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Abstract

We present a parallel algorithm for computing the covering radius of a linear [n, k]q code us-
ing its parity-check matrix. The method is based on the systematic generation of syndromes
associated with linear combinations of columns of the parity-check matrix. To improve
scalability, the search space is partitioned and processed in parallel using a master–worker
strategy implemented with the Message Passing Interface (MPI). The proposed approach
significantly reduces the computational effort required for covering radius computation,
a problem known to be NP-hard in general. Experimental results demonstrate that the
parallelization achieves substantial speedups and makes the exact computation of the
covering radius feasible for codes of larger parameters.
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1. Introduction
In coding theory, linear codes are used to detect and correct errors in transmitted

messages over noisy channels. A linear [n, k]q code C over a finite field Fq is a k-dimensional
subspace of the vector space Fn

q , consisting of qk codewords. Key parameters of a code
include its length n, dimension k, and minimum distance d. With each linear code C, we
associate two matrices: generator and parity-check matrix. A matrix G with k rows and n
columns is called a generator matrix of a linear code C if the rows of G form a basis of C.
An (n− k)× n matrix H, such that C = {c ∈ Fn

q : HcT = 0}, is called a parity-check matrix
for C.

Let us consider the full vector space Fn
q . It is partitioned into a disjoint subsets of

the form v + C = {v + c : c ∈ C}, where v ∈ Fn
q . These subsets are called cosets of the

linear code C. For any vector v ∈ Fn
q , we define its syndrome as syn(v) = HvT . There is a

one-to-one correspondence between cosets of C and syndrome vectors in F n−k
q .

The covering radius R of a linear code C is defined as

R = max
v∈Fn

q
min
c∈C

dH(v, c),

i.e., the smallest integer such that every vector in the vector space lies within Hamming
distance R of some codeword. The covering radius R can be interpreted as the minimal
number of columns of H whose linear combinations generate all syndromes.
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The covering radius is a classical and fundamental parameter in coding theory. While
the minimum distance d quantifies the error-correction and error-detection capabilities of
a code, the covering radius R measures how well the code covers the ambient space and
provides complementary information about the global geometry of the code. In classical
error detection, the minimum distance d guarantees that any error pattern of weight less
than d can be detected. However, in the general decoding and detection setting, the
received word may be arbitrary and not necessarily close to a valid codeword. In this
broader context, the covering radius plays a crucial role. A small covering radius guarantees
that every received word lies within a bounded distance from the code, which implies that
undetectable error patterns are confined to well-structured regions of the ambient space.

In erasure channels, some symbols of a transmitted codeword are erased, while
the remaining symbols are received correctly [1]. Decoding from erasures amounts to
determining whether the known positions uniquely determine a codeword. A small
covering radius guarantees that every received word, including those resulting from
erasures, is close to at least one codeword. Moreover, the covering radius is directly
connected to the structure of coset leaders and syndrome decoding, which are fundamental
tools in erasure recovery for linear codes.

Locally recoverable codes (LRCs) have received significant attention due to their
applications in distributed storage systems [2]. An LRC is a code in which each coordinate
can be recovered by accessing only a small number of other coordinates. Although locality
is a coordinate-wise property and the covering radius is a global parameter, there exists a
strong conceptual connection between the two. Codes with small covering radius induce
highly regular partitions of the ambient space. Such structural properties are closely related
to the existence of multiple recovery sets for individual symbols, which is a key requirement
in the construction of locally recoverable codes.

Covering radius plays a central role in several other areas: lossy compression and
vector quantization [3], in certain information-hiding schemes [4]. Codes with small
covering radius often exhibit strong symmetry and regularity properties, such as complete
regularity or uniform packing, which are of independent combinatorial interest [5].

Despite its importance, computing the covering radius is known to be NP-hard. This
makes the development of efficient algorithms, and in particular parallel algorithms, highly
relevant both theoretically and practically. Efficient computation of the covering radius
enables structural analysis of codes used in distributed storage and data protection, ex-
ploration of new code families with strong geometric and spectral properties. Therefore,
improving the computational feasibility of determining the covering radius directly sup-
ports both the theory and the practice of modern coding techniques.

There are different methods for calculating the covering radius of a linear [n, k]q code.
One algorithm is based on the definition. The naive approach is to compute the distance
from each vector to the code C. Another method uses the parity-check matrix of the code
and is based on Lemma 1.1 from [6]. The covering radius can also be calculated using
fast transforms [7]. Some results on the problem of computing the covering radius can be
found in [8–12]. Specialized techniques can be used to calculate the covering radius of some
classes of codes such as MDS and near MDS codes [13,14], Melas codes [15], Zetterberg
codes [16,17], etc. Heuristic and probabilistic methods can also be used. However, they do
not give us an exact value for R.

We present a method to parallelize the algorithm for computing the exact covering
radius of a linear code using its parity-check matrix. This problem is at least as complex
as the problem for computing the minimum distance of a code. Parallel algorithms for
computing the minimum distance of a binary code are presented in [18,19]. On the other
hand, this work is a continuation of a previously developed parallelization of the algo-
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rithm for calculating the covering radius using cosets of the code. A disadvantage of that
algorithm is that we generate the full vector space Fn

q to compute the covering radius. The
considered algorithm in this paper only keeps track of generated Fn−k

q syndromes, which
however requires a larger amount of memory. This algorithm is more appropriate to be
used for codes with larger dimensions. For any parallel implementation, we need to use an
optimized sequential algorithm. The basis of the algorithm is the systematic generation of
vectors in Fn−k

q by forming linear combinations using l columns of the matrix H, where
l increases (l = 1, 2, . . . ). Each linear combination of l columns of H can be represented as
an n-dimensional vector with weight l. Thus, the algorithm can be represented as generat-
ing all vectors v ∈ Fn

q with wt(v) ≤ l. There are different approaches to generate all vectors
in a given set. In the case when l = n, we can use a Gray code for the generation. When
l < n, the classical Gray code cannot be used directly, and therefore some modifications are
needed. In this case, a linear combination can be generated by adding and subtracting a
vector from the previous linear combination. Here, we have two operations to generate
a linear combination. Another approach is to use a helper matrix that contains a linear
combination of s columns of H in row s. Using such matrix, we can generate the next
linear combination by using just addition at the expense of greater memory complexity.
Such an algorithm is less researched compared to the Gray code methods. This is the most
efficient method for generating linear combinations, as far as we know. We also need to
keep track of the already generated linear combinations which correspond to syndromes for
the given code in order to calculate the covering radius. If for a given l all Fn−k

q syndromes
are generated as a linear combination of not more than l columns of H, then R = l is the
covering radius of the code.

The focus of the current work consists of an in-depth view of the following problems:

• Defining an ordering of the vectors v ∈ Fn
q with wt(v) ≤ l that correspond to a

linear combination of the columns of the parity-check matrix H of a linear [n, k]q
code C. In the chosen order, a new linear combination is generated by just adding a
vector to a previous linear combination. Furthermore, each vector in the ordering is
generated efficiently.

• Presenting ranking and unranking algorithms for the given ordering. A ranking func-
tion assigns an integer to a given combinatorial object in a chosen ordering. The
inverse function that gives the combinatorial object in a specific ordering for a given
valid integer (rank) is called unranking function. Such algorithms are typically defined
for basic combinatorial objects.

• Efficiently partitioning the vectors in the given order into subsets such that the vec-
tors in each subset follow the same order and all subsets have approximately the
same cardinality.

• Efficient enumeration of the vectors in Fn−k
q that correspond to the syndromes for

the code.

A key conceptual contribution of this work is the introduction of explicit ranking
and unranking functions for the combinatorial objects underlying the covering radius
computation. Unlike classical combinatorial generation methods, which rely on sequential
or backtracking-based enumeration, ranking and unranking provide a direct bijection
between integers and linear combinations of columns of the parity-check matrix. This
representation fundamentally changes the algorithmic structure by allowing random access
to the search space and enabling its deterministic partitioning into independent subspaces.
As a result, the use of ranking and unranking functions is essential for an efficient paral-
lel implementation, since without them a balanced distribution of work among worker
processes would not be feasible.
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The Message Passing Interface (MPI) was chosen as the parallelization framework
for several reasons. First, MPI is a widely adopted standard that provides portability
and scalability across a broad range of computing architectures, from multicore systems
to large distributed clusters. Second, the explicit data distribution model of MPI allows
for an efficient integration of low-level optimizations, such as vectorization, within each
process, without interfering with the global parallel structure. Finally, the sequential
covering radius algorithm naturally follows a master–worker paradigm, where a central
process coordinates the exploration of the syndrome space and multiple workers perform
independent computations. This execution model is straightforward to implement in a
message-passing environment, while it is considerably more difficult to realize efficiently
in shared-memory parallel frameworks.

