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Abstract: Mastitis in dairy cows is a complex infectious disease that significantly impacts animal health, milk quality,
and farm profitability. This study develops and analyzes a deterministic compartmental mathematical model describing
the transmission of mastitis among cows and via environmental contamination. The model is formulated using a system
of ordinary differential equations that include key biological and management parameters, such as bacterial shedding,
recovery, and culling rates. Dimensional consistency and stability analyses were conducted to ensure the model’s validity.
The basic reproduction number was calculated, and the equilibrium points were identified and analyzed for both local
and global stability. Numerical simulations demonstrate the dynamic behavior of susceptible, infected, and recovered
groups, highlighting how infection control depends on changes in shedding and recovery parameters. The model offers a
theoretical framework for optimizing mastitis prevention strategies and supports informed decision-making in dairy herd
management, as shown through the application of data from a Macedonian dairy farm.
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1. Introduction
Interactions among humans, animals, and the environment are central to the emergence of infectious diseases, many

of which originate from animal reservoirs [1]. Zoonotic diseases are those diseases or infections that can be transmitted
between humans and wild and domestic animals. These diseases account for a large share of recent disease outbreaks,
often linked to animal-derived foods [2]. Zoonoses pose a serious global public health threat due to their potential for
severe illness and death.

Mastitis in dairy cows is a complex disease that not only affects animal health but also poses substantial public health
risks. The development of mastitis in dairy herds results from a complex interaction among the host, the environment,
and pathogenic microorganisms. Risk factors for mastitis are typically classified into two major categories: cow-level
determinants and environmental determinants. The latter encompasses a range of factors, including herd management
practices, hygiene protocols, housing conditions, milking technology, nutritional strategies, calving seasonality, and
preventive health programs [3]. This multifactorial condition is primarily associated with bacterial infections and can
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lead to significant economic losses in the dairy industry [4], as well as concerns regarding food safety and public health
due to the potential spread of antimicrobial resistance [5]. The implications of mastitis are underpinned by the prevalence
of various pathogens, including Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis,
and others, which have been increasingly associated with multidrug resistance due to antimicrobial misuse and poor
management practices [4].

The primary contagious pathogens responsible for udder infections in dairy herds are Staphylococcus aureus,
Streptococcus agalactiae, and coliform species [4]. In addition, mastitis can be caused by a wide variety of opportunistic
environmental pathogens, including Escherichia coli, Klebsiella spp., Enterobacter spp., Serratia spp, Pseudomonas spp.,
Proteus spp.,Corynebacterium pyogenes, Streptococcus uberis, Streptococcus dysgalactiae, as well as coagulase-negative
staphylococci (as in [5, 6]).

Depending on the route of transmission, mastitis can be divided into contagious and non-contagious mastitis caused
by the pathogens in the environment [7]. Environmental microorganisms, particularly those found in bedding and manure,
are significant sources of mastitis pathogens.

Pathogen-specific studies reveal that different bacterial species exhibit diverse infection modes, ultimately impacting
mastitis severity and economic losses. While Staphylococcus aureus is well-documented for causing both clinical and
subclinical mastitis, Streptococcus uberis is recognized as a leading cause of chronic mastitis, particularly under intensive
production conditions [8]. There are pathogen-specific characteristics associated with the bacterial counts in milk and
their shedding from infected mammary quarters [9] Such distinctions are vital for developing tailored control measures
aimed at specific pathogens prevalent in distinct environments (as in [10, 11]).

The control of mastitis in dairy cows is critical for maintaining animal health, improving milk quality, and enhancing
overall dairy farm profitability. Effective mastitis control programs rely on various strategies, including risk factor
identification, hygiene management, regular monitoring, and timely interventions [12]. Furthermore, the integration of
mathematical modelling and predictive analytics into these programs can enhance the understanding of infection dynamics,
improve decision-making, and optimize resource allocation for prevention and treatment [13].

In scientific literature, mathematical models have been extensively developed to study the dynamics of various
diseases. Some of these models are closely related to epidemiology, particularly in the description of infectious disease
transmission.

Deterministic models have been widely applied to capture the dynamic behavior of disease spread [14–16]. For
instance, Greenhalgh and Rozins [15] proposed a generalized model of the differential equations for modeling infectious
disease transmission, whereas Van den Driessche [16] investigated the role and implications of the basic reproduction
number within such models.

Mathematical models can also be applied in the field of chemistry, as demonstrated in [17].
Susceptible-Exposed-Infectious-Recovered (SEIR)-typemathematicalmodels and their extensions have been developed

to describe the transmission dynamics of infectious diseases [18, 19], such as measles [20], influenza [21], tuberculosis
[22], and COVID-19 [23].

A similar modeling framework has been applied in the veterinary context, focusing on the prevalence dynamics of
mastitis in dairy herds [13].

Several studies have also integrated optimization and control strategies, such as those used in mastitis management
[24, 25]. Additionally, Sisk and Fefferman introduced methods for studying infectious disease spread [26].

