element meshes before and after optimization.

sented in Fig. 6b. - Figure 7 shows the obtained magnetic
flux lines for the optimal shape of die molds and cavity
area. Additionally, the comparison between computed and
the desired values for the magnetic flux density vector and
its direction for the initial shape and for the final (optimal)
shape of the die mold area are presented in Figs. 8a and 8b,
respectively. It can be seen that the obtained distribution
of magnetic flux density vector for the final shape of the die
molds is almost identical with the desired. The maximum
and the average error for the initial and for the final shape
of the analyzed die mold area, and for the intensity and
direction of magnetic flux vector, are given separately in
Table II.

B. Inverse Optimization of a Pole Face

The proposed dynamically adjustable GA was also ap-
plied for inverse shape optimization of a pole face of rotat-
ing machine.. The analyzed model was the same as previ-
ously treated in [2] and is represented in Fig. 9. The sta-
tor and rotor magnetic materials were linear with relative
magnetic permeability p, = 2000 [V's/Am] and constant
source current density J = 10 [A/m?]. The optimization
goal was to achieve sinusoidal magnetic flux density distri-
bution B(z) = 0.003 cos(7/2 - z/30) [Gauss], along line A
— B one millimeter below the stator line, with B4 = 0.003
[Gauss] and Bp = 0.0 [Gauss]. As an objective function,
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Fig. 7. Magnetic flux lines for optimized shape of die mold press.
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TABLE I
PARAMETERS OF THE GA OPTIMIZATION PROCESS.

Four-bits binary encoding procedure

Total number of generations: 300
Crossover rate: 0.3
Mutation rate: 0.1
Number of strings: 10

1 [mm] (.P] - Pg)
2 [mm] (Ps - Py)
Contraction of the searching space:

o Starts after 125 — th generations
e Occurs after every 8 generations
o With the contraction coefficient & = 0.95

Initial searching space:

TABLE II
MAXIMUM AND AVERAGE ERROR FOR DIE MOLD PRESS MODEL.

Intensity of magnetic lux density vector [%)

0=
[mm] 10

Fig. 9. Initial pole shape to be optimized.

initial shape final shape
Maximum error: 10.9 2.10
Average error: 8.03 0.75 A SSavaan X A
[ Direction of magnetic flux density vector [degrees] | A
initial shape final shape
Maximum error: 5.98 0.60
Average error: 1.98 0.20
NAA
the same function given in Eq. 2 was used. The parameters
of the GA are given in Table III.
For fitness and objective function evaluation again 2-D a) initial mesh b) final mesh

FEA was employed. Figure 10 shows the initial and final
mesh division for FEA. The finite element mesh division
was only rearranged around the control points after the
generation of each population without remeshing of the
entire analysis region which decreases the overall compu-
tation time. The obtained results for magnetic flux
density distribution and those for magnetic flux lines for
both initial and optimal shape of a pole face are given in
Fig. 11. Finally, the calculated magnetic flux density vs.

TABLE III
PARAMETERS OF THE GA OPTIMIZATION PROCESS.

[ Four-bits binary encoding procedure |

Total number of generations: 300
Crossover rate: 0.3
Mutation rate: 0.1
Number of strings: 10
Initial searching space: 1 [mm]

Contraction of the searching space:
o Starts after 75 — th generations
o Occurs -after every 5 generations
o With the contraction coefficient o = 0.95

Fig. 10. Finite element mesh divisions.
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Fig. 11.. Obtained results for magnetic flux density B and magnetic
flux lines.
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TABLE IV
MAXIMUM AND AVERAGE ERROR FOR POLE FACE MODEL.

[ Intensity of magnetic flux density vector [%)] |

. initial shape final shape
Maximum error: 35.8 5.30
Average error: 19.4 0.99

desired magnetic flux density is given in Fig. 12. It can be
seen that the obtained and desired distributions of mag-
netic flux density are almost identical. The maximum and
average error for initial and for final shape of the analyzed
pole face are given in Table IV, respectively.

IV. CoNcLusioN

A new dynamically adjustable GA was introduced. The
main feature of this method is dynamically changeable
searching space  which is constantly contracted enabling
faster convergence of the searching procedure and more
sensitive searching algorithm. The proposed method was
successfully applied for inverse shape optimization of a die
mold press machine and a pole face of rotating machine.
‘The obtained results are in very good agreement with de-
sired and the obtained shape of the pole is very smooth due
to the spline approximation of its surface. The proposed
dynamically adjustable GA could be useful tool for inverse
optimization of various electromagnetic devices.
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