The remainder of the paper is organized as follows. Section 2 introduces the necessary
definitions and preliminaries. An overview of the parallel frameworks considered in this
work is provided in Section 3. The sequential algorithms are described in Section 4, followed
by their parallelization strategies in Section 5. Experimental results and performance
evaluation are presented in Section 6. Finally, Section 7 concludes the paper with a summary
and concluding remarks.

2. Preliminaries
Let Fq be a finite field with q elements, and let C be an [n, k] linear code over Fq. The

minimum distance d measures the smallest Hamming distance between distinct codewords:

d = min
c1 ̸=c2∈C

dH(c1, c2),

where dH(·, ·) denotes the Hamming distance. The minimum distance is one of the most
searched parameters of a linear code. It shows how many errors a code can detect or
correct. More precisely, a linear [n, k, d] code can detect up to d− 1 errors and correct up
to ⌊(d − 1)/2⌋ errors. Another important parameter of the code, that gives additional
information, is its covering radius. The covering radius R of a code C is defined as

R = max
v∈Fn

q
min
c∈C

dH(v, c),

Equivalently, R is the smallest integer such that the Hamming spheres with radius R
centered at the codewords cover the entire space Fn

q .
The covering radius of a linear code can be computed using its parity-check matrix or

coset leaders. Let C⊥ denote the dual code of C, defined as

C⊥ = {u ∈ Fn
q | ⟨u, c⟩ = 0 for all c ∈ C},

where ⟨·, ·⟩ is the standard inner product over Fq. The dual code has parameters [n, n− k]q.
The generator matrix of C⊥ is the parity-check matrix of C such that

C = {v ∈ Fn
q : Hv⊤ = 0}.

If v ∈ Fn
q then the set

v + C = {v + c : c ∈ C},

is called a coset of C represented by v. The vector space Fn
q can be partitioned into disjoint

cosets, and two vectors v1 and v2 are in the same coset if and only if their difference belongs
to C, i.e., v1 − v2 ∈ C. A vector of minimum weight within a given coset is called a coset
leader.
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For any vector v ∈ Fn
q , we define its syndrome as

syn(v) = HvT .

Syndromes provide an algebraic characterization of cosets: two vectors belong to the
same coset of C if and only if they have the same syndromes. Thus, there is a one-to-one
correspondence between cosets of C and syndrome vectors in F n−k

q . Hence, the syndrome
completely identifies the coset to which a vector belongs.

The following theorem gives the connection between the covering radius, parity-check
matrix and code leaders of a given linear code C.

Theorem 1 ([20]). Let C be a linear code with a parity check matrix H. Then,

(i) R(C) is the weight of the coset of largest weight;
(ii) R(C) is the smallest number s such that every nonzero syndrome is a combination of s or fewer

columns of H, and some syndromes require s columns.

Several methods are known for determining the covering radius of a linear code. One
approach is based directly on the above theorem, requiring the identification of all coset
leaders and their weights. Since there is a one-to-one correspondence between cosets and
syndromes, we can also consider an algorithms that generates all syndromes. The covering
radius is also interpreted as the smallest integer R such that all (n− k)-dimensional vectors
(syndromes) can be represented as linear combinations of no more than R columns of a
chosen parity-check matrix H of the code. In other words, we need to generate the full
vector space Fn−k

q , which is a computationally heavy problem. Thus, we can also consider
a lower bound for R.

The volume of the ball within a q-ary Hamming sphere of radius r in Fn
q is

Sq(r) =
r

∑
i=0

(
n
i

)
(q− 1)i.

This counts the number of vectors within the distance r of a given center. The union of
spheres of radius R centered at each codeword must cover all vectors in Fn

q . Thus,

qk Sq(R) ≥ qn,

which can be rearranged to give
Sq(R) ≥ q n−k.

Consequently, the covering radius satisfies the combinatorial lower bound

R ≥ Rmin, Rmin = min
{

r ∈ N : Sq(r) ≥ q n−k
}

.

If R = ⌊(d− 1)/2⌋, the code is called a perfect code. For the perfect codes qkSq(R) = qn.
This lower bound is called Sphere Covering Bound and is also given in [8].

3. Parallel Computing Framework and Vectorization
The Message Passing Interface (MPI) is the de facto standard for parallel computing in

distributed-memory environments. Unlike shared-memory models, MPI provides explicit
communication primitives that allow processes to exchange data through messages. This
design enables programs to scale efficiently across clusters, supercomputers, and hetero-
geneous systems where each processing unit has its own private memory space. More on
parallel programming with MPI can be found in [21].
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Vectorization, on the other hand, provides mechanisms for additional parallelization
in algorithms that include vector operations. The main idea of vectorization is to execute an
operation over multiple elements of the vector at the same time. This can be accomplished
by utilizing extended vector registers that are available in most modern central processing
units (CPUs). Vectorization with such registers can be used in combination with other
parallel mechanisms and standards such as MPI.

3.1. MPI: The Master–Worker Paradigm

MPI programs follow the Single Program Multiple Data (SPMD) execution model:
all processes execute the same program but operate on different portions of the data.
Communication is performed through point-to-point or collective operations, such as
MPI_Send, MPI_Recv, MPI_Bcast, and MPI_Reduce. This explicit communication model
offers fine-grained control over performance and resource usage, making MPI suitable for
complex, large-scale scientific computations.

A widely used pattern in MPI applications is the master–worker paradigm. In this
model, one process (the master) coordinates the computation, while the remaining pro-
cesses (the workers) perform the actual computational tasks. The master is responsible for
distributing work units, collecting results, and determining global termination conditions.
The workers repeatedly receive tasks from the master, execute them independently, and
return results.

This paradigm is especially beneficial for applications where the workload is irreg-
ular or dynamically generated. It allows the master to balance the load by assigning
tasks adaptively, preventing situations where some processes remain idle while others
are overburdened. The flexibility of task granularity enables the programmer to tune the
communication-to-computation ratio according to the characteristics of the problem and
the underlying hardware. Such strategy can be used for different problems such as the
classification of combinatorial objects [22].

MPI supports multiple communication strategies within master–worker systems.
Tasks and results may be exchanged using blocking or non-blocking point-to-point com-
munication (MPI_Isend/MPI_Irecv), allowing both the master and workers to overlap
computation with communication. Collective operations may be used for global broadcasts
(e.g., to distribute shared parameters) or reductions (e.g., to aggregate partial results),
although the master–worker pattern often favors point-to-point interactions to minimize
synchronization overhead.

3.1.1. Advantages

The master–worker paradigm offers several advantages in distributed-memory systems:

• Scalability: Since workers operate independently, the computation can scale to hun-
dreds or thousands of processes with minimal contention.

• Dynamic load balancing: The master can adjust the distribution of tasks at runtime,
leading to improved utilization of computational resources.

• Fault isolation: Errors are often confined to individual workers, and the master can
detect failures or timeouts.

• Simplicity of design: The structure of the algorithm becomes modular, separating
coordination from computation.

3.1.2. Limitations

Despite its advantages, the master–worker model also presents challenges:

• Master bottleneck: If the rate of task generation or result collection is high, the master
may become a performance bottleneck.
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• Communication overhead: Fine-grained task distribution may lead to excessive
message traffic unless carefully optimized.

• Centralized control: The model relies on a single point of coordination, which may
limit fault tolerance and scalability in extremely large systems.

3.2. Vectorization with Extended Vector Registers

An essential component of the proposed parallel procedure for computing the covering
radius of linear codes over finite prime fields Fq, with q ≤ 64, is the rapid evaluation of
linear combinations of columns of a given parity-check matrix H. For a column vector
h ∈ Fm

q and a partial sum s ∈ Fm
q , the update

s← s + h (mod q)

is performed repeatedly within the enumeration process. Since all field elements can be
represented in a single byte, the operation can be carried out efficiently via byte-wise
modular addition within SIMD registers.

In the implementation, each column of H is packed into a 128-bit register, allowing
the simultaneous processing of 16 coordinates. Modular addition in Fq is realized through
a fixed sequence of SIMD operations involving byte-wise addition, comparison against
the modulus, construction of a correction mask, and a selective blend to enforce reduction
modulo q. Formally, letting a, b ∈ {0, . . . , q− 1}m denote the byte-encoded vectors, the
register-level computation implements

a⊕ b = a + b− q · 1{a+b≥q},

where all operations are evaluated componentwise and 1{·} is realized via SIMD compari-
son and mask selection. This avoids lookup-based techniques and ensures that the entire
update remains vectorized. Some algorithms for vector operations using vectorization with
registers are presented in [23,24].

The use of 128-bit SIMD instructions markedly reduces the number of scalar iterations
required in conventional implementations. Since an entire column vector fits within a
single register, memory traffic is minimal, and repeated access to the same columns during
the algorithmic search incurs negligible overhead. The resulting instruction sequence is
short, uniform across fields with q ≤ 64, and well suited to superscalar execution.

