

**PROCEEDINGS OF
VII. INTERNATIONAL
AGRICULTURAL, BIOLOGICAL,
LIFE SCIENCE CONFERENCE
AGBIOL 2025**

07-10 SEPTEMBER 2025

İSTANBUL, TÜRKİYE

**PROCEEDINGS OF
VII. INTERNATIONAL
AGRICULTURAL, BIOLOGICAL,
LIFE SCIENCE CONFERENCE
AGBIOL 2025**

**07-10 SEPTEMBER 2025
İSTANBUL, TÜRKİYE**

**Organized by
Trakya University
İstanbul Beykent University
International Researchers Association**

**ISBN #:
978-625-96407-0-9**

WELCOME NOTES

You are welcome to our VII. AGBIOL Conference that is organized by Trakya University, Beykent University and International Researchers Association. The aim of our conference is to present scientific subjects of a broad interest to the scientific community, by providing an opportunity to present their work as oral or poster presentations that can be of great value for global science arena. Our goal was to bring three communities, namely science, research and private investment together in a friendly environment of Edirne, Turkey in order to share their interests and ideas and to get benefit from the interaction with each other.

In September 2018, we organized the first AGBIOL Conference with more than 700 scientists and researchers from all over the world with over 800 scientific papers. Due to COVID-19 situation, II. AGBIOL 2020 has organized fully on-line event which was one of the biggest online conferences in recent years in the world with 499 papers and 1133 authors with 333 oral and 166 e-poster presentations from 55 countries. Due to COVID-19 situation, AGBIOL 2021 was organized online again. AGBIOL 2022 conference was organized with a worldwide participation from 44 countries over 522 papers contributed by over 1300 authors. AGBIOL 2023 was organized with a record and worldwide participation from 33 countries 833 papers contributed by over 2000 authors with 522 oral and 311 poster presentations. AGBIOL 2024 consisted of 835 papers contributed by about 2000 authors with worldwide record participation again from 55 countries with 522 oral and 311 poster presentations.

There is a worldwide record participation from 60 countries 988 papers contributed over 2300 authors with 400 oral and 588 poster presentations in AGBIOL 2025.

The AGBIOL 2025 is normal participation as well as with online participation in Beykent University in Istanbul, Turkey on 07-10 September, 2025. The program included oral talks by invited prominent scientists and oral and e poster presentations by participants in selected topics from the submitted abstracts focusing on Agriculture, Biology and Life Sciences topics.

With care for our nature and environment, we aim the green congress, meaning that as little as possible papers will be used. Abstract book is published in electronic book and is distributed to the participants by e mail for online participants. All the e-posters are prepared in electronic form and then submit to via the conference e mail and exhibited in electronical poster boards as well as in online e poster hall in our web page during the conference.

The participants with paid conference fee accessed all the normal and virtual presentation talks in each session, as well as to visit the virtual poster hall via preliminary provided. The abstracts were published in the Conference Abstract and Proceedings Book. Participants might send us their full papers, which based on their preferences are published either in our Conference Abstract and Proceedings Book or in selected International Indexed Scientific Journals.

Conference Topics:

Agriculture, Forestry, Life Sciences, Agricultural Engineering, Aquaculture and Biosystems, Animal Science, Biomedical science, Biochemistry and Molecular Biology, Biology, Bioengineering, Biomaterials, Biomechanics, Biophysics, Bioscience, Biotechnology, Botany, Chemistry, Chemical Engineering, Earth Sciences, Environmental Science, Food Science, Genetics and Human Genetics, Medical Science, Machinery, Pharmaceutical Sciences, Physics, Soil Science.

We would like to thank all of you for joining this conference and we would like to give also special thanks to TUBITAK and collaborators for giving us a big support to organize this event.

Prof Dr Yalcin KAYA
Head of the Organizing Committee

ORGANIZING COMMITTEE

<u>NAME</u>	<u>INSTITUTION</u>	<u>COUNTRY</u>
Prof. Dr. Volkan ONGEL	Rector of Istanbul Beykent Univ, Turkiye	Honorary President
Prof. Dr. Mustafa HATIPLER	Rector of Trakya Univ, Turkiye	Honorary President
Prof. Dr. Yalcin KAYA	Trakya University, International Researcher Assoc (IRSA), Turkiye	Chair
Prof. Dr. Bahaddin SINSOYSAL	Istanbul Beykent Univ, Turkiye	Co & Host Chair
Assoc Prof. Dr. Necmi BEŞER	Tragen Ltd Şti, Trakya University Technopark, Turkiye	Co-Chair
Emrah AKPINAR	Trakya University, Turkiye	Secretary
Asst. Prof Dr. Hasan BOZTOPRAK	Istanbul Beykent Univ, Turkiye	Member
Prof. Dr. Viliana VASSILEVA	Maize Res Inst-Knezha, Bulgaria	Member
Prof. Dr. Ioannis TOKATLIDIS	Trakia Democritus Univ, Greece	Member
Prof Dr Metin TUNA	Tekirdag Namik Kemal Univ, Turkiye	Member
Asst Prof Dr Orhan ASKIN	Kırklareli University, Turkiye	Member
Prof Dr Mohamed RAMDANI	Mohamed V Agdal Univ., Maroc	Member
Assoc. Prof. Dr. Natiga NABIYEVA	Genetic Resources Inst. of NAS, Azerbaijan	Member
Dr Maria PACUREANU	Study & Res Center Agro Forestry Biodiversity " David Davidescu" - Romanian Acad, Romania	Member
M. İbrahim YILMAZ	Trakya Agric. Res Inst, Turkiye	Member

INVITED SPEAKERS

Prof. Dr. Tanay Sıdkı UYAR, İstanbul Beykent University, Türkiye

Prof. Dr. Monika JAKUBUS, Poznań University of Life Sciences, Poland

Prof. Dr. Zahia KABOUCHÉ, Univ Frères Mentouri- Constantine, Algeria

Prof. Dr. Metin TUNA, Tekirdag Namık Kemal University, Türkiye

Prof. Dr. Sibel IRMAK, Pennsylvania State University, US

Kassim AL-KHATIB | Department of Plant Sciences, UC Davis, US

Prof Dr Ahmet ULUDAG, Canakkale Onsekiz Mart University, Türkiye

EDITOR OF THE PROCEEDINGS ABSTRACT BOOK

Prof Dr Yalcin KAYA, Assoc Prof Dr Necmi BESER

SCIENTIFIC COMMITTEE

<u>NAME</u>	<u>INSTITUTION</u>	<u>COUNTRY</u>
Acad. Prof. Dr. Atanas ATANASSOV	Joint Genomic Center-Sofia	Bulgaria
Prof Dr Amel MILLA	ENSV, Alger	Algeria
Prof. Dr. Miguel CANTAMUTTO	IINTA Hilario Ascasubi Institute,	Argentina
Prof. Dr Zhao JUN	Inner Mongolia Agricultural Univ	China
Prof. Dr. Renata HORN	University of Rostock	Germany
Prof. Dr. Mulpuri SUJATHA	ICAR-Indian Inst of Oilseeds Res.	India
Prof. Dr Lara HANNA WAKIM	Holy Spirit University	Lebanon
Prof. Dr Semra HASACEBI	Trakya University	Turkiye
Prof Dr Velibor SPALEVIC	University of Montenegro	Montenegro
Prof Dr Dijana BLAZEKOVIC	Univ "St. Kliment Ohridski" Bitola	Macedonia
Prof Dr Sani DEMIRI	Mother Teresa University	Macedonia
Prof Dr Charles BRENNAN	RMIT University	Australia
Prof. Dr. Saeed RAUF	Muhammad Nawaz Sharif Agric Univ	Pakistan
Prof. Dr. Monika JAKUBUS	Poznań University of Life Sci	Poland
Prof. Dr. h.c. Radu E. SESTRAS	Univ of Agricultural Sciences & Veterinary Medicine Cluj-Napoca	Romania
Prof. Dr. Dejana PANKOVIC	Educon University	Serbia
Prof. Dr. Yakov DEMURIN	VNIIMIK All Russian Institute	Serbia
Prof Dr Leonardo VELASCO	Inst. for Sustainable Agric CSIC	Spain
Prof. Dr. Okşan KARAL YILMAZ	Istanbul Beykent University	Turkiye
Prof. Dr. Mesut KACAN	Istanbul Beykent University	Turkiye
Prof. Dr. Mehmet Emin CALISKAN	Nigde OmerHalisdemir University	Turkiye
Prof. Dr. Doğanay TOLUNAY	Istanbul Cerrahpaşa University	Turkiye
Prof. Dr Ahu ALTINKUT UNCUOGLU	Marmara University	Turkiye
Prof. Dr. Sezen ARAT	Namık Kemal University	Turkiye
Prof. Dr. Coskun GULSER	Ondokuzmayis University	Turkiye
Prof. Dr. Metin AYDOĞDU	Trakya University	Turkiye
Prof. Dr. Ismail CAKMAK	Sabanci University	Turkiye
Prof. Dr. Yaroslav BLUME	National Academy of Sciences	Ukraine
Prof. Dr. Nurhan T. DUNFORD	Oklahoma State University	USA
Prof. Dr. Mahmut TOR	University of Worcester	England
Prof Dr Mustafa TAN	Trakya University	Turkiye
Prof. Dr. Gökhan KAÇAR	Trakya University	Turkiye
Prof. Dr. Ahmet CIHAN	Istanbul Beykent University	Turkiye
Prof. Dr. Kazım SARI	Istanbul Beykent University	Turkiye
Prof. Dr. Tanay Sıtkı UYAR	Istanbul Beykent University	Turkiye
Prof. Dr. Hasan OZKAYNAK	Istanbul Beykent University	Turkiye
Assoc. Prof Dr Zizis VRYZAS	Democritus University of Thrace	Greece