Understanding pathogen dynamics in dairy herds is also pivotal. The efficacy of mastitis control efforts can be
enhanced further through mathematical modeling. Research indicates that mathematical models can simulate mastitis
dynamics, accounting for factors such as pathogen transmission, environmental conditions, and herd management
practices [27]. For instance, models that utilize Somatic Cell Counts (SCC) as indicators of mastitis prevalence can
provide early warnings to dairy producers about potential outbreaks, enabling timely intervention measures [28]. A study
by Hyde et al. emphasized the role of machine learning techniques in predicting mastitis infection patterns based on
historical data related to herd health and environmental conditions [29].

Mathematical models of differential equations are applied in many other areas of human life, and provide sustainable
predictions for the deepening or suppression (as much as possible) of a certain problem that is the subject of observation
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(as in [30]). From the mathematical side, these models are most often subjected to dynamic analysis (as in the papers
[31–34]) and then treated with some mathematical software (as in [32, 35–37]).

Therefore, the main aim of this paper was to develop mathematical models based on differential equations that can
help reduce the negative effects of mastitis in real-world dairy environments (as an example in the scientific literature
[13, 24, 25]).

2. Materials and methods
A dynamic system of differential equations was developed to describe the spread and persistence of mastitis in a

dairy cow population. The model incorporated four key processes: (i) transmission of the disease from cow to cow, (ii)
acquisition of infection from pathogens in the environment, (iii) loss of immunity after recovery, and (iv) recurrence of
the disease, which may occur up to four times. The model was adapted from the epidemiological framework of cholera
proposed in [16], with modifications to account for the biological and environmental characteristics of cow’s mastitis.

For the model, the dynamic analysis was carried out through several theorems supported by proofs. A limited region
was identified, following the approaches in [21, 22, 24, 25, 30]. Within this region, the positivity of the solutions of
the system was proven (as in [24, 25, 30, 38]). The corresponding theorem used to prove the positivity of the solutions
followed the method described in [38]. The equilibrium points were determined using a procedure like that in [18, 21,
22, 24, 25, 30, 31], as this step is of exceptional importance for such models. The local stability of the model, which
describes the behavior of the system near equilibrium points, was analyzed using the Routh-Hurwitz stability criterion
[39], following the approaches in [18, 21, 22, 24, 25, 30]. The local stability of the model was related to the basic
reproduction number. This number was calculated as the largest eigenvalue of the next generation matrix developed by
Van den Driessche and Watmough [16, 40]. Therefore, the basic reproduction number for this model was obtained in line
with [16, 21, 22, 24–26, 30, 41]. In addition to local stability, the global stability of the model was analyzed using the
Castillo-Chavez conditions and the construction of a Lyapunov function, following the methods described in [24, 25, 42].

To evaluate the practical relevance of the model, a case study was conducted using the data on mastitis prevalence
from a dairy farm in the Republic of North Macedonia. Farm records and herd information were used to estimate input
values for the mathematical model. The analysis was carried out under two scenarios:

1. Ideal scenario: The farm is assumed to maintain impeccable hygienic conditions, resulting in a negligible
concentration of pathogens in the environment, such that the risk of environmental transmission is minimal at the initial
stage.

2. Equilibrium scenario: The environment is assumed to be approximately in an equilibrium state at the initial stage,
with bacterial levels sufficient to contribute to the persistence of mastitis.

For each scenario:
• The basic reproduction number (ℜ0) was calculated;
• The coordinates and stability of equilibrium points were determined;
• Numerical simulations were performed in Mathematica, providing graphical visualizations of model dynamics;
• Predicted values of model functions over several years were tabulated.
The outcomes of the model analysis were used to predict the future dynamics of mastitis under the two scenarios.

Based on these results, recommendations for potential management interventions were developed, aiming to improve herd
health, ensure animal welfare, and increase economic profitability on the farm.

3. Mathematical model
The mathematical model will be presented in several parts. The formulation is through a system of ordinary

differential equations, and its sustainability is considered. The two equilibrium points are identified: the equilibrium
point presenting a cow population without mastitis, and the equilibrium point presenting a cow population with mastitis
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manifested as an epidemic. For this model, the basic reproduction number will also be found, based on which the local
and global stability of the system will be considered.

3.1 Formulation of the mathematical model
The so-called mathematical model SIRS + P will be used for solving our problem. This model is based on

the epidemiological model of Cholera [16], which belongs to the group of classical SIR epidemiological models. Its
visualization is given in Figure 1.