Consequently, the SIMD-enhanced implementation achieves a substantial speedup
in the evaluation of the linear combinations that dominate the computational complexity.
These optimizations preserve exact arithmetic over Fq while allowing the algorithm to scale
to parity-check matrices of nontrivial size and to explore significantly larger search spaces
within practical time bounds.

Although wider SIMD extensions such as AVX2 and AVX–512 are available, they
were not used in this work due to the interaction between vectorization and process-level
parallelism. The proposed algorithm employs a large number of concurrent MPI worker
processes, and on many architectures wider SIMD instructions lead to increased instruc-
tion latency and reduced core frequency, which can negatively affect overall throughput.
Moreover, the computational kernel naturally fits into 128-bit registers, so wider SIMD
registers do not significantly reduce the instruction count. For these reasons, SSE4.1 pro-
vides a balanced and portable solution, and a comparison with wider SIMD extensions was
not pursued.

https://doi.org/10.3390/math14030534

https://doi.org/10.3390/math14030534


Mathematics 2026, 14, 534 8 of 28

4. Sequential Algorithm

Let C be a linear [n, k]q code with parity-check matrix H ∈ F(n−k)×n
q . Each syndrome

syn(v) = s, where s ∈ F n−k
q corresponds to a coset of C in Fn

q . By Theorem 1, the covering
radius is the maximal weight of a coset leader, which is equal to the minimal number
of columns of H whose linear combinations generate a syndrome. Thus, a syndrome is
defined by a vector v, which corresponds to a linear combination of the columns of H.
This gives us a direct algorithm to calculate the covering radius. Furthermore, from the
sphere covering bound, we already know a lower bound Rmin on the covering radius,
which depends only on n, k, and q. The algorithm generates linear combinations using
an increasing number of columns starting from the known lower bound Rmin. Using
Rmin ensures that no values smaller than this (which are provably insufficient to cover all
syndromes) are tested, improving efficiency. The algorithm terminates when the sets of
≤ R columns can generate all syndromes. In each step, the number of column subsets is (n

r),
Rmin ≤ r ≤ R. Each subset generates (qr − 1) nonzero linear combinations. In the worst
case, we generate ∑R

r=1 (
n
r)(q

r − 1) vectors, which is exponential in n.
In order to efficiently implement the algorithm for computing the covering radius, we

introduce a syndrome array to keep track of which syndromes have already been generated.
This requires a large amount of memory to be allocated and limits the number of codes
for which we can calculate the covering radius using this algorithm. Thus, we can use
a reduced syndrome array. Specifically, we use an equivalence relation, defined in the
following way: the proportional syndromes s and αs with α ∈ Fq \ {0} are equivalent.
Thus, all syndromes proportional to each other belong to the same equivalence class.

From what has been discussed so far, two main subproblems can be distinguished for
the efficient calculation of the covering radius of a linear code:

1. Enumeration and efficient generation of linear combinations.
2. Enumeration of all nonproportional syndromes and efficient management of memory

resources for the syndrome array.

4.1. Generating Linear Combinations

Let us enumerate the columns of H as follows:

H =
[
h1 h2 · · · hn

]
,

where hi ∈ F n−k
q denotes the i-th column of H. We consider all linear combinations of at

most L columns of H, that is, all vectors of the form

s =
n

∑
i=1

vihi, v = (v1, . . . , vn) ∈ Fn
q ,

where the weight wt(v) satisfies wt(v) ≤ L. Vector v defines a linear combination. Instead
of enumerating all vectors v of weight at most L, we introduce a structured (ordered) subset
VL

n ⊆ Fn
q as follows:

Definition 1. Define VL
n = {v0 = 0, v1, v2, . . . , vM} to be the ordered set, consisting of all vectors

of Fn
q , satisfying the following properties:

1. For any v ∈ VL
n , wt(v) ≤ L.

2. The first nonzero coordinate of v ∈ VL
n is equal to 1.

3. For every vi ∈ VL
n with the last nonzero coordinate at position t, the vector vj = vi − et ∈ VL

n
and it precedes the vector vi, where et denotes the standard basis vector with 1 in position t
and zeros elsewhere.
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The second condition ensures that for every nonzero scalar α ∈ Fq, the vectors v and
αv do not both appear in VL

n . Thus, VL
n contains exactly one representative from each one-

dimensional subspace generated by vectors of weight at most L. From the third property,
we have that every linear combination defined by a vector vi can be obtained from the linear
combination defined by a strictly smaller vector vj using only a single vector addition.

One such ordered set is generated by the execution of nested loops. Let us consider
the following Algorithm 1, where the vector defining a linear combination of i columns
(without zero coefficients) is saved in the array CCi. This algorithm generates the vectors in
VL

n and their proportional.

Algorithm 1 Generation of all vectors with up to L nonzero coordinates from Fq

1: CC0 ← 0;
2: for c1 = 1 to n do
3: for coef1 = 1 to q− 1 do
4: CC1 ← CC0; CC1[c1]← coef1
5: for c2 = c1 + 1 to n do
6: for coef2 = 1 to q− 1 do
7: CC2 ← CC1; CC2[c2]← coef2

8:
...

9: for cL = cL−1 + 1 to n do
10: for coefL = 1 to q− 1 do
11: CCL ← CCL−1; CCL[cL]← coefL

Let us consider the matrix V̂L
n (q) whose rows are the nonzero vectors generated by

Algorithm 1 in the same order. Then we prove the following lemma.

Lemma 1. The vectors generated by Algorithm 1 are all vectors over Fq with at most L nonzero
coordinates. Moreover, the matrices V̂L

n (q) satisfy the following recurrence relation:

V̂1
1 (q) =


1
2
...

q− 1

, V̂L
n (q) =



1 0 · · · 0
1 V̂L−1

n−1 (q)
2 0 · · · 0
2 V̂L−1

n−1 (q)
...

...
q− 1 0 · · · 0
q− 1 V̂L−1

n−1 (q)
0 V̂min(n−1,L)

n−1 (q)


, L ≥ 2. (1)

Proof. The vectors generated by the algorithm satisfy Properties 1 and 3 of Definition 1.
Property 1 follows immediately from the fact that for each choice of positions
c1 < c2 < · · · < ci the algorithm assigns all possible nonzero coefficients from Fq to
these positions.

To verify Property 3, observe that each loop modifies exactly one coordinate. Let ct be
the position whose value changes first during the iteration, and consider the vector

vi = (c1, . . . , ct−1, 1, 0, . . . , 0).

This vector is obtained from the vector

vj = (c1, . . . , ct−1, 0, . . . , 0),
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which is generated in the loop iterating over coordinate ct−1. Subsequent vectors such as
(c1, . . . , ct−1, 2, 0, . . . , 0), or vectors in which a later coordinate becomes nonzero, e.g.,

(c1, . . . , ct−1, 1, 1, 0, . . . , 0), (c1, . . . , ct−1, 1, 0, . . . , 0, 1, 0, . . . , 0),

are obtained from vi by increasing exactly one coordinate. Thus, Property 3 of Definition 1
is satisfied.

Finally, the ordered subset generated by Algorithm 1 also satisfies the recurrence
relation given in Equation (1). In particular, the rows of the matrix V̂L

n enumerate the vectors
in precisely the same order as produced by the nested-loop structure of the algorithm.

Proposition 1. Let A(n, L) denote the number of rows in the matrix V̂L
n , i.e.,

A(n, L) =
L

∑
w=1

(
n
w

)
(q− 1)w.

Then A(n, L) satisfies the recurrence relation

A(n, L) = A(n− 1, L) + (q− 1)
(
1 + A(n− 1, L− 1)

)
, (2)

for all integers n ≥ 1 and L ≥ 1, with boundary conditions A(n, 0) = 0 and A(0, L) = 0.

Proof. Starting from the definition of A(n, L), we have

A(n, L) =
L

∑
w=1

(
n
w

)
(q− 1)w =

L

∑
w=1

((n− 1
w

)
+

(
n− 1
w− 1

))
(q− 1)w, (3)

where we used the binomial identity (n
w) = (n−1

w ) + (n−1
w−1).

Consider the two sums separately. For the first one, we obtain

L

∑
w=1

(
n− 1

w

)
(q− 1)w = A(n− 1, L). (4)

For the second sum, substituting t = w− 1, we get

L

∑
w=1

(
n− 1
w− 1

)
(q− 1)w = (q− 1)

L−1

∑
t=0

(
n− 1

t

)
(q− 1)t = (q− 1)

(
1 + A(n− 1, L− 1)

)
. (5)

Combining (3)–(5), we obtain

A(n, L) = A(n− 1, L) + (q− 1)
(
1 + A(n− 1, L− 1)

)
,

which is exactly the recurrence relation (2). The boundary conditions A(n, 0) = 0 and
A(0, L) = 0 follow directly from the definition, since there are no nonzero vectors with
weight 0 or with length 0. This completes the proof.