CONTENTS

WELCOME NOTES.....	3
ORGANIZING COMMITTEE.....	4
INVITED SPEAKERS.....	5
SCIENTIFIC COMMITTEE.....	6
EFFECT OF IRON FOUNDRY DUST ON THE ENERGY EFFICIENCY OF HYDROPHILIC NANOCOATED PHOTOVOLTAIC PANELS	16
TECHNICAL AND ECONOMIC ANALYSIS OF THE SOLAR ENERGY SYSTEM DESIGNED FOR EDIRNE PROVINCE AGRICULTURAL RESEARCH INSTITUTE BUILDING IN THE CASE OF ROOF AND FACADE APPLICATION	25
IMPACT OF REGULAR WATER-BASED CLEANING ON THE ENERGY EFFICIENCY OF PHOTOVOLTAIC PANELS	31
QUANTUM-CHEMICAL STUDY OF NOVEL MULTIFUNCTIONAL POLYMER BY SUBSTITUTION REACTION OF GRAFTING ACETYLSALICYLIC ACID.....	38
ASSESSMENT OF THE TRANSITION FROM CONVENTIONAL SOIL TILLAGE TO MINIMUM TILLAGE TECHNOLOGY IN A MAIZE CROP WITH THREE HYBRIDS – A THREE-YEAR CASE STUDY IN LANURILE, CONSTANȚA COUNTY	45
INNOVATIVE AGRICULTURE THROUGH RECYCLING: SUSTAINABLE BIOLOGICAL PRODUCTION SYSTEMS FROM DISCARDED MATERIALS	58
SOME TAXONOMIC, ECOLOGICAL AND ETHNO-ENTOMOLOGICAL DATA ON THE LOCUSTS (ORTHOPTERA) OF THE HABITATS OF VLORA.....	72
DAIRY SECTOR VALUE CHAINS IN BOSNIA AND HERZEGOVINA	81
ANTISTAPHYLOCOCCAL STUDY OF THE ESSENTIAL OİL OF MENTHA PULEGIUM L. FROM ALGERİA	92
THE HOME GARDENS AS BIOCULTURAL RESERVE OF LOCAL PLANT DIVERSITY AND TRADITIONAL KNOWLEDGE.....	98
STATIC ANALYSIS OF FUNCTIONALLY GRADED POROUS SANDWICH BEAMS.....	107
INVESTIGATION OF THE EQUIVALENT MECHANICAL PROPERTIES OF TPMS LATTICE STRUCTURES	121
PRODUCTION AND CHARACTERIZATION OF MESOPOROUS ACTIVATED CARBON FROM CAROB TREE BIOMASS FOR ENVIRONMENTAL APPLICATIONS	138
BOLTING IN SPINACH; GENETIC AND ENVIRONMENTAL FACTORS	146
POSSIBLE MORPHOLOGICAL EVIDENCES FOR A NEW SPECIES OF <i>EUPALOPSELLUS</i> (ACARIFORMES: EUPALOPSELLIDAE): INSIGHTS FROM A FEMALE SPECIMEN COLLECTED FROM TÜRKİYE	161
GIS MAPPING OF SOIL MACRONUTRIENTS FOR NUTRIENT MANAGEMENT IN HAZELNUT	166
CLASSIFICATION OF CURRENT ARTIFICIAL INTELLIGENCE APPLICATIONS ACCORDING TO THEIR FUNCTIONALITY	172
EFFECTS OF CHEMICAL AND ORGANOMINERAL FERTILIZERS ON MORPHOLOGICAL CHARACTERISTICS AND YIELD.....	186

BALANCE, BACTERIA, AND THE BLACK BELT: IMPACT OF PROBIOTICS ON GASTROINTESTINAL SYMPTOMS DURING JUDO TRAINING AND JUDO COMPETITIONS	192
BIOSURFACTANT POTENTIAL OF PROBIOTIC MICROORGANISMS ISOLATED FROM FERMENTED CABBAGE: A SUSTAINABLE APPROACH TO FUNCTIONAL BIOPRODUCTS.....	201
HEAT AND COLD STRESS IN WATER BUFFALOES (<i>BUBALUS BUBALIS</i>): A REVIEW	212
AN OBSERVATION ON AN ANOMALY IN THE SCE SETA DISRUPTING BILATERAL SYMMETRY IN <i>TYCHEROBIUS IZMIRENSIS</i> AKYOL & KOÇ (ACARIFORMES: CAMEROBIIDAE)	218
SPATIOTEMPORAL PATTERNS OF TRACE ELEMENTS (LI, MN, NI, BA) IN RIVERS FEEDING THE İSTANBUL STRAIT, TÜRKİYE.....	227
PHYSIOLOGICAL EFFECTS OF LOW AND HIGH TEMPERATURE STRESS ON CORN WITH MYCORRHIZAL SYMBIOSIS	232
PROBABILISTIC ASSESSMENT OF FLUORIDE-RELATED HEALTH RISKS IN GROUNDWATER OF THE FELENT STREAM WATERSHED, KÜTAHYA	243
SPATIAL-TEMPORAL VARIATIONS OF FLUORIDE IN SURFACE WATERS OF FELENT STREAM (TÜRKİYE) AND ASSOCIATED HEALTH RISKS	250
ENVIRONMENTAL IMPACTS OF GREENHOUSE GAS EMISSIONS AND PROPOSED SOLUTIONS FOR THEIR REDUCTION	257
FROM SOIL TO SURVIVAL: PGPB-TRIGGERED DEFENSE AND ADAPTATION IN PLANTS	266
TOXIC DIALOGUES: HERBICIDES, MICROBIAL VOICES, AND THE ECOSYSTEM'S RESPONSE	281
THE IMPORTANCE OF MARKER ASSISTED SELECTION IN BLACKBERRY	292
SOFT CHEMISTRY NANOCOMPOSITE OF MGO DOPED PVC FABRICATION FOR PHOTOCATALYTIC APPLICATIONS	300
VALORIZATION OF FOOD INDUSTRY WASTES FROM CEREALS AND PULSES INTO FUNCTIONAL FOOD ADDITIVES	314
THE ROLE OF ORGANIC FERTILIZER ON CROP PRODUCTION IN AFGOI-SOMALIA	323
INTERVAL VALUED PYTHAGOREAN FUZZY AHP-INTERVAL VALUED PYTHAGOREAN FUZZY TOPSIS METHOD FOR SOLAR POWER PLANT SITE DECISION	332
LEGAL ISSUES FACED BY FARMERS AND AWARENESS OF AGRICULTURAL LAW IN THE TRAKYA REGION	340
MOLECULAR MARKER-BASED APPROACHES IN DETERMINING ALMOND GENETIC DIVERSITY: A REVIEW OF RECENT STUDIES.....	350
THE EFFECTS OF GLOBAL WARMING ON THE WATER QUALITY OF LAKES AND RIVERS.....	358
CHLORINE CONTAMINATION IN DILUTE NITRIC ACID PRODUCTION: SOURCES, EFFECTS, AND PREVENTION METHODS	365

SHORT-TERM EFFECTS OF DIFFERENT ORGANIC FERTILIZERS ON SOIL CHEMICAL PROPERTIES AND PLANT GROWTH IN MELON AND WATERMELON CULTIVATION	371
IDENTIFICATION OF SNP MARKERS ASSOCIATED WITH GENES CONTROLLING POTASSIUM AND SODIUM CONCENTRATION IN WALNUT FRUIT BY GWAS METHOD	382
PROPOLIS AGAINST <i>BOTRYTIS CINEREA</i> : A REVIEW OF STUDIES COMBINING IN VITRO AND IN VIVO TESTS	394
BIOCONTROL ACTIVITY OF <i>Trichoderma harzianum</i> AGAINST <i>Fusarium culmorum</i> CAUSING ROOT AND CROWN ROT IN WHEAT UNDER SALT STRESS CONDITIONS	402
POLY(4,4"-BIS(2'-FLUORENYLIDENEIMINO)-3,3"-DIMETHYLBIPHENYL): ELECTROSYNTHESIS, CHARACTERIZATION AND APPLICATION IN ORGANIC PHOTOVOLTAIC CELL	410
ASSESSMENT OF RIPARIAN VASCULAR FLORA OF THE RIVER SHKUMBIN NEAR ELBASAN AREA, ALBANIA	416
HORTICULTURAL PRACTICES IN POT CULTIVATION OF RHODODENDRON SPECIES: A CASE FROM TURKEY	423
EVALUATION OF THE ANTIOXIDANT ACTIVITY OF DAUCUS CAROTA L. ESSENTIAL OIL FROM EL-TAREF -ALGERIA	432
RECENT ADVANCES IN ALMOND MICROPROPAGATION AND FUTURE PERSPECTIVES	438
ASSESSING THE IMPACT OF GLOBAL WARMING ON SOIL HEALTH AND AGRICULTURAL PRODUCTIVITY	447
PRE-TREATMENT WITH GILABURU EXTRACT ALLEVIATES H ₂ O ₂ -INDUCED CYTOTOXICITY IN ENDOTHELIAL CELLS	466
A PRELIMINARY ANALYSIS OF FUNCTIONAL TRAIT COMPOSITION IN ADRIATIC SEA FISHERIES	471
SHORT-TERM EFFECTS OF DIFFERENT ORGANIC FERTILIZERS ON SOIL CHEMICAL PROPERTIES AND PLANT GROWTH IN MELON AND WATERMELON CULTIVATION	478
SMART BIOPOLYMER-BASED PACKAGING SYSTEMS AND CURRENT APPLICATIONS IN FOOD QUALITY TRACEABILITY	488
ENHANCING ENERGY EFFICIENCY IN AGRICULTURAL PRACTICES	508
APPLICATION OF LIPOSOMAL ENCAPSULATED ANTIMICROBIAL BIOACTIVE COMPONENTS IN FOOD PRODUCTS AS NATURAL PRESERVATION	512
REASONS FOR THE UNDERDEVELOPMENT OF CANOLA IN TÜRKİYE	519
ANTI-NUTRITIONAL SUBSTANCES CONTAINED IN RAPESEED	525
DETERMINATION OF THE STABILITY OF POLYPHENOL OXIDASE FROM BLACK MULBERRY TOWARDS DIFFERENT ORGANIC SOLVENTS AND SURFACTANTS	535
BIOCHEMICAL AND AROMATIC CHANGES IN PERSIMMON (<i>DIOSPYROS KAKI</i> L.) FRUITS HARVESTED IN DIFFERENT PERIODS	541
EFFECTS OF AQUAFABA AS ALTERNATIVE PLANT ADDITIVE ON PHYSICAL, TEXTURAL AND SENSORY CHARACTERISTICS OF EGGLESS TURKISH PASTA (ERİŞTE)	556