Figure 1. Mathematical model SIRS + P

According to Figure 1, the population of cows on the farm is divided into three groups: susceptible S(t), infected
I(t), and recovered R(t) at the time t, so that the cow population

N(t) = S(t)+ I(t)+R(t)

Since the disease can also arise from bacteria present in the environment where the cows live, the influence of
the environment is considered by P(t)-pathogen concentration (mean: measuring the concentration of bacteria in the
environment). On the other hand, cows do not develop solid immunity to this disease, so it can recur multiple times,
which implies that this aspect must be considered in constructing the model. The differential equations of the model are

dS
dt

= Λ−bPSP−bISI −µS+αR

dI
dt

= bPSP+bISI − (µ + γ)I

dR
dt

= γI − (µ +α)R

dP
dt

= εI −δP

(1)

with the initial values S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 > 0, P(0) = P0 > 0.
Interpretation of equations of the model (1). The model (1) describes how mastitis spreads within a dairy herd

through interactions between cows and environmental bacteria. The formulation relies on the following biological and
epidemiological assumptions:
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• The recruitment of new susceptible cows into the herd occurs at a constant rate Λ;
• The susceptible cows may become infected by direct contact with infected cows at a rate proportional to bISI or

through exposure to environmental bacteria at a rate proportional to bPSP;
• The infected cows recover at a constant rate γ;
• The recovered cows can relapse into the susceptible group at a mastitis recurrence rate α;
• All cows, regardless of their infection status, are subject to culling or natural death at a culling rate µ;
• The concentration of bacteria in the environment P(t) increases through shedding from infected cows at a rate εI,

but decreases naturally at a rate δP.
Thus, the model construction is grounded in biologically justified premises, and each process in the equations

corresponds directly to a real phenomenon observed in the epidemiology of cow mastitis.
Dimensional homogeneous of the model (1) variables and parameters. Let the basic dimensions be defined as:
• [c]-concentration of bacteria (e.g., CFUṁl−1);
• [N]-number of cows;
• [T ]-time.
The main parameters have the following descriptions and dimensions:

• The parameter Λ is the recruited rate
[

N
T

]
;

• The parameter bP is the transmission rate of mastitis to cows from bacteria in the environment
[

1
T · c

]
;

• The parameter bI is the transmission rate of mastitis from cow to cow
1

T ·N
;

• The parameter γ is the recovery rate
[

1
T

]
;

• The parameter ε is the shedding rate of the bacteria from the infected mammary gland quarters, linking the number
of infected cows to the increase in bacterial concentration in the environment

[ c
T ·N

]
;

• The parameter δ is the removal rate of the shed bacteria
[

1
T

]
;

• The parameter µ is the culling rate of cows from the herd (when animals are removed from the herd entirely, often

due to poor production, health, fertility problems, or natural death)
[

1
T

]
;

• The parameter α is the mastitis recurrence rate
[

1
T

]
.

Each equation in the system (1) is dimensionally homogeneous. Therefore, the model (1) is dimensionally consistent
and physically interpretable.

3.2 Sustainability of the mathematical model
The sustainability of the mathematical model (1) will be given by two theorems, the first of which relates to the

bounded region, and the second to the positivity of the solutions within it.
Theorem 1 Assume the system of differential Equation holds. Then, a feasible solution set for initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 > 0, P(0) = P0 ≥ 0

Ω =

{
(S, I, R, P) ∈ R4 |0 < N ≤ Λ

µ

}

is a bounded region.
Proof. For the model, the total population is given by N(t) = S(t)+ I(t)+R(t); then:

Volume 7 Issue 1|2026| 155 Contemporary Mathematics



dN
dt

=
dS
dt

+
dI
dt

+
dR
dt

= Λ−µ(S+ I +R) = Λ−µN

dN
dt

= Λ−µN.

The general solution of this differential equation is N =
Λ
µ
+C0e−µt . The solution with initial condition N(0) = N0 is

N =
Λ
µ
+(N0−1)e−µt . For t → ∞, it is obtained N → Λ

µ
. So, the set Ω =

{
(S, I, R, P) ∈ R4 |0 < N ≤ Λ

µ

}
is a bounded

region.
Theorem 2 For any finite, nonnegative initial values (S0, I0, R0, P0), the trajectories of the solution (S(t), I(t), R(t),

R(t)) of the system (1) satisfy S(t)≥ 0, I(t)≥ 0, R(t)≥ 0, R(t)≥ 0 for all t ≥ 0.
Proof. Firstly, it is established that all compartments (S(t), I(t), R(t), R(t)) defined by the system of Equations

are continuously differentiable. As such, if all compartments have nonnegative initial conditions, and if any of the
compartments are zero at a given time t = ti ≥ 0, its derivative is nonnegative by inspection. Assume that S0 =

S(0), S(t1) = 0, N(t1) ̸= 0 and R(t1)> 0 at time instant t = t1. Then, the first equation of the model (1) can be rewritten
as:

dS(t1)
dt

= Λ−bPS(t1)P(t1)−bIS(t1)I(t1)−µS(t1)+αR(t1) = Λ+αR(t1)> 0,

then S(t)≥ S(t1) = 0 for t close to t1, t ≥ t1 > 0. From the arbitrary of the point t1 it is following that S(t)> 0, ∀t ≥ 0.
Assume that I0 = I(0)≥ 0, I(t2) = 0 and S(t2)> 0, P(t2)> 0, N(t2)> 0 at time instant t = t2. The second equation

from the model (1) can be rewritten as:

dI(t2)
dt

= bPS(t2)P(t2)+bIS(t2)I(t2)− (µ + γ)I(t2) = bPS(t2)P(t2)> 0.