For A(n, L) we also have that A(n, L) = Sq(L)− 1. Algorithm 1 and Lemma 1 are
in reference to a subset of Fn

q that satisfies properties 1 and 3 of Definition 1. To generate
an ordered subset VL

n for which all properties hold, we need to consider only the non-
proportional vectors. More precisely, we consider only the vectors with the first nonzero
coordinate equal to 1. One such subset is generated using the following Lemma 2.

Lemma 2. Consider the modified version of Algorithm 1, where we add an outer loop that fixes the
first nonzero coordinate:
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• We choose a position c0 ∈ {1, . . . , n} and set CC0[c0]← 1;
• The next loop index c1 starts from c1 = c0 + 1 and the remaining nested loops proceed as in

Algorithm 1, generating up to L− 1 additional nonzero coordinates.

Then, this modified algorithm generates exactly all non-proportional vectors v ∈ Fn
q of Hamming

weight 1 ≤ wt(v) ≤ L. Moreover, if we denote by ṼL
n (q) the matrix whose rows are the vectors

generated by this modified algorithm, ordered according to the iteration of the loops, then ṼL
n (q)

satisfies the recurrence relation

Ṽ1
1 (q) =

(
1
)

,

Ṽ1
2 (q) =

1 0
1 V̂1

1 (q)
0 1

,

ṼL
n (q) =



1 0 . . . 0
1 V̂L−1

n−1 (q)

0 1 0 . . . 0
0 1 V̂L−1

n−2 (q)
...

...
0 . . . 0 1 0 . . . 0

0 . . . 0 1︸ ︷︷ ︸
position s

V̂min(n−s,L−1)
n−s (q)

...
...

0 . . . 0 1



,

(6)

where V̂r
m(q) is the matrix from (1) whose rows contain all vectors of length m and weight at most r

over Fq.

Proof. We first show that the modified algorithm generates exactly one representative from
each proportionality class of nonzero vectors v ∈ Fn

q with wt(v) ≤ L.
Each proportionality class contains a unique vector whose first nonzero coordinate

is equal to 1. In the modified algorithm we choose a position c0 ∈ {1, . . . , n} and set
CC0[c0] = 1. All coordinates before c0 are zero, and the subsequent nested loops (having
indices c1, c2, . . . , cL−1 starting from c1 = c0 + 1) generates at most L− 1 additional nonzero
coordinates with arbitrary nonzero coefficients from Fq. Therefore:

• Each generated vector has a Hamming weight between 1 and L, since it always has at
least the fixed coordinate c0 equal to 1 and at most L− 1 further nonzero coordinates;

• Its first nonzero coordinate is exactly at position c0, and its value is 1;
• Every choice of c0, subsequent coordinates and the coefficients of the remaining

nonzero coordinates is realized by some iteration of the loops.

Hence, every nonzero vector of weight at most L is represented by exactly one vec-
tor generated by the algorithm, namely its unique normalization with the first nonzero
coordinate equal to 1. This proves the first part of the statement.

For the recurrence (6), if the first nonzero coordinate is at position s, then the vector
has the form

(0, . . . , 0, 1︸︷︷︸
position s

, v′),
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where v′ ∈ Fn−s
q has Hamming weight at most L− 1. The suffix v′ is precisely a row of

V̂min(n−s,L−1)
n−s (q), the matrix that contains all vectors of length n− s and weight at most

min(n− s, L− 1) over Fq.
Thus we can partition the rows of VL

n (q) into blocks according to the position s of the
first nonzero coordinate:

• For s = 1, we obtain the block (
1 0 . . . 0
1 V̂L−1

n−1 (q)

)
;

• For s = 2, we obtain the block (
0 1 0 . . . 0
0 1 V̂L−1

n−2 (q)

)
;

• In general, for s ∈ {1, . . . , n− 1}, we obtain the block
0 . . . 0 1︸ ︷︷ ︸
position s

0 . . . 0

0 . . . 0 1︸ ︷︷ ︸
position s

V̂min(n−s,L−1)
n−s (q)

;

• Finally, the vector with a first nonzero coordinate at position n and weight 1 is given
by the last row (0, . . . , 0, 1).

Stacking all these blocks in the order induced by the nested loops yields exactly the
block matrix representation in (6). The base cases Ṽ1

1 (q) and Ṽ1
2 (q) follow directly from the

construction: for n = 1 and L = 1 there is only one non-proportional vector, namely (1),
while for n = 2 and L = 1 we obtain all vectors of weight 1 with first nonzero coordinate
equal to (1), realized in the three blocks of Ṽ1

2 (q).
This completes the proof.

Proposition 2. Let f (n, L) be the number of the rows in the matrix ṼL
n . Then

f (n, L) =
L

∑
w=1

(
n
w

)
(q− 1)w−1,

and f (n, L) satisfies the recurrence relation

f (n, L) = f (n− 1, L) + 1 + (q− 1) f (n− 1, L− 1), (7)

for all integers n ≥ 1 and L ≥ 1, with boundary conditions f (n, 0) = 0 and f (0, L) = 0.

Proof. Obviously, f (n, L) = ∑L
w=1 (

n
w)(q− 1)w−1. Using the binomial identity (n

w) = (n−1
w )+

(n−1
w−1), we obtain

f (n, L) =
L

∑
w=1

((n− 1
w

)
+

(
n− 1
w− 1

))
(q− 1)w−1

=
L

∑
w=1

(
n− 1

w

)
(q− 1)w−1

︸ ︷︷ ︸
= f (n−1,L)

+
L

∑
w=1

(
n− 1
w− 1

)
(q− 1)w−1.

(8)

https://doi.org/10.3390/math14030534

https://doi.org/10.3390/math14030534


Mathematics 2026, 14, 534 13 of 28

For the second sum, set t = w− 1. Then

L

∑
w=1

(
n− 1
w− 1

)
(q− 1)w−1 =

L−1

∑
t=0

(
n− 1

t

)
(q− 1)t

= 1 +
L−1

∑
t=1

(
n− 1

t

)
(q− 1)t

= 1 + (q− 1)
L−1

∑
t=1

(
n− 1

t

)
(q− 1)t−1

= 1 + (q− 1) f (n− 1, L− 1).

(9)

Combining (8) and (9), we obtain

f (n, L) = f (n− 1, L) + 1 + (q− 1) f (n− 1, L− 1), (10)

which is exactly the recurrence (7).
The boundary conditions follow directly from the definition: for L = 0 there are no

nonzero vectors, so f (n, 0) = 0, and for n = 0 there are no nonzero vectors of positive
weight, so f (0, L) = 0.

Corollary 1. Let us consider the number of rows in V̂L
n (q) and ṼL

n (q), denoted A(n, L) and
f (n, L), respectively. Then f (n, L) = f (n− 1, L) + 1 + A(n− 1, L− 1).

Proof. Follows directly from Lemma 2 and Propositions 1 and 2.

This structure leads to a highly efficient incremental enumeration method: the entire
set of combinations can be generated using at most L additional column vectors and at
most one vector addition per step. Here, one subset VL

n with the desired properties, defined
in Definition 1, can be generated by using nested loops. The first loop selects the first
nonzero position (and sets it to 1), the second loop selects a second position and cycles over
all values in Fq, and so on. Similarly, the vectors in VL

n can be represented as rows of a
matrix ṼL

n (q) that follows the recurrence relation, defined by Equation (6).
This recurrence relation gives a natural recursive algorithm for the generation of the

vectors in VL
n . The “step back”, presented in every recursive algorithm, represents “return”

to the predecessor vj for a given vi, where vi − vj = et and t is the last nonzero coordinate
of vi. We consider the methods presented in [25] that emulate nested loops. More precisely,
we focus on the non-recursive implementation that gives more control over the generation
process. In the rest of the paper, we consider the set VL

n that is generated by the recurrence
relation, given in Equation (6). We use this notation to refer to both the ordered set and its
matrix representation.

4.2. Ranking and Unranking Algorithms

We can introduce ranking and unranking functions for the ordered set VL
n . Such

functions are defined for many combinatorial objects with given order such as permutations,
variations, etc. Table 1 presents the ordered set VL

n for n = 4, L = 3, q = 3 and the rank
i of each linear combination represented by vector vi for i > 0. The table contains four
sets of two columns. The first column in each set gives the rank of the vector given in the
following columns.
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Table 1. Ranking of linear combinations for n = 4, l = 3, q = 3.