PHYTOCHEMICAL COMPOSITION AND BIOLOGICAL ACTIVITIES OF GINGER (<i>Zingiber officinale</i>).....	561
SOUS-VIDE: AN INNOVATIVE APPROACH TO COOKING AQUATIC PRODUCTS	570
FISH SPECIES SETTLING IN AN ARTIFICIAL REEF MODEL CREATED FROM FALLEN CONCRETE PIERS OF PIPES INTAKE FROM THE SEA IN KONYAALTI, ANTALYA ..	577
EXPLORING THE AVAILABILITY OF BULGARIAN PLANT GENETIC RESOURCES IN THE INTERNATIONAL CROP NETWORKS.....	583
SOME RADICAL SCAVENGING ACTIVITIES OF OLIGOMERIC PROANTHOCYANIDINS OBTAINED FROM <i>Pinus brutia</i> Ten. BARKS	590
APPLICATION OF ADAMS-BASHFORTH-MOULTON METHOD IN PREDICTING VEGETABLE PRODUCTION IN ALBANIA	595
CYTOTOXIC EFFECTS OF OLIGOMERIC PROANTHOCYANIDINS OBTAINED FROM <i>Pinus brutia</i> Ten. BARKS	607
EXPLORATORY FACTOR ANALYSIS OF FRUIT FARMERS' ECO-FRIENDLY AGRICULTURAL TECHNIQUES APPLICATIONS IN TERMS OF SUSTAINABLE AGRICULTURE-ENVIRONMENT RELATIONS: EVIDENCE FROM EĞIRDİR LAKE IN TURKEY	611
SOME TECHNOLOGICAL PROPERTIES AND BIOACTIVE COMPONENTS OF LEAVENED AND UNLEAVENED FLATBREADS SUBSTITUTED WITH GERMINATED MILLET FLOUR	628
OPTIMISATION OF THE CHEMICAL COMPOSTING OF CATTLE MANURE BY MEANS OF NITRIC ACID.....	635
NEW DATA ON DISTRIBUTION OF <i>WULFENIA BALDACCII</i> DEGEN	640
SOCIO-ECONOMIC IMPACTS OF REDUCING AIR PARTICULATE MATTER (PM10) POLLUTION IN KOCAELİ USING BENMAP-CE MODEL.....	644
INFLUENCE OF SYNTHESIS METHODS ON STRUCTURAL AND MORPHOLOGICAL PROPERTIES OF MAGNETITE NANOPARTICLES: A COMPARATIVE STUDY OF PRECIPITATION AND SOLVOTHERMAL TECHNIQUES	657
PHENOTYPIC ANALYSIS OF LEAF SENESCENCE IN <i>ANTIRRHINUM MAJUS</i> L.....	666
REFLECTION OF NATURE ON LIFE: BIOMIMICRY AND SUSTAINABILITY	674
EXPERIMENTS ON REVEALING EFFECTS OF DIFFERENT MEDIA STRENGTH, AND SUCROSE-DEPENDENT IN ADVENTITIOUS ROOT CULTURES OF RADISH (<i>Raphanus sativus</i> L.).....	683
WHAT HAPPENS WHEN PLASTICS ARE DISPOSED INTO THE ENVIRONMENT? MICROPLASTIC IN POLLUTION THE OCEANS	691
EXAMINING THE EFFECT OF SUSTAINABILITY-FOCUSED CERTIFICATION IN PALM OIL PRODUCTION ON PRODUCER AND CONSUMER AWARENESS.....	700
EFFECT OF POROSITY RATIO ON SOUND ABSORPTION IN STRUCTURES PRODUCED WITH 3D PRINTING	707
PLANT BY-PRODUCTS AS BIOACTIVE GOLDMINES: INSIGHTS FROM SUNFLOWER SEED HUSKS AND POMEGRANATE PEELS.....	754
APPLICATION OF SOUS-VIDE PROCESSING ON SELECTED FRUITS AND EVALUATION OF ITS EFFECTS ON QUALITY CHARACTERISTICS.....	766

EFFECT OF NANOPARTICLES ON MORPHOLOGICAL TRAITS AND SECONDARY METABOLITES OF SNAPDRAGON.....	801
EVALUATION OF THE ADHESION STRENGTH OF BIOCERAMIC COATINGS ON LIGHTWEIGHT METALS.....	809
DEVELOPMENTAL NEUROTOXICITY OF CHLORPYRIFOS IN VIVO: STUDY OF CHOLINESTERASE ACTIVITY AS A BIOLOGICAL INDICATOR.....	819
BIOACTIVE SYNERGY OF CINNAMON -TURMERIC: IN VITRO EXPLORATION OF ANTIOXIDANT, ANTI-HEMOLYTIC AND ANTI-INFLAMMATORY EFFECTS AND THEIR IMPLICATIONS FOR HUMAN HEALTH.....	828
NEW APPROACHES FOR ARTIFICIAL INTELLIGENCE-ASSISTED RETINOSCOPES	839
OPTIMIZING GERMINATION OF NIGELLA SATIVA L. WITH GIBBERELLIC ACID AND SEED PRIMING TECHNIQUES.....	844
SPATIOTEMPORAL PATTERNS OF TRACE ELEMENTS (LI, MN, NI, BA) IN RIVERS FEEDING THE İSTANBUL STRAIT, TÜRKİYE.....	850
THE EFFECTS OF CHITOSAN AND ESSENTIAL OIL APPLICATIONS ON FRUIT CRACKING PREVENTION AND QUALITY CRITERIA IN 0900 ZIRAAZ CHERRY VARIETY (PRUNUS AVIUM. L)	855
INVESTIGATION OF PECTIN AND XANTHAN GUM DEGRADATION BY INTESTINAL BACTERIA	865
ASSESSMENT OF ETHYLENE EFFECTS ON POST-HARVEST CHARACTERISTICS OF CUT SNAPDRAGON FLOWERS	872
ASSESSING THE IMPACT OF GLOBAL WARMING ON SOIL HEALTH AND AGRICULTURAL PRODUCTIVITY	878
SHORT-TERM EFFECTS OF DIFFERENT ORGANIC FERTILIZERS ON SOIL CHEMICAL PROPERTIES AND PLANT GROWTH IN MELON AND WATERMELON CULTIVATION	896
CYTOTOXIC ACTIVITIES OF DIFFERENT EXTRACTS OF <i>INONOTUS TAMARICIS</i> (Pat.) MAIRE FROM SOUTHWEST ANATOLIA, TÜRKİYE	906
CURRENT STATUS AND POTENTIAL APPLICATION OF MICROALGAE PRODUCTION	911
THE ROLE OF THE WOMEN ON ACHIEVING THE LDN.....	920
ENDOPHYTIC BACTERIA FROM ECHIUM AMOENUM FISCH & MEY. AS A NEW ELICITOR OF PHENOLIC BIOSYNTHESIS	927
THE IMPACT OF DILL LEAVES ON THE SENSORY QUALITY OF TUNA PATE	933
FROM INVASION TO CONSUMER TABLE: AS A MODEL: LIONFISH	938
USE OF ORIGANUM SPECIES ESSENTIAL OILS IN THE CONTROL OF PLANT DISEASES.....	941
FROM SOIL TO SURVIVAL: PGPB-TRIGGERED DEFENSE AND ADAPTATION IN PLANTS	950
ASSESSMENT OF CATAGLYPHIS NODUS (BRULLÉ, 1833) IN THE ECOSYSTEMS AROUND NARTA LAGOON AS ENVIRONMENTAL INDICATOR.....	964