From the arbitrary of the t2 it is following that I(t)> 0 for all t ≥ 0.
Assume that R0 = R(0) ≥ 0, R(t3) = 0 and I(t3) > 0 at time instant t = t3. The third equation of the model (1) can

be rewritten as:

dR(t3)
dt

= γI(t3)− (µ +α)R(t3) = γI(t3)> 0.

From the arbitrary of the t3 it is following that R(t)> 0 for all t ≥ 0.
Assume that P0 = P(0)≥ 0, P(t4) = 0 and I(t4)> 0 at time instant t = t4. The fifth equation of the model (1) can be

rewritten as follows:

dP(t4)
dt

= εI(t4)−δP(t4) = εI(t4)> 0.

From the arbitrary of the t4 it is following that R(t)> 0, for all t ≥ 0.
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Since none of the compartments would have a negative derivative at any time instant t = ti, when all other
compartments are positive, we can conclude that all compartments are nonnegative at any given time instant t ≥ 0.
Consequently, considering that N(t) = S(t)+ I(t)+R(t), the total population N(t) is also positive for time instant t ≥ 0.
Hence, the proof is complete.

From both theorems, we conclude that the model (1) is mathematically and epidemiologically sound.

3.3 Equilibrium point for a cow population without mastitis

The equilibrium point of the model (1), which manifests a cow population without mastitis, is given by Theorem 3.
Theorem 3 The equilibrium point of model (1), which manifests a cow population without mastitis, is

X0 =

(
Λ
µ
, 0, 0, 0

)
(2)

Proof. The equilibrium points of models such as the model (1) are determined by setting the right-hand sides of the
system’s equations equal to zero. Thus, each equation in the system (1) is equated to zero, yielding a new algebraic system.
By expressing the variables R =

γ
µ +α

I and P =
ε
δ

I from two of the resulting equations accordingly and substituting

them into the third equation of the new system, we obtain:

(
bPS

ε
δ
+bIS−µ − γ

)
I = 0 (3)

If I = 0 (e.g., I0 = 0) into (3), then P = P0 = 0, R = R0 = 0. For I = 0, we obtain

S = S0 =
Λ
µ
.

The equilibrium point of the model (1), which manifests a cow population without mastitis, is (2).

3.4 Basic reproduction number
The basic reproduction number is a fundamental concept in epidemiology that gives the potential for disease spread

in some population. It represents the average number of secondary infections in the susceptible population produced by
one infected individual. The finding of the basic reproduction number is given by Theorem 4.

Theorem 4 The basic reproduction number of the model (1) is

ℜ0 =
βI +βP

µ + γ
(4)

where βI = bI
Λ
µ
and βP =

Λ
µ
· bP · ε

δ
.

Proof. The next generation matrix is a square matrix M, where each element represents the transmission rate from
one component to another, represented as the difference of two matricesW and Y . The matrixW (X) refers to the rates of
emergence of new infections, whileY (X) represents the rates of progression of individuals into and out of the components.
The model (1) , according to Theorem 3, has an equilibrium point (2). Let X = (S, I, R, P)T . Then the model (1) can be
written as
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dX
dt

=W (X)−Y (X)

where

W (X) = [0 bPSP+bISI 0 0]T

Y (X) = [bPSP+bISI +µS−αR (µ + γ)I (µ +α)R− γI δP− εI]T .

For the new generations, it is obtained:

F =

bPSP+bISI

0

 , J(F(X0)) =

bI
Λ
µ

bP
Λ
µ

0 0

 .

For the old generations, it is obtained:

V =

(µ + γ)I

δP− εI

 , J(V (X0)) =

µ + γ 0

−ε δ

 .

The square matrix M has the form:

M = J(F(X0)) · (J(V (X0)))−1 =
1

δ (µ + γ)
·

bI
Λ
µ

δ +bP
Λ
µ

ε bP
Λ
µ
(µ + γ)

0 0

 .

The basic reproduction number is

ℜ0 =
Λ
µ
· bIδ +bPε

δ (µ + γ)
.

If we replace βI = bI
Λ
µ
and βP =

Λ
µ
· bP · ε

δ
, then the basic reproduction number will have the form (4).

It is known that the basic reproduction numberℜ0 represents the average number of secondary infections generated by
one infectious individual in a completely susceptible population. According to our model, ℜ0 depends on the transmission
rates through direct contact (βI ) and indirect contact (βP), as well as on the recovery rate (γ) and natural death rate (µ).

The significance of the basic reproduction number is illustrated in Figure 2.
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Figure 2a presents the behavior of S(t) and I(t) in a model similar to our model (1) when ℜ0 < 1, whereas Figure 1b
corresponds to the case when ℜ0 > 1.

Figure 2. Significance of the basic reproduction number in the mathematical model (1)

It is evident that for ℜ0 < 1, I(t) tends to zero and the disease eventually dies out, while for ℜ0 > 1, I(t)> 0 and the
disease becomes endemic within the population.

Remark The red line on the graphs is the number of units in the considered population.