Rank vi Rank vi Rank vi Rank vi

1 1000 9 1220 17 1022 25 0121
2 1100 10 1201 18 1001 26 0122
3 1110 11 1202 19 1002 27 0101
4 1120 12 1010 20 0100 28 0102
5 1101 13 1011 21 0110 29 0010
6 1102 14 1012 22 0111 30 0011
7 1200 15 1020 23 0112 31 0012
8 1210 16 1021 24 0120 32 0001

Proposition 3. Let us define the rank of a nonzero vector CC as its row number in ṼL
n . Then

Algorithm 2 returns as a result the rank of the vector CC. Moreover, the mapping CC 7→ rank(CC),
induced by Algorithm 2, is a bijection between VL

n \ {0} and {1, . . . , f (n, l)}.

The correctness of the ranking algorithm is based on the recurrence relation established
in Lemma 2, which characterizes the structural organization of the matrix associated with
the set VL

n . All vectors under consideration lie in Fn
q and are assumed to satisfy the condition

that their first nonzero coordinate is equal to 1. Because of this constraint, the total number
of admissible vectors whose first nonzero coordinate occurs at any prescribed position
i ∈ {1, . . . , n} is known explicitly. This structural information is central to the ranking
procedure, even though the implementation itself does not employ recursion; the recurrence
serves only as a conceptual description of the underlying combinatorial decomposition.

The algorithm for determining the rank (i.e., the index) of a given vector in the matrix
representation of VL

n proceeds in two main stages. The first stage computes the number
of vectors whose first nonzero coordinate (equal to 1 by definition) appears strictly later
than in the vector being ranked. More precisely, if the first nonzero coordinate of the vector
occurs at position i, the algorithm sums the known counts of all vectors whose first nonzero
coordinate occurs in positions 1, 2, . . . , i− 1. This determines the initial offset of the vector
within the matrix.

The second stage refines this offset by processing the remaining coordinates of the
vector in order. At each position, the rank is incrementally updated according to the value
of the current coordinate. The process continues coordinate by coordinate until the full
vector has been examined.

It is worth noting that, although the recurrence in Lemma 2 conceptually organizes
the matrix VL

n , the algorithm intentionally avoids recursive evaluation in order to achieve
maximal computational efficiency. The number of steps in the ranking procedure is exactly
n, yielding a linear-time method whose correctness follows directly from the structural
decomposition implied by the lemma.

Proposition 4 (Correctness of unranking for non-proportional vectors). Let VL
n be the matrix

obtained by Lemma 2 and and let

f (n, L) =
L

∑
w=1

(
n
w

)
(q− 1)w−1 = f (n− 1, L) + 1 + (q− 1) f (n− 1, L− 1)

denote the number of vectors in VL
n . Let B ∈ {1, . . . , f (k, L)} be a valid rank. Then Algorithm 3

returns the unique vector CC ∈ V l
k that has row number (rank) in VL

k (q) exactly B.
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Algorithm 2 Rank function for VL
n

1: procedure RANK_FUNCTION(CC, n, L, q, A)
2: Input:

CC = (c1, . . . , cn): nonzero vector of weight at most L whose first nonzero coordinate
is 1

n: vector length
L: maximum weight
q: field size |Fq|

3: Output:
rank: index of CC in VL

n

4: i← 1, ki ← n, coe f ← 0, ll ← L
5: pos_last← 1
6: for ii← 1 to n do
7: if CC[ii] ̸= 0 then
8: pos_last← ii
9: rank← 0, sum← 0

10: while CC[i] = 0 do ▷ Step 1: position of the first nonzero coordinate
11: i← i + 1
12: sum← A(ki − 1, L− 1) + 1
13: rank← rank + sum
14: ki ← ki − 1
15: rank← rank + 1 ▷ Step 2: counting vector (0, . . . , 0, 1, 0, . . . , 0)
16: i← i + 1
17: ll ← ll − 1
18: while i ≤ pos_last do ▷ Step 3: coefficients and later nonzero positions
19: if CC[i] = 0 then
20: coe f ← q− 1
21: sum← A(n− i, ll − 1) + 1
22: else
23: coe f ← CC[i]− 1
24: sum← A(n− i, ll − 1) + 1
25: ll ← ll − 1
26: rank← rank + 1
27: rank← rank + coe f · sum
28: i← i + 1
29: return rank

Proof. We show that each step of Algorithm 3 reconstructs the unique vector CC ∈ VL
n

corresponding to the rank = B.

Step 1: Determining the first nonzero coordinate.

For any non-proportional vector in VL
k , the first nonzero coordinate must be equal to 1

and must occur at some position j ∈ {1, . . . , k}.
For any position s < j, vectors whose first nonzero coordinate is s, are either

(0, . . . , 0, 1, 0 . . . , 0) or of the form (0, . . . , 0, 1, v′), where v′ is a vector of length k− s with
at most l − 1 nonzero coordinates and v′ ∈ V̂L−1

k−s . The number of possible vectors v′ is
exactly A(n− s, L− 1).

Algorithm 3 iteratively subtracts these blocks from A until it reaches the unique j for
which rank ≤ A(k− j, L− 1) + 1, and then assigns CC[j] = 1. Thus, the algorithm finds
the correct first nonzero coordinate.
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Algorithm 3 Unrank function for VL
n

1: procedure UNRANK_FUNCTION(B, q, n, L)
2: Input:

B: rank of the target vector in VL
n .

q: field size |Fq|.
n: vector length
L: maximal number of nonzero coordinates.

3: Output:
CC ∈ Fn

q : reconstructed vector.
4: CC← 0
5: kh← n, kb← 1, ll ← L, ok← true, sum← 0
6: while ok do ▷ Step 1: find the first nonzero coordinate
7: sum← A(kh− 1, L− 1, q)
8: if B > sum then
9: B← B− sum, kh← kh− 1, kb← kb + 1

10: else
11: ok← false, CC[kb]← 1, B← B− 1
12: if A = 0 then
13: return CC
14: kh← kh− 1, kb← kb + 1
15: ll ← ll − 1
16: while kb ≤ n do ▷ Step 2: determine the remaining coordinates
17: step← 1
18: while step ≤ q do
19: if step < q then
20: sum← A(n− kb, ll − 1, q)
21: if B > sum then
22: B← B− sum, step← step + 1
23: else
24: CC[kb]← step mod q
25: if step ̸= q then
26: B← B− 1, ll ← ll − 1
27: if B = 0 then
28: return CC
29: kb← kb + 1, step← 1, break
30: else
31: CC[kb]← 0, kb← kb + 1, break

Step 2: Determining the remaining coordinates.

After fixing the first nonzero coordinate, the remaining suffix must contain at most
L− 1 nonzero coordinates. At each position i > j, the algorithm considers all possible
values for that position, starting with 1 up to q − 1, using variable step. We have the
following possibilities for the current position i:

• The current candidate value is smaller than CC[i]. Then, the number of vectors sharing
all earlier coordinates but having this value at position i is precisely A(k− i, ll − 1).
In this case, the current value of the rank will be greater—the target vector will follow
A(k− i, ll − 1) preceding vectors and thus we subtract that value from the rank.

• The current candidate is exactly the value value of CC[i]. In this case rank ≤ A(k− i, ll−1).
The algorithm assigns CC[i] = step and reduces the remaining number of nonzero
coordinates ll by one. The counter rank is updated to the exact internal sub-rank inside
the remaining suffix.

• A possible value for coordinate i is 0. In this case, we have step = q. We assign
CC[i] = 0, increment the iterator kb and break the inner while loop.
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When the remaining rank reaches zero, the algorithm has fully reconstructed
the vector.

4.3. Generating Ordered Subsets of the Set VL
n

The ordered set VL
n can be generated by nested loops when we know the exact values

of n, L, q. This, however, is not practical since these values can change dynamically,
depending on the problem. Such is the case with computing the covering radius of a linear
code, where we would iterate the value of L. For this purpose, we generate the set VL

n using
two auxiliary arrays, as shown in [25]:

• lc[1], . . . , lc[j] – strictly increasing positions of the nonzero coordinates of CC,
• coef[1], . . . , coef[j] – corresponding nonzero coefficients in Fq.

Given such a pair (lc, coef), the vector CC is uniquely reconstructed by

CC[i] =

coef[t], if i = lc[t] for some t,

0, otherwise.

Conversely, any vector CC ∈ VL
n of Hamming weight at most l can be encoded in this way

using at most l pairs (lc[t], coef[t]).
When considering a parallelization of an algorithm, we need to have an efficient

way to divide the work evenly among different computational units. Thus, we con-
sider an algorithm that generates a fixed number of vectors in VL

n , starting with vector
with rank = B, while also maintaining the order of the set. The goal of the procedure,
presented in Algorithm 4 is the following: given an initial rank B using the unranking
Algorithm 3 we initialize (lc, coef) and then we iteratively update (lc, coef) in a purely
iterative (non-recursive) manner that emulates the nested loops over positions and co-
efficients. Algorithm 1 serves as an intuitive illustration of the enumeration order. The
non-recursive implementation used in Algorithm 4 follows the same logic and is described
in detail in [25]. This produces the subsequent vectors in the same order as the matrices
V̂L

n (q) or VL
n (q).