CURRENT STATUS OF SOME FISHERY COOPERATIVES IN GIRESUN (EASTERN BLACK SEA REGION) AND SOCIO-DEMOGRAPHIC CHARACTERISTICS OF ARTISANAL FISHERMEN.....	971
PHYTOCHEMICAL ANALYSIS AND IDENTIFICATION OF BIOACTIVE COMPOUNDS IN SPINACH LEAVES (<i>SPINACIA OLERACEA L.</i>)	977
EFFECT OF SALINITY STRESS ON BIOCHEMICAL, GROWTH, AND YIELD CHARACTERISTICS OF WHEAT	987
ANTIOXIDANT ACTIVITIES OF DIFFERENT EXTRACTS OF <i>INONOTUS CUTICULARIS</i> (BULL. EX FR.) KARST. FROM SOUTHWEST ANATOLIA, TÜRKİYE	998
MACRO ELEMENTAL RISK ANALYSIS OF WATER IN TWO MAJOR DAM LAKES OF THE MARMARA REGION, TÜRKİYE.....	1004
BLACK CARBON CONTENT IN AIRBORNE PM2.5 DURING THE WINTER BURGAS, BULGARIA	1010
THE CORRELATION BETWEEN BLACK CARBON CONTENT IN AIRBORNE PM2.5, CONCENTRATION OF OTHER AIR POLLUTANTS AND METEOROLOGICAL CONDITIONS DURING THE WINTER – BURGAS, BULGARIA	1021
SUSTAINABILITY ASSESSMENT OF OPEN AND CLOSED SYSTEMS IN MICROALGAE CULTIVATION: A REVIEW.....	1032
SYNTHESIS AND EVALUATION OF THE ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY OF AN ESTER DERIVATIVE OF MALONIC ACID.....	1036
ASSESSMENT OF THE IMPACT OF SURFACE WATER TABLE IRRIGATION ON THE PHYSICOCHEMICAL PROPERTIES OF SOILS IN OUED M'ZAB (ALGERIA)	1044
RESEARCH ON CONVENTIONAL WHEAT CULTIVATION TECHNOLOGY, INCLUDING SOIL TILLAGE AND PHASED FERTILIZATION, APPLIED TO THREE WHEAT VARIETIES UNDER NON-IRRIGATED CONDITIONS, IN THE PEDOCLIMATIC CONDITIONS OF GĂLBINAŞI, BUZĂU COUNTY, DURING THE 2023–2024 AGRICULTURAL YEAR.....	1053
NUTRACEUTICAL POTENTIAL OF <i>ACHILLEA MILLEFOLIUM</i> . HEALTH BENEFITS, DERMATOLOGICAL USE AND SAFETY	1066
RESEARCH ON CONVENTIONAL WHEAT CULTIVATION TECHNOLOGY, INCLUDING SOIL TILLAGE AND PHASED FERTILIZATION, APPLIED TO THREE WHEAT VARIETIES UNDER NON-IRRIGATED CONDITIONS, IN THE PEDOCLIMATIC CONDITIONS OF GĂLBINAŞI, BUZĂU COUNTY, DURING THE 2023–2024 AGRICULTURAL YEAR.....	1079
BIOCHEMICAL AND AROMATIC CHANGES IN PERSIMMON (<i>DIOSPYROS KAKI L.</i>) FRUITS HARVESTED IN DIFFERENT PERIODS	1093
PRESENCE OF NOSEMOSIS IN HONEY BEES IN ISPARTA PROVINCE, TÜRKİYE ...	1109
EFFECTS OF CHITOSAN COATED IRON OXIDE AND SILVER NANOPARTICLES ON GROWTH AND BIOCHEMICAL CHARACTERISTICS OF SNAPDRAGON (<i>ANTIRRHINUM MAJUS</i>).....	1114
PRODUCTION AND MODES OF ACTION OF BACTERIOCINS PRODUCED BY ENTEROCOCCAL STRAINS	1121
IN VITRO ANTIOXIDANT AND ANTIDIABETIC OF <i>MAESA KAMERUNENSIS</i> MEZ. PLANT EXTRACT	1129

ANTIDIABETIC AND ANTIOXIDANT ACTIVITY OF TWO SAPONINS ISOLATED FROM M. KAMERUNENSIS MEZ.	1135
CORIANDRUM SATIVUM L.: A REVIEW ON BOTANICAL CHARACTERISTICS AND AGRICULTURAL SIGNIFICANCE.....	1142
MULTI-SITE EVALUATION OF NITROGEN DYNAMICS IN INHIBITOR-ENRICHED UREA APPLICATIONS UNDER FIELD AND CONTROLLED CONDITIONS	1148
PROPOLIS AGAINST BOTRYTIS CINEREA: A REVIEW OF STUDIES COMBINING IN VITRO AND IN VIVO TESTS	1155
IMPACT OF MASTITIS PATHOGENS ON BLOOD ANTIOXIDANT ENZYMES IN TRANSITION DAIRY COWS	1162
A WEARABLE 3D-GLOVE SYSTEM FOR HYPERSPECTRAL AND CONTACT IMAGING OF ROOT AND RHIZOSPHERE MICROBIOMES : A CONCEPTUAL DESIGN	1169
ENVIRONMENTAL IMPACTS OF GREENHOUSE GAS EMISSIONS AND PROPOSED SOLUTIONS FOR THEIR REDUCTION	1178
THE EFFECTS OF GLOBAL WARMING ON THE WATER QUALITY OF LAKES AND RIVERS.....	1188
EFFECT OF SOME ELICITORS ON TAXOL PRODUCTION IN HAZELNUT CELL SUSPENSION CULTURE	1195
PRESENCE OF <i>merA</i> GENE AND MERCURY RESISTANCE AMONG PATHOGENIC BACTERIA	1200
PHENOTYPIC AND GENOTYPIC DETECTION OF BIOFILM PRODUCTION OF <i>STAPHYLOCOCCUS AUREUS</i> FROM CHICKEN MEAT	1209
APPROACHES TO OBTAINING OPTIMUM BENEFIT FROM MICROBIAL PRODUCTS USED IN PLANT PRODUCTION	1218
ASSESSMENT OF HABITAT HEALTH IN ÇARDAK LAGOON USING <i>CARCINUS AESTUARII NARDO, 1847</i> AS A BIOINDICATOR	1229
LIGHT-EMITTING DIODE LIGHT QUALITY INFLUENCES GERMINATION, GROWTH AND BIOCHEMICAL INDICES OF <i>ARNEBIA EUCHROMA</i> L.	1237
IMPACT OF NANOPARTICLES ON MORPHOLOGICAL TRAITS AND SECONDARY METABOLITES OF SNAPDRAGON.....	1246
IMPROVING THE EFFICIENCY OF BIO-COAGULATION AND FLOCUATION FOR TURBIDITY CONTROL IN WASTEWATER TREATMENT.....	1254
EVALUATION OF SUGAR, ORGANIC ACID, AND AROMA PROFILE IN BITTER MELON (<i>MOMORDICA CHARANTIA</i> L.)	1261
STUDY OF THE INTERACTIONS OF POLYMERIC BINARY MIXTURES: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERISATION.....	1275
THE ROLE OF SOIL CONDITIONERS IN CEREAL PRODUCTION.....	1284
A THERMODYNAMIC STUDY OF A SOLAR ADSORPTION AIR-CONDITIONING SYSTEM	1295
DETERMINATION OF ELEMENTS IN HONEY, HONEYBEE, SUNFLOWER AND BEE DRINKING WATER SAMPLES COLLECTED FROM THE ENEZ DISTRICT, EDIRNE (TURKEY)	1303
GENETIC AND SPECIES DIVERSITY OF FISH IN ALBANIA'S MAJOR LAKES.....	1323

DETERMINATION OF CHLOROPHYLL CONTENT IN MAIZE AND BEANS (2M+1B) SOWN AT DIFFERENT RATES IN THE SAME ROW	1331
RAPID ASSESSMENT OF THREAT STATUSES OF FISH SPECIES IN DRIN RIVER	1348
INFLUENCE OF TEMPERATURE ON FERMENTATION RATE IN PRODUCTION OF DIFFERENT WINE TYPES	1357
MIGRATION OF FRESHWATER FISHES IN TÜRKİYE AND OBSTACLES ENCOUNTERED BY FISHES DURING MIGRATION	1365
EFFECTS OF BLENDING DIFFERENT RATIOS OF COTTONSEED OIL WITH DIESEL FUEL IN A SINGLE-CYLINDER DIESEL ENGINE	1370
ASSESMENT OF INCEPTISOL AND ENTISOL SOIL CLASSES COMMONLY FOUND IN TURKEY IN TERMS OF FERTILITY	1409
ULTRASONIC EXTRACTION and ANTIOXIDANT ACTIVITY of <i>Elaeagnus umbellata</i> FRUIT	1416
EVALUATION OF THE POTENTIAL FOR RAINWATER HARVESTING IN THE AGRO-INDUSTRY: A CASE STUDY OF THE TABLE OLIVE INDUSTRY	1425
FUNCTIONAL NOODLES ENRICHED WITH BELL PEPPER POWDER: EFFECTS ON COLOR, TEXTURE, AND COOKING QUALITY	1431
EFFECTS OF FUNCTIONAL OILSEED POWDERS ON THE QUALITY ATTRIBUTES OF CRACKERS.....	1440
CARBON FOOTPRINT OF AGRICULTURAL ACTIVITIES AND THE EMISSION REDUCTION POTENTIAL OF WIND ENERGY IN ALIAĞA DISTRICT	1450
THE CARBON BORDER ADJUSTMENT MECHANISM (CBAM) AND TURKISH AGRICULTURE: A SUSTAINABLE TRANSITION	1458
IDENTIFICATION OF GENE REGIONS ASSOCIATED WITH IMPORTANT DISEASES OBSERVED IN TOMATO PLANTS USING MOLECULAR MARKERS.....	1466
MACRO ELEMENTAL RISK ANALYSIS OF WATER IN TWO MAJOR DAM LAKES OF THE MARMARA REGION, TÜRKİYE	1477
PHENOLIC PROFILE OF DIFFERENT PARTS OF <i>INULA GRAVEOLENS</i> DETERMINED BY HPLC-DAD.....	1483
IN VITRO A-AMYLASE AND A-GLUCOSIDASE INHIBITORY ACTIVITIES OF <i>INULA GRAVEOLENS</i> EXTRACTS	1493
KNOWLEDGE ABOUT THE GENETICAL, MORPHOLOGICAL AND PHENOLOGICAL DIVERSITY OF THREE LINDEN SPECIES (<i>TILIA CORDATA</i> MILL., <i>TILIA PLATYPHYLLOS</i> SCOP. AND <i>TILIA TOMENTOSA</i> MOENCH.) IN BOSNIA AND HERZEGOVINA AND POTENTIAL FOR BETTER MANAGEMENT OF LINDEN FORESTS.....	1500
SOURCES OF INSTITUTIONAL SUPPORT FOR SUSTAINABLE MANAGEMENT OF TREES FROM THE GENUS <i>Tilia</i> sp. IN BOSNIA AND HERZEGOVINA	1517
CORRELATION OF BIOMARKERS OF COMBINED STRESS TOLERANCE IN EGGPLANTS AND EVALUATION WITH POLAR HEATMAP	1531
A RESEARCH ON IN VITRO MICROPROPGATION OF GERANIUM (<i>Pelargonium graveolens</i>)	1539
A RESEARCH ON IN VITRO MICROPROPGATION OF GINGER (<i>Zingiber officinale Roscoe</i>)	1547