3.5 Epidemic equilibrium
The determination of the epidemic equilibrium for the model (1) is provided by Theorem 5.
Theorem 5 The epidemic equilibrium for the model (1) is

X⋆ =(S⋆, I⋆, R⋆, P⋆)

=

(
Λ

µℜ0
,

Λ(µ +α)

(µ +α)(µ + γ)−αγ
·
(

1− 1
ℜ0

)
,

Λγ
(µ +α)(µ + γ)−αγ

·
(

1− 1
ℜ0

)
,

Λ(µ +α)ε
δ ((µ +α)(µ + γ)−αγ)

·
(

1− 1
ℜ0

))
(5)

Proof. If I ̸= 0 into (4), then bPS
ε
δ
+bIS−µ − γ = 0. This equation implies

S = S⋆ =
Λ

µℜ0
.

From the first equation, it obtained:

I = I⋆ =
Λ(µ +α)

(µ +α)(µ + γ)−αγ
·
(

1− 1
ℜ0

)
.

Then:
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R = R⋆ =
Λγ

(µ +α)(µ + γ)−αγ
·
(

1− 1
ℜ0

)
,

P = P⋆ =
Λ(µ +α)ε

δ ((µ +α)(µ + γ)−αγ)
·
(

1− 1
ℜ0

)
.

The epidemic equilibrium is (5).
Remark It can be observed that for ℜ0 < 1(Λ, α, ε, γ, δ , µ > 0), we obtained that I⋆, R⋆, P⋆ < 0. Since we are

discussing a real case, this equilibrium point X⋆ would be impossible under these conditions. Therefore, when we refer
to the existence of this equilibrium point X⋆, we mean in the case of ℜ0 > 1.

3.6 Local stability of equilibrium points

The local stability of the model (1) is closely related to the basic reproduction number. To analyze the local stability
of the model (1), we will use the Routh-Hurwitz stability criterion. The analysis is conducted through the roots of the
characteristic equation of the Jacobian matrix of the system (1). If all roots are negative real numbers, then the model (1)
is locally stable. Otherwise, it is locally unstable.

Theorem 6 presents the conditions for the local stability of the equilibrium points that manifest a cow population
without mastitis.

Theorem 6 (a) The equilibrium point X0 is locally stable for ℜ0 < 1;
(b) If ℜ0 = 1, then the equilibrium point X0 is at the stability limit, i.e. the system at the point X0 is critically stable.
Proof. The Jacobian matrix of the model (1) at the equilibrium point X0 is:

J(X0) =



−µ −bI
Λ
µ

α −bP
Λ
µ

0 bI
Λ
µ
− (µ + γ) 0 bP

Λ
µ

0 γ −(µ +α) 0

0 ε 0 −δ


.

The characteristic polynomial D0 is

D0 = (µ +λ )(µ +α +λ )
(

λ 2 +λ
(

µ + γ +δ − Λ
µ

bI

)
+δ (µ +δ )(1−ℜ0)

)
.

The clear that −µ < 0, −µ −α < 0 for α, µ > 0.
(a) By using Routh-Hurwitz criterion for stability for equation

λ 2 +λ
(

µ + γ +δ − Λ
µ

bI

)
+δ (µ +δ )(1−ℜ0) = 0,
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it is true:

a0 = δ (µ +δ )(1−ℜ0)> 0,

a1 = (µ + γ)(1−ℜ0)−
Λ
µ

bPε
δ

+δ > 0,

for ℜ0 < 1 and Λ, α, ε, γ, δ , µ, bI , bP > 0. The signs of the roots of the characteristic equation D0 = 0 are

λ1 =−µ < 0, λ2 =−µ −α < 0, λ3/4 < 0.

Therefore, the equilibrium point X0 is locally stable for ℜ0 < 1.
(b) If ℜ0 = 1, then the equation

λ 2 +λ
(

µ + γ +δ − Λ
µ

bI

)
+δ (µ +δ )(1−ℜ0) = 0

takes the following form

λ 2 +λ
(

µ + γ +δ − Λ
µ

bI

)
= 0 i.e., λ

(
λ +µ + γ +δ − Λ

µ
bI

)
= 0.

The coefficient a1 is a1 = µ + γ +δ − Λ
µ

bI =
Λ
µ
· bPε

δ
+δ > 0 for Λ, ε, δ , µ, bP > 0. The signs of the roots of the

characteristic equation D0 = 0 are

λ1 =−µ < 0, λ2 =−µ −α < 0, λ3 = 0, λ4 < 0.

We get a root λ3 = 0. This main that the system (1) is marginally stable (at the very limit). In control theory, point
X0 is called the stability limit and indicates that the system is “getting ready” to change stability.

Remark 1 From Theorem 6, it is clear that for ℜ0 > 1, all characteristic values of the characteristic equation will
not be negative, and therefore the equilibrium point X0 will be unstable.