Proposition 5 (Correctness of the non-recursive generator). Let VL
n be the matrix obtained by

Lemma 2 and the procedure UNRANK_FUNCTION implements Algorithm 3. Let B be a valid rank
and let CC(0) be the corresponding vector. If we initialize the arrays lc and coef from CC(0) as in
Algorithm 4, then the subsequent updates of (lc, coef) inside the outer loop over h and the inner
Repeat block produce exactly the same sequence of vectors as the original nested-loop algorithm,
starting from rank B and continuing with all subsequent vectors in VL

n .

Proof. Any vector CC ∈ VL
n is uniquely represented by strictly increasing positions

lc[1] < · · · < lc[j] and nonzero coefficients coef[1], . . . , coef[j], with j ≤ l. Conversely,
any such pair (lc, coef) determines a unique vector CC by placing coef[t] at position lc[t]
and zeros elsewhere. Thus there is a bijection between admissible (lc, coef) configurations
and vectors in VL

n .
The call UNRANK_FUNCTION(B, q, n, L) returns CC(0) with rank B. The subsequent

initialization loop extracts all nonzero positions i < kb into (lc, coef), and then appends the
last nonzero position kb and its coefficient. The adjustment coef[j]← coef[j]− 1 ensures
that the first update in the inner loop restores the original coefficient, so that the first vector
visited by the generator is precisely CC(0).
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Algorithm 4 Generation of linear combinations starting from rank B

1: procedure LIN_COMB_RANK_COVERING_WORKER(n, L, q, B)
2: Input:

n: vector length, L: maximal number of nonzero coordinates
q: field size |Fq|, B: rank of the starting vector

3: Global:
CC[1 . . . k]: current vector in Fk

q
lc[1 . . . L]: positions of nonzero coordinates
coef[1 . . . L]: corresponding coefficients

▷ Step 0: obtain the starting vector from its rank
4: UNRANK_FUNCTION(B, q, n, L) ▷ CC now has rank B
5: kb← position of the last nonzero coordinate of CC

▷ Initialize helper arrays up to the last nonzero position
6: lc← 0, coef← 0 j← 1, qfin ← q− 1
7: for i← 1 to kb− 1 do
8: if CC[i] > 0 then
9: lc[j]← i, coef[j]← CC[i], j← j + 1

10: lc[j]← kb ▷ Add the last nonzero position and adjust its coefficient
11: coef[j]← CC[kb]− 1

▷ Main iterative generator: non-recursive simulation of nested loops
12: for h← lc[1] to n do
13: if lc[1] ̸= h then
14: lc[1]← h, j← 1,coef[1]← 0
15: repeat ▷ (1) Increment coefficient or position at depth j
16: if coef[j] < qfin then
17: coef[j]← coef[j] + 1
18: else
19: lc[j]← lc[j] + 1, coef[j]← 1

▷ (2) Optionally reconstruct CC from (lc, coef)
▷ (3) Control the depth j (enter/exit virtual nested loops)

20: if lc[j] < n then
21: if j < L then
22: j← j + 1, lc[j]← lc[j− 1] + 1
23: if coef[j] = qfin then
24: coef[j]← 0
25: else
26: if coef[j] = qfin then
27: j← j− 1
28: until j = 1

The arrays lc[j] and coef[j] serve as a mechanism for emulating the nested loops
that appear in Algorithm 1. The array lc[j] encodes the sequence of active coordinates of
the vector CC generated during the algorithm. By construction, its entries form a strictly
increasing sequence ranging from 1 to n, thereby specifying the positions in which nonzero
values may occur. In other words, lc[j] abstracts the control flow of the outer loops, each
iteration selecting a new coordinate of CC to be updated.

The second array, coef[j], determines the field value assigned to the coordinate indexed
by lc[j]. For each j, the value coef[j] ranges from 1 to q− 1, where q denotes the cardinality
of the underlying finite field Fq. Thus, coef[j] always encodes a nonzero element of Fq,
while lc[j] identifies the corresponding active coordinate of the vector CC.

Together, the arrays lc[j] and coef[j] reproduce the combinatorial structure of the
original nested-loop formulation.

The control logic for j (entering and exiting deeper levels) implements the next outer
loops: as long as there is room for more nonzero coordinates (positions strictly less than
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k and j < L), a new level is entered by setting lc[j + 1] = lc[j] + 1, with an appropriate
initial coefficient. When lc[j] reaches n and the coefficient at this level has cycled through
all values, one level is exited by decreasing j. This is precisely what happens in a classical
nested-loop enumeration when the innermost index reaches its maximum and returns,
causing the next outer index to be incremented.

The outer loop over h moves the first nonzero position lc[1] from its initial value up to
n, resetting j and coef[1] when h changes. Therefore, the combined effect of the outer loop
and the inner Repeat loop is to traverse all admissible patterns of positions and coefficients
in exactly the same order as the original nested-loop generator.

4.4. Syndrome Enumeration

Let us now consider the second main aspect of the implementation of the sequential
algorithm—the syndrome array representation. We can minimize both the computational
and memory costs by considering only nonproportional linear combinations and, there-
fore, nonproportional syndromes. For a linear [n, k]q code we have that their number s
is θ = (qn−k − 1)/(q− 1). To compute the covering radius we need to generate all θ syn-
dromes and save the newly obtained ones from each step. If we consider an ordering of
the syndromes, then we can again use an enumeration (ranking) to represent a syndrome
as a single integer. We can use the ordering given in Definition 1, where L = n. Another
more natural enumeration arises from the lexicographical ordering of the nonproportional
vectors in Fn−k

q . These vectors can be considered as a vector-columns of the generator
matrix of the [θ, n− k] simplex code Sq,n−k. There is a recurrence relation for the generator
matrix Gm of a simplex code of dimension m as shown in (11):

G1 = (1), G2 =

(
0 1 1 . . . 1
1 0 1 . . . αq−2

)
,

Gm+1 =

(
0 1 1 . . . 1

Gm 0 Gm . . . αq−2Gm

)
,

(11)

where m ≥ 1 and Fq = {0, 1, . . . , αq−2}. The vector-columns of the generator matrix of
the simplex code also represent all points in the projective geometry PG(m− 1, q). This
recurrence relation gives a simple enumeration, including ranking and unranking functions
for the (n− k)-dimensional vectors.

Proposition 6. Let v = (v0, . . . , vm−1) be a column of the generator matrix Gm of the simplex
code Sq,m, constructed using Equation (11), and let us enumerate the columns of Gm, starting with
1. Then, with every vector v we associate a unique integer rv, that corresponds to its column number
in Gm and rv = 1+ (qn−j− 1)/(q− 1) + ∑n−1

i=j+1 viqn−i−1, where j is the first nonzero coordinate
of v. Moreover, Algorithm 5 returns the value of rv for a given vector v.

Proof. The proof is similar to the proof of Proposition 3. Firstly, we find the first nonzero
coordinate as seen in Algorithm 5. Let j be the position of the first nonzero coordinate
and the vector is of the form v = (0, . . . , 0, 1, v′). Thus, we know the number of columns
of Gm with coordinates from 1 to j− 1 that are equal to zero and that number is exactly
(qn−j − 1)/(q− 1). This follows from the recursive construction of Gm and the number
is the dimension of the simplex code Sq,j. We add this value to the value for the rank rv.
For vector v′ we have qm−j−1 possibilities. These vectors are ordered lexicographically as
columns of Gm. Thus, we can calculate the rank of v′ using standard integer encoding in
base q with appropriate exponent for q (here the enumeration of the coordinates starts with
0 from left to right). Thus, the position in this subset of columns is exactly ∑n−1

i=j+1 viqn−i−1
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and we need to add this number to the value of rv. Finally, we add 1 since we start the
enumeration from of the columns of Gm with 1.

Algorithm 5 implements the given counting steps. In the general case, v ∈ Fn−k
q has

first nonzero coordinate ̸= 1. Thus, it is not a column of Gn−k and we need to normalize it
using the inverse element. We use a precomputed table that contains the inverse element
for all elements of the field.