AI AGAINST HONEY ADULTERATION: EFFECTIVE AND RELIABLE HONEY BOTANICAL ORIGIN AUTHENTICATION	1554
CONSERVED MOTIFS IDENTIFICATION OF THIONIN PROTEIN OF TWENTY-SIX PLANT SPECIES	1566
BIOINFORMATICS STRUCTURAL ANALYSIS OF THIONIN PROTEIN IN SIX PLANT SPECIES OF BRASSICACEAE FAMILY	1572
SUSTAINABLE TOURISM IN TÜRKİYE AND THE BALKAN COUNTRIES: POLICY EVOLUTION AND KEY CHALLENGES	1578
SMART Maturity MONITORING IN OLIVE ORCHARDS: UTILIZING VIS/NIR TOOLS FOR OPTIMAL HARVEST DECISION-MAKING IN ALBANIA.....	1587
COMPLIANCE OF ALBANIAN FISHERIES LEGISLATION WITH EU REGULATIONS: A CRITICAL ASSESSMENT AND HARMONIZATION PERSPECTIVE	1598
IMPLEMENTATION OF A SMART IRRIGATION SYSTEM FOR WATER AND ENERGY WASTE REDUCTION USING ARDUINO	1605
FIRST RECORD OF A PROTIST PATHOGEN OF <i>Labidostomis rufa</i> (COLEOPTERA: CHRYSOMELIDAE) (WALTL, 1838) IN ISPARTA, TÜRKİYE.....	1613
VIABILITY AND VIGOUR OF CARROT (<i>DAUCUS CAROTA L.</i>) SEEDS IN DIFFERENT FERTILIZATION REGIMES.....	1619
MORPHOLOGICAL AND DECORATIVE EVALUATION OF NEW, PROMISING GLADIOLUS VARIETIES	1627
MONITORING OF THE GREENHOUSE WHITEFLY (<i>TRIALEURODES VAPORARIORUM</i>) IN THE LUSHNJA DISTRICT	1634
INTEGRATED CONTROL OF THE CODLING MOTH (<i>CARPOCAPSA POMONELLA</i>) IN THE KORCA REGION	1639
RADIOGRAPHIC EVALUATION OF THE ROLE OF TITANIUM SCAFFOLD POROSITY ON BONE REGENERATION AND IMPLANT STABILITY IN TTA.....	1644
OXIDANT STATUS OF SPIRULINA EXTRACTS	1653
RESEARCHING COGNITIVE TECHNOLOGIES IN BROADCAST OPERATIONS	1658
AGBIOL 2025 CONFERENCE STUDENT ORGANIZING TEAM.....	1670
OUR SPONSORS	1671

TOXIC DIALOGUES: HERBICIDES, MICROBIAL VOICES, AND THE ECOSYSTEM'S RESPONSE

Daniela Todevska¹, Natalija Atanasova-Pancevska²*

¹ *Goce Delcev University, Stip, Faculty of Agriculture, Department for Plant Production, Stip, Republic of North Macedonia*

² *Ss. Cyril and Methodius University in Skopje, Faculty of Natural Sciences and Mathematics – Skopje, Institute of Biology, Department of Microbiology and Microbial Biotechnology, Skopje, North Macedonia*

*corresponding author e-mail: *daniela.dimovska@ufd.edu.mk, ddimovska1@gmail.com*

ABSTRACT

Herbicides, long heralded as precise tools in agricultural management, leave behind echoes that reverberate through the most intimate layers of ecological networks. This study explores how herbicidal interventions—especially those involving compounds like glyphosate—silently alter microbial communities that anchor essential ecosystem functions. These non-target effects begin at the microscopic scale, where shifts in soil microbiome composition interrupt vital processes such as nutrient cycling, rhizosphere signaling, and plant–soil feedback mechanisms.

Framed through a microbiome-centric lens, we present a synthesis of recent studies alongside conceptual models illustrating how herbicide residues serve not only as chemical stressors, but as agents that restructure the metabolic dialogues among microbes and their hosts. Alterations in microbial diversity and function affect plant vitality, reduce resilience to biotic and abiotic stresses, and cascade upward to influence animal performance, herbivory dynamics, and pollination success. As herbicides disrupt these finely tuned interdependencies, we observe potential tipping points that may reshape ecosystem trajectories and even influence microbial and host evolution.

More than collateral damage, microbial responses to herbicidal exposure represent a silent rebellion—one with the power to mediate or magnify ecological instability. We advocate for integrative strategies that acknowledge microbiome health as a central criterion in agrochemical risk assessments. Understanding these subterranean symphonies is essential for mitigating the long-term consequences of anthropogenic disturbance and for crafting sustainable, microbe-conscious stewardship of ecosystems.

Keywords: microbiome, herbicides, soil microbial networks, environmental resilience, agrochemical impact, microbe-mediated risk

INTRODUCTION

Herbicides have revolutionized modern agriculture by enabling targeted and efficient weed control, contributing significantly to crop productivity and food security. Among these, **glyphosate** stands as one of the most extensively used broad-spectrum herbicides worldwide due to its effectiveness and non-selective inhibition of the *5-enolpyruvylshikimate-3-phosphate synthase* (EPSPS) enzyme in the shikimate pathway (Duke and Powles, 2008). However, while glyphosate's primary mode of action is aimed at plants, this same biochemical pathway is present in many soil microorganisms, raising growing concerns about its unintended effects on non-target species (van Bruggen et al., 2018).

Soil microbial communities, particularly those inhabiting the **rhizosphere**, play a pivotal role in maintaining ecosystem functions. These communities mediate **nutrient cycling**, **organic matter decomposition**, and intricate **plant–microbe interactions** that influence plant growth, health, and resistance to environmental stressors (Berg et al., 2020). Disturbances to microbial composition and diversity—whether through direct toxicity or altered plant exudation patterns—can ripple through the entire ecosystem. Emerging evidence suggests that herbicide residues can suppress **mycorrhizal colonization**, shift **bacterial community structures**, and increase plant susceptibility to **soil-borne pathogens** (Zaller et al., 2014; Newman et al., 2016; Johal and Huber, 2009).

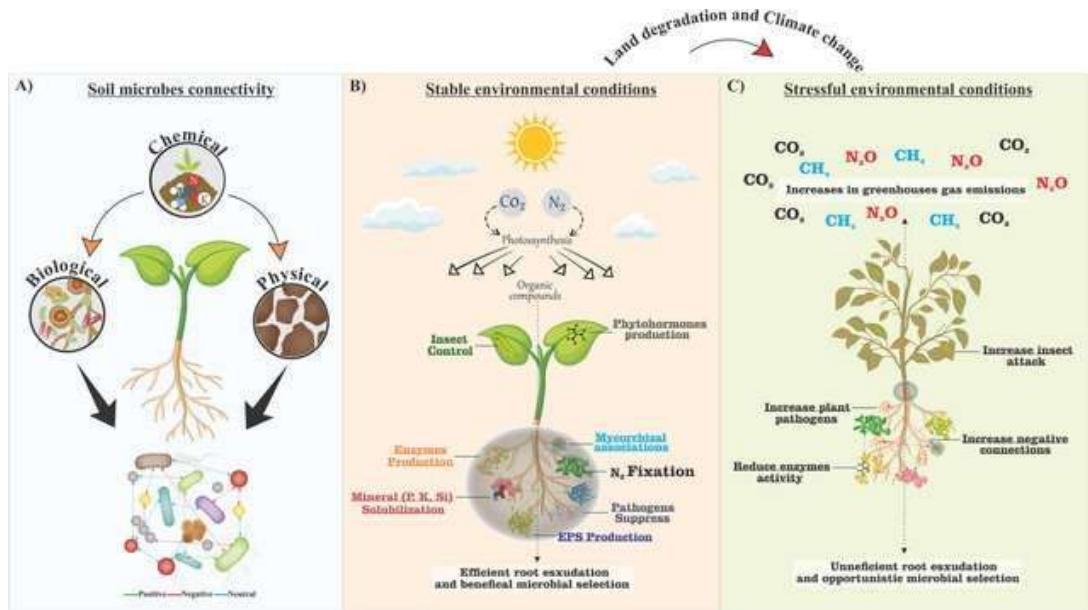


Figure 1. The intricate connections between soil biodiversity and plants. a These interactions are influenced, including chemical, physical, and biological variability. b In a stable ecosystem with no or low human disturbances, plants can effectively recruit their microbial communities, primarily facilitated through rhizosphere exudation and selection processes. This plant-soil biodiversity interactions catalyze multiple ecosystem processes such as enhanced enzyme activity, solubilization, nitrogen fixation, and disease suppressiveness. However, land degradation and ongoing climate changes disrupt these interactions, leading to an increased negative correlation among taxa. c As a result, plants become more vulnerable to harmful and opportunistic agents like insects and pathogens (from Pedrinho et al., 2024).

Importantly, these microbial alterations are not merely short-term or incidental. Herbicides may induce long-term **restructuring of microbial networks**, with implications for microbial evolution, functional redundancy, and overall soil resilience (Timmis et al., 2019). Furthermore, **chronic exposure** to glyphosate and similar compounds may drive microbial **adaptation or resistance**, potentially reducing the soil's capacity to buffer abiotic stressors such as drought or nutrient depletion (Schlatter et al., 2017).