Theorem 7 gives the conditions for locally stability of the equilibrium for a mastitis epidemic.
Theorem 7 The equilibrium point X⋆ is the local stable for ℜ0 > 1.
Proof. The Jacobian matrix of the model (1) at the equilibrium point X⋆ is:
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J(X⋆) =



−bP
ε
δ

A
(

1− 1
ℜ0

)
−bIA

(
1− 1

ℜ0

)
−µ −bI

Λ
µℜ0

α −bP
Λ

µℜ0

bP
ε
δ

A
(

1− 1
ℜ0

)
+bIA

(
1− 1

ℜ0

)
bI

Λ
µℜ0

− (µ + γ) 0 bP
Λ

µℜ0

0 γ −(µ +α) 0

0 ε 0 −δ


.

where K =
Λ(µ +α)

(µ +α)(µ + γ)−αγ
. The characteristic polynomial D⋆ is

D⋆ = (µ +λ )2(λ 2 +λ (u−w+α + γ +δ +µ)+uα −wα +uγ +αγ +uδ −wδ +αδ +δγ −Cε +δ µ)

where C = bP
Λ

µℜ0
, u =

Kµ(µ + γ)
Λ

(ℜ0 − 1), w = µ + γ − C
ε
δ
. It is clear that: K, C, u > 0, −µ < 0 for

Λ, α, ε, γ, δ , µ, bI , bP > 0 and ℜ0 > 1.
By using Routh-Hurwitz criterion for stability for equation

λ 2 +λ (u−w+α + γ +δ +µ)+uα −wα +uγ +αγ +uδ −wδ +αδ +δγ −Cε +δ µ = 0,

it is true:

a1 =
Kµ(µ + γ)

Λ
(ℜ0 −1)+C

ε
δ
+α + γ +δ +µ > 0,

for Λ, α, ε, γ, δ , µ, bI , bP > 0 and ℜ0 > 1.
Lemma For ℜ0 > 1, it is true

a0 = α(u−µ)+C
αε
δ

+uγ +uδ +αδ > 0.

Proof. Let ℜ0 > 1. Then

a0 = α(u−µ)+C
αε
δ

+uγ +uδ +αδ >
µ(µ + γ)(µ +α)(δ + γ)+α2µγ

(µ +α)(µ + γ)−αγ
+C

αε
δ

+α > 0,

for C, α, ε, γ, δ , µ > 0.
The signs of the roots of the characteristic equation D⋆ = 0 are

λ1/2 =−µ < 0, λ3/4 < 0.
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Therefore, the equilibrium point X⋆ is locally stable for ℜ0 > 1.
Remark 2 From Theorem 7, it is clear that for ℜ0 < 1, all characteristic values of the characteristic equation will

not be negative, and therefore the equilibrium point X⋆ will be unstable.

3.7 Global stability of equilibrium points

In addition to local stability, we will also analyze the global stability of the equilibrium points. To examine the global
stability of the equilibrium point X0, we will use the Castillo-Chavez criterion. We will write the model (1) in the form

dX
dt

= F(X , Y )

dY
dt

= G(X , Y ), G(X , Y ) = 0

(6)

where X = (S, R) ∈ R4, Y = (I, P) ∈ R4 are the ineffective and infected states of the system (6), with I = 0 and P = 0.

Regarding the model (1), we will take the reduced system
dX
dt

= F(X , 0) from the system (6), i.e.,

dS
dt

= Λ−µS+αR

dR
dt

=−(µ +α)R.

The equilibrium point of the reduced system is X̂ =

(
Λ
µ
, 0

)
.

The equilibrium point X0 is globally stable for the model (1) for ℜ < 1, if the conditions of the Castillo-Chavez
criterion are satisfied:

H1 : For
dX
dt

= F(X̂ , 0), X0 is globally stable.

H2 : G(X , Y ) = DY G(X̂ , 0)Y − Ĝ(X , Y ), Ĝ(X , Y )≥ 0 for all (X , Y ) ∈ Ω, where DY G(X̂ , 0) is the Jacobian matrix
of G(X , Y ) at (I, P), but it rated at the equilibrium point X0 = (X̂ , 0, 0).

If the system (6) satisfies the conditions of the Castillo-Chavez criterion, then the following theorem will be true.
Theorem 8 The equilibrium point X0 = (X̂ , 0, 0) is globally stable for the model (1) for ℜ < 1, if the conditions of

the Castillo-Chavez criterion are satisfied.
Proof. From the system (1), we make two subsystems X = (S, R) ∈ R4, Y = (I, P) ∈ R4 according to (6):

F(X , Y ) =

Λ−bPSP−bISI −µS+αR

γI − (µ +α)R


and
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G(X , Y ) =

bPSP+bISI − (µ + γ)I

εI −δP

 .

About the reduced system of the hypothesis H1, the functions S(t)→ Λ
µ
and R(t)→ 0 are independent of S(0) = S0

and R(0) = R0 accordingly, when t → ∞. We can conclude that the dynamics of the system do not depend on the initial
conditions, i.e., every solution of the system with initial conditions in Ω converges to X̂ when t → ∞. Therefore, the
equilibrium point X̂ is globally stable in Ω. This implies that the condition H1 is satisfied.

About the model (1), we have

DY G(X̂ , 0) =

bI
Λ
µ
− (µ + γ) bP

Λ
µ

ε −δ

 .