Algorithm 5 Ranking algorithm for the points in PG(n− k− 1, q)

1: procedure POINTTOINT(v, len, q)
2: Input:

len: length of vector, for linear [n, k] code len = n− k
q: finite field
v = (v0, . . . , vlen−1): input vector, where v ∈ Fn−k

q
3: Output:

r: rank of vector v
4: a← 0
5: a1 ← 0
6: for i← 0 to len− 1 do
7: local[i]← v[i]
8: i← 0
9: while local[i] = 0 do

10: i← i + 1
11: if i ≥ len then
12: return 0
13: if local[i] ̸= 1 then
14: temp← inverse(local[i]) ▷ Normalize the vector v ∈ Fq
15: for j← i to len− 1 do
16: local[j]← multiply(local[j], temp)
17: r ← (qn−i − 1)/(q− 1)
18: a1 ← 0
19: for j← i + 1 to len− 1 do
20: a1 ← a1 + local[j]
21: if j < len− 1 then
22: a1 ← a1 · q
23: r ← r + a1 + 1
24: return a

For the unranking algorithm we follow similar logic as in Proposition 4. We iteratively
subtract from the rank a the number of vectors where the first non-zero coordinate is at
position i = n− k− 1, n− k− 2, . . . . When a ≤ qlen−1−i, for some i, then we have found
the first non-zero coordinate and set the corresponding position of v to 1. The rest of the
coordinates are calculated as the coefficient q-base integer representation of the decimal
integer a. Algorithm 6 implements a procedure to calculate the corresponding vector to a
given rank a.

We can save the newly obtained syndromes as integers in an array once we have an
enumeration method. A syndrome can be generated as a linear combination of different
columns of the parity-check matrix H. However, we only need to keep track of whether a
syndrome is generated in the previous step or not. Thus, we can use a single bit to show
whether a corresponding syndrome has been generated. We can use a dynamic structure
as a bitset or an array of unsigned integers with appropriate indexing, where each bit of a
single array element will correspond to a syndrome. If we consider an array syn of 64-bit
integers, then the bit that corresponds to syndrome with rank r will be at ⌊t/64⌋ element
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of the array and at bit 64− (t mod 64), using standard bit enumeration for the bits from
right to left, starting with 0.

Algorithm 6 Unranking algorithm for the points in PG(n− k− 1, q)

1: procedure INTTOPOINT(a,len,q)
2: Input:

a: rank of vector v ∈ Fn−k
q

len: length of vector, for linear [n, k] code len = n− k
q: finite field

3: Output:
v = (v0, . . . , vlen−1): vector, that corresponds to column a of Gn−k

4: for i← 0 to len− 1 do
5: v[i]← 0
6: i← len− 1 ▷ Find position of the leading 1
7: while a > q len−1−i do
8: a← a− q len−1−i

9: i← i− 1
10: a← a− 1
11: v[i]← 1
12: i← len− 1 ▷ Decode remaining a in base q
13: while a > 0 do
14: v[i]← a mod q
15: a← ⌊a/q⌋
16: i← i− 1
17: return v

5. Parallel Implementation
The main challenges with parallelizing the algorithm for computation of the covering

radius of a linear code are synchronization and data access. In parallel implementation
the computations are divided among different working units that execute calculations
at the same time. In our case, the sequential algorithm iterates through the values of l
starting with Rmin, where l is the number of columns of H that are included in the linear
combination. After the generation for a given l is completed, we need to check whether all
syndromes have been generated. Thus, in a parallel implementation we need to synchronize
all computational units. Furthermore, each computational unit must have access to the
syndrome array. For this purpose, we consider a master–worker strategy with MPI.

In the proposed approach, the master process iterates through the values of l, sends it
to the workers, receives the newly generated syndromes from the workers, marks them
in the syndrome array and ends calculations if all θ syndromes are generated. The basic
outline of the master process is given in Algorithm 7.

The workers compute the rank of the starting linear combination and the number
of linear combinations that the process will generate chunk_size. For the generation of
linear combinations, we also include vectorization using the SSE4.1 instruction set. Imple-
mentation of vector addition over prime fields with up to 127 elements using extended
registers is presented [23]. For the generation, the worker processes use Algorithm 4. Since
each worker will generate approximately the same number of linear combinations, the
workers will send only the newly obtained syndromes in smaller chunks. In this way, the
master will not receive all syndromes at the same time and minimize the idle time for
both master and worker processes. Algorithm 8 gives an outline of the worker processes
workflow. Here, for simplicity of the presentation of the algorithm we use function Gener-
ateCombinationByIndex (start, R). In practice, we use implementation of Algorithm 4 with
appropriate modifications.

https://doi.org/10.3390/math14030534

https://doi.org/10.3390/math14030534


Mathematics 2026, 14, 534 22 of 28

Algorithm 7 Master Process

1: Input: H: Parity-check matrix, Rmin: lower bound
2: Output: R: Covering radius
3: R← Rmin
4: while true do
5: Initialize Syndromes[1, . . . , MAX]← f alse
6: Broadcast NEW_R(R) to all workers
7: f inished_workers← 0
8: while f inished_workers < P do
9: Receive message m from any worker

10: if m.type = SYNDROME_LIST then
11: for all idx in m.list do
12: Syndromes[idx]← true
13: else if m.type = DONE then
14: f inished_workers← f inished_workers + 1
15: if all entries in Syndromes are true then
16: Broadcast TERMINATE to all workers
17: return R
18: R← R + 1

Algorithm 8 Worker Process

1: while true do
2: Receive message m from Master
3: if m.type = TERMINATE then
4: return
5: else if m.type = NEW_R then
6: R← m.R
7: TOTAL← f (n− k, R)
8: P← total number of workers
9: w← my rank (1,. . . ,P)

10: chunk_size← ⌈TOTAL/P⌉
11: start← (w− 1) · chunk_size
12: end← min(w · chunk_size− 1, TOTAL− 1)
13: bu f f er ← ∅
14: v← GenerateCombinationByIndex(start, R)
15: for i = start to end do
16: s← H · vT ▷ Hn−k is a parity-check matrix
17: idx ← pointToInt(s, n− k, q)
18: Append idx to bu f f er
19: if |bu f f er| = SEND_BUFFER_SIZE then
20: Send SYNDROME_LIST(buffer) to Master
21: bu f f er ← ∅
22: v← NextCombination(v)
23: if |bu f f er| > 0 then
24: Send SYNDROME_LIST(buffer) to Master
25: Send DONE to Master

5.1. Computational Aspects

In the proposed approach, each worker process independently determines the subset
of linear combinations it must process, based on its rank and the total number of workers.
The master process is responsible solely for broadcasting the current radius R to all workers
and for maintaining a global array of discovered syndrome indices.
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Let TOTAL = f (n− k, l) denote the total number of nonzero linear combinations of l
columns of the parity-check matrix H, and let P be the total number of worker processes.
Worker w ∈ {1, . . . , P} computes its processing interval as:

chunk_size = ⌈TOTAL/P⌉,

startw = (w− 1) · chunk_size,

endw = min(w · chunk_size− 1, TOTAL− 1).

Within this interval, the worker enumerates each linear combination vector, computes
its corresponding syndrome s, maps s to its rank, and accumulates these ranks in a local
buffer. Whenever the buffer reaches a predefined capacity, it is transmitted to the master,
thereby reducing communication overhead. Upon completing its interval, the worker
sends any remaining indices and a completion signal to the master. This design has several
key benefits:

• Minimal communication overhead: The master no longer distributes intervals, reduc-
ing the number of messages.

• Simplicity and scalability: Workers compute their intervals independently, making
the algorithm easily scalable to large clusters.

• Immediate utilization: Workers can begin computation as soon as they receive R,
without waiting for further master instructions.

• Memory efficiency: Only the master maintains the global syndrome array; workers
require minimal local storage.

In this approach, each worker handles approximately TOTAL/P combinations. As-
suming uniform cost per linear combination, the parallel time complexity is O(TOTAL/P),
neglecting communication overhead. Since, workers send only newly obtained syndromes,
after the first step the buffer arrays will not be sent at the same time. Thus, both generation
of linear combinations and marking newly obtained syndromes are executed simultane-
ously. This further decreases the computational complexity.

Let us consider the communication complexity. Each worker sends O(chunk_size/B)
messages, where B is the buffer size for batching syndrome indices. The total com-
munication overhead is therefore O(P · chunk_size/B) messages per radius l, which
is small compared to the computational cost when B is chosen appropriately (e.g.,
1000 indices per message).

With this parallel approach we also minimize the memory complexity. Each worker
maintains only a local buffer of size B and at most l linear combination vectors, lead-
ing to O(B + l) memory per worker. The master maintains a global array of size
(qn−k − 1)/(q− 1), which dominates memory usage but resides centrally.

5.2. Comparison with Parallelization in Shared Memory Systems

The proposed MPI-based master–worker design, in which each worker computes
its processing interval independently, offers several advantages over a traditional shared-
memory implementation with OpenMP for computing the covering radius of linear codes.
In OpenMP, parallel threads share the same memory space. Updating a large global array
of syndrome indices in parallel may lead to false sharing and contention, particularly if
atomic operations or locks are used to synchronize writes. In the MPI approach, the
master process centrally manages the global array, while workers accumulate indices
locally and send them in batches. This minimizes synchronization overhead and prevents
performance degradation caused by concurrent writes to shared memory. While OpenMP
threads communicate through shared memory, excessive synchronization (e.g., for marking
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large arrays) can become a bottleneck. MPI allows explicit control over communication,
with workers sending syndrome indices in batched messages. By tuning the buffer size,
communication overhead can be significantly reduced, which is particularly advantageous
for computations with large global arrays. Furthermore, this strategy can operate across
multiple nodes in a cluster, allowing for massively parallel computations. Each worker
can reside on a different physical machine, with independent memory, thereby enabling
computations that exceed the memory limits of a single node.