Given the central role of the microbiome in **agroecosystem stability**, there is an urgent need to reconsider how herbicides are evaluated in terms of ecological risk. Traditional assessments focusing solely on crop yield or visible phytotoxicity fall short of capturing the subtle but profound consequences on **microbial health**. Integrating a **microbiome-centric perspective** into agrochemical regulation offers a more holistic understanding of ecosystem sustainability and resilience (Mitter et al., 2019).

This paper synthesizes recent findings on the impact of herbicides—especially glyphosate—on soil microbial communities. It aims to elucidate the biochemical, ecological, and evolutionary consequences of microbial disruption, and to advocate for frameworks that prioritize **microbial integrity** as a cornerstone of sustainable agriculture.

HERBICIDES AND THEIR LEGACY

Herbicides have revolutionized modern agriculture by enabling efficient weed control, reducing labor costs, and increasing crop yields. Since the introduction of synthetic herbicides like 2,4-D in the 1940s, over 270 active ingredients have been commercialized, shaping global farming practices and food systems (Mesnage et al, 2021; U.S. EPA, 2004). However, their legacy is complex—marked by ecological disruption, resistance evolution, and persistent residues in soil and water. Herbicides have played a central role in modern agricultural intensification, with compounds like **glyphosate**, **atrazine**, and **2,4-D** becoming dominant tools in weed control (Duke and Powles, 2008). Glyphosate, in particular, has been praised for its broad-spectrum action and post-emergent use. However, its primary target—the *shikimate pathway*, absent in animals but present in most plants and microbes—raises significant concerns about **non-target effects** on microbial communities (van Bruggen et al., 2018). While herbicides were initially believed to degrade rapidly in soil, increasing evidence shows that **residues persist** and interact with complex biotic and abiotic soil components, affecting ecosystem function far beyond weed suppression (Silva et al., 2019). Herbicides such as glyphosate, atrazine, and dicamba have become staples in conventional farming due to their broad-spectrum activity and compatibility with genetically modified (GM) crops (Parven et al., 2024). Systemic and pre-emergence herbicides offer targeted control, reducing the need for repeated applications and mechanical weeding.

Despite their utility, herbicides pose significant risks, as **soil degradation** (long-term use alters microbial communities, reduces biodiversity, and impairs nutrient cycling), **water contamination** (runoff and leaching introduce herbicide residues into aquatic ecosystems, affecting non-target organisms like amphibians, fish, and invertebrates) and **resistance development** (overuse has led to herbicide-resistant weed populations, complicating management and increasing chemical dependency (Mesnage and Antoniou, 2017).

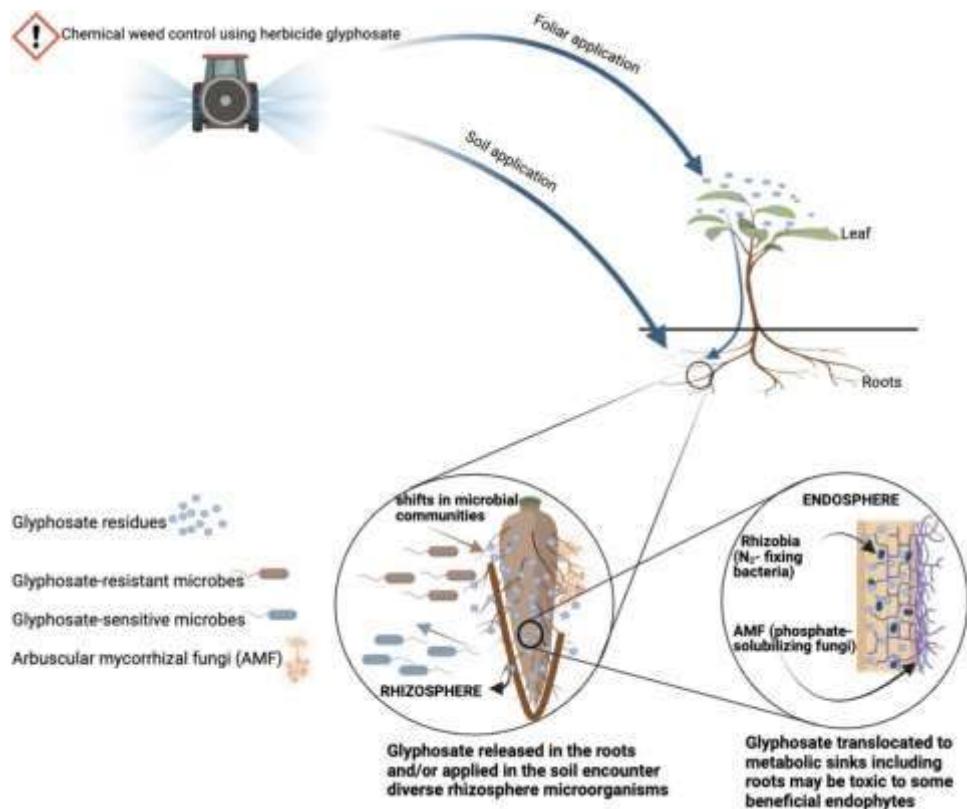


Figure 2. Possible interference of glyphosate with microbial communities in the rhizosphere and endosphere (from Sibalekile et al., 2025).

THE RHIZOSPHERE MICROBIOME: KEYSTONE OF SOIL HEALTH

The **rhizosphere microbiome**—microorganisms that inhabit the narrow zone surrounding plant roots—plays a foundational role in **nutrient cycling, stress response, and plant immunity** (Berg et al., 2020).

The specific functions of soil microbes can be divided into seven major groups (Berendsen et al., 2012; Cheng et al., 2022; Kumar et al., 2022):

- Decomposition: Microbes—bacteria and fungi—break down organic matter such as crop residues, insect carcasses, animal manure, and other organic materials in the soil. Microbes secrete enzymes that help break down complex organic compounds into simpler forms, releasing nutrients that plants can use. Microbes contribute to humification as they break down organic compounds. Humification produces stable, mature organic compounds that increase the organic matter content of the soil. This offers additional benefits to crops, such as increased water-holding capacity, nutrient retention, and carbon sequestration.
- Nutrient cycling: Microbes are involved in the circulation of essential nutrients in the soil. They can “unlock” nutrients that are locked up in forms inaccessible to the plant and therefore promote the availability of nutrients for plant absorption. Nitrogen fixation (mineralization) is one example of how many beneficial soil microbes convert organic nutrients into inorganic forms that can be absorbed by plants. Soil microbes also unlock nutrients from inorganic “bound” forms.
- Soil structure and aggregation: Certain bacteria and fungi produce sticky substances such as polysaccharides that bind soil particles together, forming aggregates. Soil

aggregates improve soil structure, porosity, and water-holding capacity, allowing for better root penetration and aeration.

- Disease suppression: Certain beneficial bacteria and fungi called biocontrol agents can suppress soil-borne pathogens and pests. Biocontrol agents suppress pathogens and pests through a variety of processes, including: producing antimicrobial compounds, consuming or parasitizing pests and pathogens, or outcompete pathogens for soil niches. The term "disease-suppressing soils" is often used to refer to fields that experience little or no impact from soil-borne diseases, even when the diseases are widespread throughout the surrounding region or minimal crop protection products are used. Microbial biocontrol agents are known to play a key role in the ability of disease-suppressing soils to mitigate the impacts of pathogens.
- Phytohormone Production: Some soil microbes can produce plant hormones in the soil, many of which are called "plant growth regulators" or PGRs. Hormones such as auxin, cytokinin, and gibberellin are known to support plant growth, yield, and stress tolerance when applied as foliar products. However, their routine application can be very expensive. Microbial hormone producers in the soil can also offer these benefits and have been found to support crop resistance to stressors such as drought and activate plant defense systems to ward off pathogens.
- Symbiotic relationships: Many plants form beneficial symbiotic relationships with soil microbes. Mycorrhizal fungi form associations with plant roots, extending their reach for water and nutrients in exchange for microbial "food" in the form of carbon produced by the plant through photosynthesis. Mutually beneficial bacteria, known as endophytes, live within plant tissues and promote plant growth by performing beneficial processes such as nitrogen fixation and carbon uptake through root exudates. This symbiotic relationship improves plant nutrient uptake, overall plant and soil health, and the efficiency of agricultural systems. However, common agricultural practices can disrupt these relationships, leading to a decline in beneficial microbes and increased dependence on agricultural inputs.
- Salinity regulation: Some microbes have adapted to survive in saline environments and possess mechanisms to tolerate high salt concentrations. They can actively colonize and thrive in saline soils where other organisms struggle. Salt exclusion is when certain microbes have mechanisms to exclude salts from their cells or actively limit their uptake. By excluding salts, microbes can ensure proper cellular function and growth in high salinity conditions. Salt metabolism is when certain microbes possess enzymes that can metabolize or break down specific types of salts. They can convert salts into less harmful forms or compounds that other organisms can use.

In short, balancing microbiome disruptions with practices that support plant-microbe symbiosis, such as cover crops and conservative tillage, is key to optimizing soil health processes and harnessing the benefits of soil microbes.