Then

DY G(X̂ , 0)Y =

bI
Λ
µ

I +bP
Λ
µ

P− (µ + γ)I

εI −δP

 .

Next

Ĝ(X , Y ) =

bI(
Λ
µ
−S)I +bP(

Λ
µ
−S)P

0

=

Ĝ1(X , Y )

Ĝ2(X , Y )

 .

Therefore, Ĝ1(X , Y )≥ 0 for S ≤ Λ
µ
at any time t, as shown in H1. This implies that the condition H2 is satisfied. It

follows that the equilibrium point X0 is globally stable for ℜ0 < 1. It is unstable otherwise.
About analyzing the global stability of the equilibrium point X⋆, we will present Theorem 9.
Theorem 9 If ℜ0 > 1, then the equilibrium point X⋆ is globally stable in Ω.
Proof. We will analyze the global stability of the equilibrium point X⋆ by constructing the following Lyapunov

function:

V (t) =
(

S−S⋆−S⋆ln
S
S⋆

)
+

(
I − I⋆− I⋆ln

I
I⋆

)
+

(
R−R⋆−R⋆ln

R
R⋆

)
+

bPS⋆P⋆

εI⋆

(
P−P⋆−P⋆ln

P
P⋆

)
.

It is clear that V (t)≥ 0 for all S, I, R, P ≥ 0 and that V (t) = 0 if and only if X = X⋆ = (S⋆, I⋆, R⋆, P⋆).

Differentiating the V (t) and using the equilibrium relations
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Λ = bPS⋆P⋆+bIS⋆I⋆+µS⋆−αR⋆, (µ + γ)I⋆ = bPS⋆P⋆+bIS⋆I⋆, γI⋆ = (µ +α)R⋆, εI⋆ = δP⋆,

we obtain

V̇ =−µ
(S−S⋆)2

S
− (µ + γ)

(I − I⋆)2

I
− (µ +α)

(R−R⋆)2

R
− bPδS⋆P⋆

εI⋆
(P−P⋆)2

P
+(residue),

where (residue) represents the mixed terms:

(residue) =
(

S⋆

S
− I⋆

I

)
bPSP+

(
S⋆

S
− I⋆

I

)
bISI −

(
S⋆

S
− I⋆

I

)
(µ + γ)I⋆+

(
1− S⋆

S

)
α(R−R⋆)+

(
1− R⋆

R
(I − I⋆)

)

+bPS⋆P⋆

(
1− P⋆

P

)
(I − I⋆)

By substituting the equilibrium relation, the mixed terms in (residue) cancel out, leaving only negative terms, and
thus V̇ ≤ 0 with equality if and only if

S = S⋆, I = I⋆, R = R⋆, P = P⋆.

Therefore, for the largest compact invariant set Ω, the equilibrium point X⋆ is the unique equilibrium point. Thus,
LaSalle’s invariance principle, all solutions starting in the positive orthant tend to the equilibrium point X⋆ as t ↔ ∞.
Hence, X⋆ is globally asymptotically stable in Ω.

4. Case study
Given the devastating nature of cow mastitis and its impact on the economy, in this study, we will examine the

dynamics of the disease based on real parameters obtained from real data from dairy farm located on the territory of the
RSM. The aim is to analyze the spread of mastitis and its impact on the cow productivity and culling from reproduction,
to develop effective strategies for mastitis control in dairy herds.

In our real-world farm case, we have a constant number of cows over time, and that number is N = 1,031 cows.
Maintaining this population relies on the given recruitment rate Λ = µN of new cows entering the farm.

The initial values of the differential equation system for our case are S0 = 439, I0 = 352, R0 = 240. The time on
which the functions in the differential equation system depend will be given in weeks.

During the survey, the mastitis recurred in some cows on the farm, up to four or more times. The recurrence rates
were α1 = 0.0761 for once, α2 = 0.0393 for twice, α3 = 0.0101 for three times, and α4 = 0.0052 for four or more times.
The risk of having at least one recurrent case of mastitis is given by α = 0.1307. This means that 13.07% of cows will be
infected at least once during a year.

Based on the explanation for this real situation for mastitis prevalence on dairy farm, in Table 1 the real values of the
parameters are given along with their description.
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Table 1. Description of the parameters

Parameters Meaning Value Reference

Λ = µN Recruited rate 231.975 Estimated
bP Transmission rate from bacteria in the environment 0.003041 Estimated
bI Transmission rate from cow to cow 0.008964 Estimated
γ Recovery rate 0.6824 Estimated
ε Shedding rate 0.031746 Assumed [9]
δ Removal rate of the shed bacteria 0.222 Assumed [9]
µ Culling rate 0.225 Estimated
α Mastitis recurrence rate 0.1307 Estimated

With these given parameters, a reproduction number is obtained ℜ0 ≈ 10.6791 > 1. This means that there are two
equilibrium points

X0 = (1,031, 0, 0, 0) and X⋆ = (96.5436, 320.187, 614.269, 45.7867).