6. Experimental Results
We compare the execution time of the vectorized implementation using the sequential

implementation with the function for computing the covering radius in the MAGMA
computational algebra system V.2.29-4 and specialized package GUAVA Version 3.20 for
working with error-correcting codes with the system for computational discrete algebra
GAP. In the evaluation of the parallel implementation, we consider the number of worker
processes. The computations were executed on Intel Core i9 processor 12900K (Santa Clara,
CA, USA) with 3.2 GHz base clock frequency.

Firstly, let us consider the vectorized implementation using the sequential algorithm
and SSE 4.1 instruction set that generates linear combinations iteratively. We have chosen
this instruction set since it is widely available. In most of the presented cases a column
of the parity-check matrix is written in not more than 16 bytes, thus fitting in a single
128-bit register. Furthermore, the use of larger registers can result in lowering the working
clock frequency in multithreaded programs [26]. Table 2 presents the execution times of
this implementation and gives the speedup in comparison to the MAGMA and GUAVA
functions. All presented execution times are in seconds. In the first three columns are
given the code parameters q, n, k respectively. Afterward, we give the covering radius for
the used codes. The next column gives the execution time of the MAGMA function using
the online calculator. In the sixth column we give the execution time for the vectorized
implementation with SSE4.1 instruction set. The following column gives the obtained
speed-up, calculated by the formula TM/TSSE, where TM is the given execution time of
MAGMA and TSSE is the execution time using SSE4.1 instructions. The last two columns
give the execution time using the integrated function of the Guava package and the speed-
up compared to our implementation. The speed-up is calculated analogously, using the
formula TG/TSSE, where TG is the execution time with GUAVA.

The vectorized implementation achieves a substantial performance improvement,
with speedups ranging from 5.2 to 19.6 compared to the MAGMA function. When com-
pared to the GUAVA package, the observed speedup ranges between 12 and 60 times.
The improvement is due to a combination of implementation-level and algorithmic op-
timizations. The dominant factor is SIMD vectorization, which reduces the number of
scalar operations in the generation of linear combinations. In addition, we use a lower
bound on the covering radius to start the search from R = Rmin and to avoid a subset of
redundant checks. Furthermore, the computational time depends not only on the number
of syndromes, but also on how “close” the covering radius is to Rmin (how many iterations
are executed). Finally, the algorithm does not generate the full set VR

n : we maintain a
global counter of the number of distinct syndromes produced, and terminate as soon as
this counter reaches the total number of syndromes, q n−k. This stopping criteria prevents
unnecessary generation of combinations once the syndrome space has been exhausted and
further reduces the overall runtime. This explains the difference in the obtained speed-up
compared to both packages.
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Table 2. Execution times and speed-up for vectorized implementation using SSE4.1.

q n k R MAGMA SSE4.1 TM /TSSE GUAVA TG/TSSE

3 30 15 7 48.62 3.46 14.1 175.41 50.7
3 35 20 7 51.04 12.00 5.2 118.19 12.0
3 40 25 6 55.78 2.85 19.6 171.37 60.1

5 19 9 7 36.73 4.06 9.0 93.24 23.0
5 24 14 6 36.21 2.51 14.4 97.25 38.7
5 25 15 6 37.49 3.52 10.7 99.67 28.3

7 16 8 6 19.59 1.04 18.8 41.30 39.6
7 26 18 5 18.10 1.39 13.0 48.74 35.1
7 30 22 5 20.08 3.04 6.6 53.16 17.5

Let us now consider the implementation with MPI and master–worker strategy. Table 3
shows the execution times with different number of worker processes and buffer size
1,000,000 elements. We also use SSE extended registers in the implementation. All times
are given in seconds. The first four columns show the parameters q, n, k and the calculated
R of the target linear codes. In the following columns, we give the execution times with 1,
2, 4, 8 and 16 workers, respectively. The experimental results show good scalability in most
cases when the number of workers increases up to 8. In the cases with 2 and 4 workers, the
obtained speedup when comparing to the case with 1 worker is 1.9 and 3.7, respectively.
In the case with 8 workers, the observed speedup is between 5.1 and 6.6. A few factors
have effect on the speedup, including hardware (only 8 performance cores), the number of
iteration needed to compute the covering radius (depends on the code itself), communica-
tion overhead, etc. It is important to note that our presented master–worker algorithms
are different from the traditional method. As can be seen in Algorithm 7, the master pro-
cess also executes some work, namely, keeping track of the generated syndromes. Thus,
increasing the number of worker processes can result in some communication bottlenecks.
This results in a decrease in speedup when the number of working processes grows. One
approach to address the communication bottleneck is to use multiple master processes.
Each master process is tracking a subset of the syndromes depending on its process id. We
have obtained the covering radius when all master processes have received their full subset
of syndromes. On the worker side of the computations, we have multiple buffer arrays -
one for each master process. A new syndrome is written in one of these arrays depending
on its rank. The final result is obtained from the processes using collective communication
with MPI_Reduce.

Table 3. Execution times with MPI and master–worker strategy.

q n k R W = 1 W = 2 W = 4 W = 8 W = 16

3 38 22 7 19.03 9.80 5.02 3.01 2.95
3 38 21 8 171.79 88.10 45.17 25.93 23.91

5 26 15 6 4.36 2.22 1.17 0.72 0.70
5 26 14 7 52.65 27.11 13.96 9.18 9.17

7 36 27 5 7.57 3.93 1.99 1.11 0.91
7 36 26 6 253.92 130.31 67.67 49.65 48.92

Table 4 presents the computational times for an implementation with multiple master
processes. Here the computations were executed on system Fujitsu Primergy RX 2540
M4 (Fujitsu Limited, Kawasaki, Japan) with 128 GB RAM, CPU 2x Intel Xeon Gold 5118
2.30 GHz 24 cores. The first four columns give the parameters of the codes for which the
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computations were executed, namely, q, n, k, R. The next column gives the number of
master processes, followed by the columns with execution times in seconds with 1, 2, 4, 8,
16 and 24 worker processes. Computational times are given in seconds. As it can be seen
from the table, with one master we observe good scalability up to 12 workers. The increase
of the master processes results in slower execution in the case with one worker process.
However, it can be seen that the scalability improves compared to the case with one master.
This can also be seen in Figure 1, which shows the speed-up for the experimental results,
given in Table 4. The speedup is calculated using the formula T1/TW , where T1 is the
execution time using one worker and TW is the time with W workers W = 2, 4, 8, 12, 16, 24.
Figure 1 shows that when using hyperthreading (total number of processes is greater than
the physical cores e.g., W = 24), the rate with which the speed-up grows declines.

Table 4. Execution times with MPI and multiple master processes.

q n k R M\W 1 2 4 8 12 16 24

3 38 22 7 1 47.15 20.04 10.46 5.49 4.59 4.69 5.60
3 38 22 7 2 48.64 25.27 13.25 7.38 4.62 3.78 3.16
3 38 22 7 4 51.23 25.80 13.34 7.29 4.59 3.68 3.88

5 26 14 7 1 139.91 57.55 29.57 16.03 16.06 16.72 17.44
5 26 14 7 2 141.94 72.06 38.20 20.14 13.53 11.11 9.74
5 26 14 7 4 149.88 76.06 38.25 19.96 13.62 10.80 9.52

Figure 1. Speed-up with 1, 2 and 4 masters.

7. Conclusions
The presented algorithms in this paper give an ordering of the linear combination of

columns of a matrix. This ordering allows the set of all linear combination to be enumerated
and divided into close to equal to subsets. The specific characteristics of the chosen
ordering also allow for efficient generation of the linear combinations. This ordering
is used to parallelize an algorithm for computing the covering radius of a linear code.
We developed a sequential implementation with SSE instruction and extended vector
registers and a parallel implementation with a master–worker strategy. The presented
sequential implementation gives good speed-up compared to the MAGMA computational
algebra system and Guava package for GAP. The presented parallel implementation shows
good scalability in most cases and for worker threads less than 16. We also consider an
implementation with multiple master processes to improve the scalability with more worker
processes. This technique further improves scalability. The experimental results show the
best speedup is achieved when the total number of processes is equal to the number
of physical cores. The source code of the algorithm is now available on a special page
on Github: https://github.com/linearcodes-dev/CoveringRadius_MPI_implementation
(accessed on 25 January 2026). In addition to the code, it also contains a description of
how to compile and run it, as well as the necessary files for creating projects on different
platforms with Cmake.
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