These microbial consortia are sensitive to external chemical inputs and serve as early indicators of soil disturbance (Kurenbach et al., 2021; Yang et al., 2023; El-Helow et al., 2024). Herbicides can alter:

- **Microbial richness and evenness**
- **Community composition** (e.g., shifts from *Proteobacteria* to *Actinobacteria*)
- **Enzyme activity**, such as dehydrogenase and phosphatase
- **Plant-microbe communication**, such as root exudate signaling

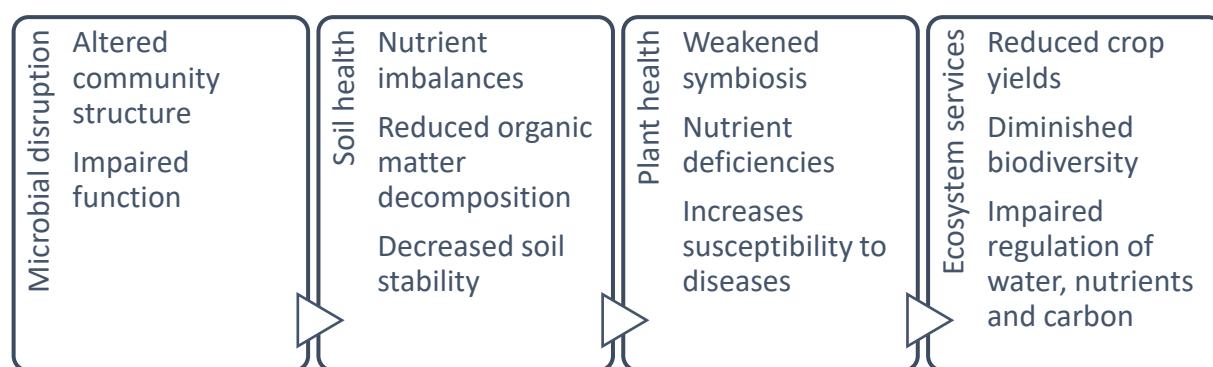
Soil microbial consortia—interactive communities of bacteria, fungi, archaea, and protists—are highly sensitive to herbicide exposure. Although herbicides are designed to target weeds, their biochemical specificity often extends to non-target organisms, leading to unintended disruptions in soil microbial dynamics. Also, herbicides can disrupt microbial communities by following mechanisms (Kurenbach et al., 2021; Yang et al., 2023; El-Helow et al., 2024):

- **Enzyme inhibition:** Common herbicides like glyphosate inhibit the shikimate pathway, which is present in bacteria and fungi. This hampers the synthesis of vital aromatic amino acids such as tryptophan, tyrosine, and phenylalanine, affecting microbial growth and metabolism.
- **Loss of microbial diversity:** Herbicide exposure can shift community composition by reducing beneficial groups like nitrogen-fixing bacteria, phosphate-solubilizers, and symbiotic fungi. This undermines key soil functions like nutrient cycling and plant-microbe interactions.
- **Metabolic shifts and functional decline:** While some microbes adapt to herbicides, this often comes with altered metabolic activity or reduced efficiency in organic matter decomposition and other soil biochemical processes.
- **Antibiotic resistance proliferation:** Studies show that prolonged herbicide use can increase the abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), potentially facilitating the spread of resistant pathogens through horizontal gene transfer.

ADAPTIVE RESPONSES AND MICROBIAL RESISTANCE

Repeated herbicide exposure can drive **microbial adaptation**, including **degradation capability evolution** (e.g., *Pseudomonas* acquiring glyphosate degradation genes), **shift toward resistant or resilient taxa or horizontal gene transfer** of resistance traits. While such adaptations may improve degradation efficiency, they may also alter **microbial network interactions**, affecting ecological balance (Rousidou et al., 2013). Microbial shifts may feed back into **plant susceptibility**, nutrient cycles, and carbon dynamics, especially under climate stress.

Microbes adapt to herbicides through several strategies, such as **efflux pump activation**, **membrane modifications** (like changes in membrane permeability help microbes limit herbicide uptake and increase resistance to antibiotics), **stress response pathways** (e.g. herbicide exposure triggers oxidative stress, DNA damage, and SOS responses, which can lead to mutagenesis and horizontal gene transfer) and **cross-resistance evolution** (mutations that confer herbicide tolerance may also increase resistance to antibiotics, especially when stress pathways overlap) (Liao et al., 2021; Hill, 2017). These adaptive responses have cascading effects **soil microbiome disruption, antimicrobial resistance and food chain contamination**, like residual herbicides and resistant microbes can enter crops and livestock, posing risks to human health (Daram et al., 2021; Paul and Mandal, 2019).


HERBICIDE EFFECTS ON ECOSYSTEM-LEVEL PROCESSES

While the rhizosphere is a well-studied hotspot of microbial activity, recent research reveals that microbial alterations extend far beyond root zones, influencing **macroecological processes** such as nutrient cycling, carbon sequestration, biodiversity patterns, and ecosystem resilience. These changes are not confined to local soil patches—they ripple across landscapes and biomes, shaping ecological trajectories at multiple scales (Wang and Zou, 2024; Mohanram and Kumar, 2019). Microbial communities in bulk soil, litter layers, and aquatic interfaces

respond dynamically to environmental perturbations, including herbicide exposure, land-use change, and climate variability. These shifts can alter **biogeochemical cycles**, **modulate greenhouse gas emissions** and **influence plant community assembly** (Pantigoso et al., 2022; Ruuskanen et al., 2022).

Microbial alterations often involve **cross-kingdom interactions**, such as fungal networks facilitating bacterial dispersal or protists regulating microbial grazing. These interactions contribute to **soil organic matter formation**, **trophic cascades** and to **habitat connectivity**.

Beyond the rhizosphere, microbial alterations influence **macroecological processes**, such as **carbon sequestration** via changes in microbial respiration, **nitrogen and phosphorus cycling** and **soil aggregation and erosion resistance**. Several studies report that herbicide-induced microbial imbalance can decrease **soil organic matter**, reduce **greenhouse gas buffering capacity**, and lower **crop resilience to drought and pests** (Ghimire et al., 2020). These indirect impacts challenge the long-held belief in herbicide neutrality toward ecosystem services.

Figure 3. Ecosystem model showing cascading impacts of microbial disruption—soil health, plant health, insect interactions, and ecosystem services.

Herbicides have long been regarded as indispensable tools in modern agriculture—cost-effective, targeted, and efficient. Yet, their ecological footprint reaches far beyond weed suppression. Current herbicide risk assessment frameworks primarily focus on chemical persistence, toxicity to plants and animals, and residue levels in food and water. What remains largely overlooked is the impact of herbicides on the **soil microbiome**, a critical engine of nutrient cycling, plant health, and ecosystem stability (Sweeney et al., 2025; Kodikara et al., 2022).

Soil microbes—especially those in the rhizosphere—play foundational roles in maintaining agroecological functions. However, these organisms are almost entirely absent from conventional toxicological testing. Risk assessments typically rely on short-term, single-organism studies that fail to reflect the complexity and dynamism of microbial communities, which are deeply intertwined with numerous ecosystem services (Zhao et al., 2025; Wend et al., 2024).

An additional blind spot lies in **microbial genetic mobility**, where herbicide-induced stress can activate antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This not only jeopardizes soil health but also raises concerns about public safety via the

potential horizontal transfer of resistance traits to pathogenic microbes (EFSA, 2023; Liao et al., 2021).

Table 1. Gaps in Herbicide Risk Assessment.

Assessment Domain	Current Gaps
Soil Health	Focused mainly on chemical residues and physical structure
Non-target Effects	Limited consideration of microbial collateral damage
Temporal Dynamics	Assessed via static endpoints (e.g., residue half-life)
Bioindicator Integration	Rarely utilizes microbial indicators
Interaction Effects	Ignores chemical synergy or antagonism with microbial networks
Resistance Development	Focused on weed resistance only
Ecosystem Services Impact	Underrepresents microbial contributions to services
Standardized Protocols	Lacks harmonized microbial toxicity assays

CONCLUSIONS

Herbicides, while instrumental in modern agriculture, pose complex ecological challenges that extend far beyond weed control. Their influence on soil microbial consortia—especially in the rhizosphere—triggers cascading effects that alter nutrient cycles, suppress beneficial taxa, and potentially promote antibiotic resistance. These microbial disruptions reshape plant–soil interactions, reduce ecosystem resilience, and compromise vital services such as pollination, pest regulation, and carbon sequestration.

Conventional herbicide risk assessments often overlook these microbiome-mediated effects, focusing narrowly on chemical residues and plant toxicity endpoints. Integrating microbiome-centric metrics into regulatory frameworks—such as microbial diversity indices, functional group profiling, and gene transfer monitoring—offers a path toward more holistic ecological stewardship.

A microbiologically informed approach to weed management can help sustain soil health, foster agroecosystem stability, and safeguard public and environmental well-being. The microbial voice, long silent in regulatory discourse, must now become a guiding force in rethinking agricultural sustainability.

REFERENCES

Battaglin, W.A., Meyer, M.T., Kuivila, K.M. and Dietze, J.E. 2014. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. *JAWRA Journal of the American Water Resources Association*, 50(2), pp.275-290. <https://doi.org/10.1111/jawr.12159>.

Berendsen, R.L., Pieterse, C.M. and Bakker, P.A. 2012. The rhizosphere microbiome and plant health. *Trends in plant science*, 17(8), pp.478-486 <https://doi.org/10.1016/j.tplants.2012.04.001>.

Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.C.C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G.H. and Kazou, M. 2020. Microbiome definition revisited: old concepts and new challenges. *Microbiome*, 8(1), p.103. <https://doi.org/10.1186/s40168-020-00875-0>.

Cheng, Y., Chen, Y., Zhang, Q., Xu, X., & Hu, F. 2022. Keystone microbiome in the rhizosphere soil reveals the effect of long-term conservation tillage. *Plant and Soil*. <https://doi.org/10.1007/s11104-022-05297-5>.

Daram, N., Morales, J. M., Baryamujura, J., van den Brink, P. J., & Vinken, T. 2021. Herbicides and their impact on antimicrobial resistance. *Affidia – The Journal of Food Diagnostics*, 3(1), p.34–41. https://www.amr-insights.eu/wp-content/uploads/2021/05/Affidia-Vol3-Nr1_Herbicides-and-their-impact-on-AMR.pdf.