The equilibrium point X0 is unstable, and X⋆ is stable. So, if this situation continues (the parameter values remain
approximately the same), we do not have the destruction of the disease over time, but it is smoldering further, and the
trajectories of the functions should approach X⋆ over time.

This is also seen with the graphical visualization of the model in the next two scenarios:
1. An ideal case in which we assume that impeccable hygienic conditions are maintained on the farm, due to which

we have a negligible number of bacteria in the environment that initially do not affect the cause of mastitis in cows.
However, over time, some mastitic cows (brought to the farm) shed bacteria into the environment, which contributes to
an increase in the number of bacteria, which exceeds the critical number of bacteria for infecting healthy cows. Therefore,
in this case, we have the initial value P0 = 0.

2. We assume that the environment is initially approximately in an equilibrium state. For this purpose, we use the last
equation of the system. This means that the initial level puts the environment in quasi-equilibriumwith P0 =

ε · I0

δ
≈ 50.34

infected cows.

Figure 3. Graphical visualization of the model (1)

Figure 3 shows a prediction of the behavior of bovine mastitis for the next 10 years under existing farm conditions
based on the graphical visualization of the mathematical model (1). Clearly, the disease will not disappear in the coming
years; instead, it will smolder, i.e., the number of suspects, sick, and recovered cows will tend towards certain values.
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A rapid decline in suspected cows is observed, but there is a situation on the farm where an increase in the number of
diseased and recovered cows exists. In the first year, the number of diseased cows is greater than the number of suspected
and recovered cows, but then that number decreases and becomes smaller than the number of recovered cows. Then, in
the following years, the number of diseased cows will be smaller in relation to the number of recovered cows, but the
number of suspected cows will decrease significantly in relation to the rest. As the basic reproduction number indicates,
the graphical visualization of the model (1) predicts the presence of the mastitis in subsequent years and the convergence
of the numbers towards the equilibrium point X⋆.

Figure 4 shows the graphical visualization of S(t), I(t), and R(t) for the mathematical model (1) with different initial
values of P0. For P0 = 0, the curve is shown in blue, while for P0 = 50.34, it is shown in red. In Figure 4a, the graph of
S(t) is displayed. In Figure 4b, the graph of I(t) is shown. In Figure 4c, the graph of R(t) is presented. The graphs not
only confirm the previous conclusion regarding the disease’s behavior in the cow population but also show that different
initial conditions of P0 lead to the same behavior of susceptible, infected, and recovered cows. This suggests that, for
these initial amounts of bacteria in the environment where the cow population lives, we do not have a significant impact
on predicting the dynamics of the disease in the years to come.

Figure 4. Graphical visualization of S(t), I(t) and R(t) for the model (1)

Table 2 and Table 3 show that the number of suspects, sick, and recovered cows will tend towards the corresponding
coordinates of the equilibrium point X⋆ = (96.5436, 320.187, 614.269, 45.7867).
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Table 2. The values of the functions of the model (1) for P0 = 0 per year

Time t (years) S(t) I(t) R(t)

1 60.4891 496.362 474.149
2 78.8632 376.612 575.525
3 91.3637 335.02 604.616
4 96.0778 323.233 611.689
5 97.2217 320.574 613.205
10 96.8799 320.132 613.988

Table 3. The values of the functions of the model (1) for P0 = 50.34 per year

Time t (years) S(t) I(t) R(t)

1 58.6855 496.501 475.813
2 76.8817 377.245 576.873
3 89.0933 335.88 606.026
4 94.0146 323.873 613.113
5 95.5391 320.97 614.491
10 96.3361 320.221 614.443

These tables are in addition to the graphical visualization of the model (1) and the conclusions reached above.

5. Conclusion
Mathematical modeling of mastitis transmission in dairy herds offers valuable insights into understanding, predicting,

and controlling this persistent disease. The developed compartmental model, based on ordinary differential equations,
effectively captures the key epidemiological processes governing mastitis dynamics, including transmission, recovery,
and bacterial shedding. Analytical results verify the model’s dimensional consistency and stability, while numerical
simulations show how infection levels depend on critical biological parameters such as shedding and recovery rates.

This study successfully develops and analyzes a mathematical model describing the epidemiological behavior of
mastitis in dairy cows. The model demonstrates stability and dimensional consistency, offering a theoretical basis for
interpreting disease persistence and control within herds. By combining epidemiological concepts with mathematical
rigor, the research contributes to a better understanding of mastitis dynamics and establishes a foundation for future
applied modeling in veterinary epidemiology.

Using real data from a Macedonian dairy farm, the model predicts that mastitis may persist at a low but steady
level if preventive measures are not improved. Employing such mathematical approaches, including those within the SIR
framework, emphasizes the importance of herd-specific, risk-based control strategies.

Overall, the study provides a well-founded and practically useful model that can help veterinarians and farmmanagers
optimize mastitis prevention and treatment strategies. Future research should aim to refine the model through better
parameter estimation, ongoing data validation, and the integration of additional factors like pathogen diversity and
management practices, thereby boosting its predictive power and applicability in real farm conditions.
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