Duke, S.O. and Powles, S.B. 2008. Glyphosate: a once-in-a-century herbicide. *Pest Management Science: formerly Pesticide Science*, 64(4), pp.319-325.. <https://doi.org/10.1002/ps.1518>.

European Food Safety Authority (EFSA), Álvarez, F., Arena, M., Auteri, D., Binaglia, M., Castoldi, A.F., Chiusolo, A., Crivellente, F., Egsmose, M., Fait, G. and Ferilli, F. 2023. Peer review of the pesticide risk assessment of the active substance glyphosate. *EFSA journal*, 21(7), p.e08164.. <https://doi.org/10.2903/j.efsa.2023.8164>.

El-Helou, E. R., Omar, H. A., El-Shora, H. M., et al. 2024. Microbial degradation of pesticides in agricultural environments. *WSEAS Transactions on Systems and Applications*, 21, Article a165115-1269. <https://wseas.com/journals/msa/2024/a165115-1269.pdf>.

Ghimire, R., Norton, J. B., & Stahl, P. D. 2020. Glyphosate's effect on soil microbial biomass and respiration. *Journal of Environmental Quality*, 49, 1363–1371. <https://doi.org/10.1002/jeq2.20133>.

Guo, Y., Zhu, L., Zhang, L., et al. 2024. Herbicide-treated soil as a reservoir of beneficial bacteria. *Environmental Microbiome*, 19, Article 23. <https://doi.org/10.1186/s40793-024-00654-6>.

Helander, M., Saloniemi, I., & Saikkonen, K. 2012. Glyphosate influences plant and microbial communities in surface soil. *Environmental Toxicology and Chemistry*, 31(1), 200–207. <https://doi.org/10.1002/etc.709>.

Hill, A. M. 2017. Effects of herbicides on both adaptive and acquired antibiotic resistance (Master's thesis, University of Canterbury). <https://ir.canterbury.ac.nz/handle/10092/13364>.

Johal, G. S., & Huber, D. M. 2009. Glyphosate effects on diseases of plants. *European Journal of Agronomy*, 31(3), 144–152. <https://doi.org/10.1016/j.eja.2009.02.004>.

Kodikara, S., Ellul, S., & Lê Cao, K. A. 2022. Statistical challenges in longitudinal microbiome data analysis. *Briefings in Bioinformatics*, 23(4), bbac273. <https://doi.org/10.1093/bib/bbac273>.

Kumar, A., Singh, M., & Kumari, S. 2022. Rhizospheric microorganisms: The gateway to a sustainable plant health. *Frontiers in Sustainable Food Systems*, 6, Article 925802. <https://doi.org/10.3389/fsufs.2022.925802>.

Kurenbach, B., Marjoshi, D., Amábile-Cuevas, C. F., Ferguson, G. C., Godsoe, W., Gibson, P., & Heinemann, J. A. 2021. Herbicide selection promotes antibiotic resistance in soil microbiomes. *Molecular Biology and Evolution*, 38(6), 2337–2350. <https://doi.org/10.1093/molbev/msab057>.

U.S. Environmental Protection Agency. 2004. *Herbicides*. <https://www.epa.gov/caddis/herbicides>

Liao, H., Li, X., Yang, Q., Bai, Y., Cui, P., Wen, C., Liu, C., Chen, Z., Tang, J., Che, J. and Yu, Z. 2021. Herbicide selection promotes antibiotic resistance in soil microbiomes. *Molecular Biology and Evolution*, 38(6), pp.2337-2350. <https://doi.org/10.1093/molbev/msab029>.

Liu, Y., Xie, J., Wu, Z., et al. 2023. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. *Microbiome*, 11, Article 83. <https://doi.org/10.1186/s40168-023-01513-1>.

Mesnage, R., & Antoniou, M. N. 2017. Facts and fallacies in the debate on glyphosate toxicity. *Frontiers in public health*, 5, 298193. <https://doi.org/10.3389/fpubh.2017.00316>.

Mesnage, R., Székács, A., & Zaller, J. G. 2021. Herbicides: Brief history, agricultural use, and potential alternatives for weed control. In *Herbicides* (pp. 1-20). Elsevier. <https://doi.org/10.1016/B978-0-12-823674-1.00002-X>.

Mitter, B., Pfaffenbichler, N., Flavell, R., et al. 2019. A new perspective on plant microbiome research: Communities, interconnection, and function. *Trends in Microbiology*, 27(7), 461–470. <https://doi.org/10.1016/j.tim.2019.02.003>.

Mohanram, S., & Kumar, P. 2019. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. *Annals of Microbiology*, 69(4), 307-320. <https://doi.org/10.1007/s13213-019-01448-9>.

Newman, M. M., Hoilett, N., Lorenz, N., Dick, R. P., Liles, M. R., Ramsier, C., & Kloepper, J. W. 2016. Glyphosate effects on soil rhizosphere-associated bacterial communities. *Science of the Total Environment*, 543, 155-160. <https://doi.org/10.1016/j.scitotenv.2015.11.008>.

Pantigoso, H. A., Newberger, D., & Vivanco, J. M. 2022. The rhizosphere microbiome: Plant–microbial interactions for resource acquisition. *Journal of Applied Microbiology*, 133(5), 2864–2876. <https://doi.org/10.1111/jam.15686>.

Parven, A., Meftaul, I. M., Venkateswarlu, K., & Megharaj, M. 2025. Herbicides in modern sustainable agriculture: environmental fate, ecological implications, and human health concerns. *International Journal of Environmental Science and Technology*, 22(2), 1181-1202. <https://doi.org/10.1007/s13762-024-05818-y>.

Paul, D., & Mandal, S. M. 2019. Microbial adaptation and resistance to pesticides. In *Bacterial Adaptation to Co-Resistance* (pp. 233-249). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-8503-2_12.

Pedrinho, A., Mendes, L. W., de Araujo Pereira, A. P., Araujo, A. S. F., Vaishnav, A., Karpouzas, D. G., & Singh, B. K. 2024. Soil microbial diversity plays an important role in resisting and restoring degraded ecosystems. *Plant and Soil*, 500(1), 325-349. doi: 10.1007/s11104-024-06489-x.

Roesch, L. F. W., Camargo, F. A. O., & Oliveira, M. R. R. 2023. Rhizosphere microbiome: Plant–microbial interactions for resource acquisition. *Journal of Agricultural and Biological Sciences*, 133(5), 2864–2878. <https://doi.org/10.1093/jambio/jmad005>.

Rousidou, C., Karas, P., Chatzidakis, C., Karpouzas, D. G., & Singh, B. K. 2013. Degradation of glyphosate and AMPA by soil bacteria. *Microbial Ecology*, 65, 992–1000. <https://doi.org/10.1007/s00248-013-0207-3>.

Ruuskanen, S., Fuchs, B., Nissinen, R., et al. 2022. Ecosystem consequences of herbicides: The role of microbiome. *Trends in Ecology & Evolution*. <https://doi.org/10.1016/j.tree.2022.10.005>

Sibalekile, A., Araya, T., Castillo Hernandez, J., & Kotzé, E. 2025. Glyphosate-microbial interactions: metagenomic insights and future directions. *Frontiers in Microbiology*, 16, 1570235. doi: 10.3389/fmicb.2025.1570235. PMID: 40485833; PMCID: PMC12142625.

Silva, V. et al. 2019. Pesticide residues in European agricultural soils. *Environmental International*, 127, 682–693.

Schlatter, D. et al. 2017. Resource amendments influence density and competitive interactions of *Streptomyces* in soil. *Frontiers in Microbiology*, 8, 1472.

Sweeney, C. J., Bottoms, M., Kaushik, R., Aderjan, E., & Sherborne, N. 2025. Functional versus compositional tests in the risk assessment of the impacts of pesticides on the soil microbiome. *Environmental Toxicology and Chemistry*, 44(4), 1120-1133. <https://doi.org/10.1093/etojnl/vgaf012>.

Timmis, K., Cavicchioli, R., Garcia, J. L., Nogales, B., Chavarria, M., Stein, L., ... & Harper, L. 2019. The urgent need for microbiology literacy in society. *Environmental microbiology*, 21(5), 1513-1528.

Zhao, Y., Wang, Y., Lu, J., Zhu, B., & Li, A. D. 2025. Exploring the Ecological Impacts of Herbicides on Antibiotic Resistance Genes and Microbial Communities. *Life*, 15(4), 547.

Yang, Y., Wang, Z., et al. 2023. Exploring the ecological impacts of herbicides on antibiotic resistance genes and microbial communities. *Life*, 13(4), 547. <https://doi.org/10.3390/life13040547>.

Zaller, J. G., Heigl, F., Ruess, L., & Grabmaier, A. 2014. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. *Scientific reports*, 4(1), 5634.

Zhao, Y., Wang, Y., Lu, J., Zhu, B., & Li, A. D. 2025. Exploring the Ecological Impacts of Herbicides on Antibiotic Resistance Genes and Microbial Communities. *Life*, 15(4), 547. <https://doi.org/10.3390/life15040547>.

Van Bruggen, A. H., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris Jr, J. G. 2018. Environmental and health effects of the herbicide glyphosate. *Science of the total environment*, 616, 255-268.

Wang, Y., & Zou, Q. 2024. Deciphering microbial adaptation in the rhizosphere: Insights into niche preference, functional profiles, and cross-kingdom Co-occurrences. *Microbial Ecology*, 87(1), 74. <https://doi.org/10.1007/s00248-024-02390-3>.

Wend, K., Zorrilla, L., Freimoser, F. M., & Gallet, A. 2024. Microbial pesticides—challenges and future perspectives for testing and safety assessment with respect to human health. *Environmental Health*, 23(1), 49. <https://doi.org/10.1186/s12940-024-01090-2>.