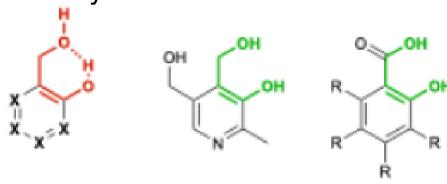


Intramolecular O-H···O Hydrogen Bonding in **Crystal Structures of** Ortho-Hydroxymethyl-hydroxy (Hetero)arenes

Lirim Mustafa,¹ Diba Keyhanfar,² Dejan-Krešimir Bučar², <u>Aleksandar Cvetkovski</u>¹

¹Faculty of Medical Sciences, Goce Delcev University, 2000 PO 201 Stip, R. N. Macedonia ²Department of Chemistry, University College London, WC1H 0AJ London, United Kingdom


e-mail: aleksandar.cvetkovski@ugd.edu.mk

Purpose

The survey relates to intramolecular hydrogen bonding (IHB) in ortho-hydroxymethyl-hydroxyl (hetero)arenes (ohha) in molecular crystals to enhance our understanding of supramolecular interactions in molecular crystals.[1, 2] This study aims to complement the landmark study of Bilton and coworkers [3], who identified all existing IHB ring motifs in molecular crystals through a detailed survey of the Cambridge Structural Database (CSD). [4]

The study, published in 2000, was based on a survey of less than 200,000 crystal structures deposited in the CSD, and aimed to determine how reliably various IHB ring motifs occur. Motifs of interest were were based on less than twenty atoms with nitrogen and oxygen atoms as donors and acceptors. It was shown that the most commonly occurring motifs, with a probability of formation ($P_{\rm m}$) higher than 85%, are planar conjugated with a predisposition for resonantassisted hydrogen bonding⁵ (RAHB). Saturated six-membered rings, on the other hand, have a $P_{\rm m}$ lower than 10%, thus emphasizing the importance of conformational flexibility. Other ring motifs involving five or seven atoms occur with a much wider range of $P_{\rm m}$ values.

IHB in **ohha** has not been considered [3] Bilton and coworkers, as this class of compounds was not well represented in the CSD at the time. Our interest in IHB in ohha emerged during a wider study focused the discovery of new crystal forms of nutraceuticals [6-8], whereby at one time particular attention was paid to pyridoxine (pyd), one of the forms of vitamin B6. During this study, we have observed that the ortho-substituted hydroxymethyl and hydroxyl groups in pyd form a variety of hydrogen bond motifs, including IHB. Given that the arrangement of atoms in these functional groups is topologically equivalent to that of the atoms of the ortho-positioned carboxyl and hydroxyl groups in ortho-hydroxybenzoic acids – and that the latter functional groups regularly engage in IHB – we aimed to determine how the ability of the wider class of ohha to engage in IHB compares to that of the carboxyl and hydroxyl groups in ortho-hydroxybenzoic acids; and more generally, to other organic molecules studied earlier by Bilton and coworkers.

Fragment

Search

Intermolecular

HB in CSD

a - ortho-hydroxymethyl-hydroxyl (hetero)arene (X =C; N)

Fragment

Search

Intramolecular

- b Pyridoxine (**pyd**)
- c ortho-hydroxy benzoic acid

Experimental design (method of crystal growth & structure determination)

Cocrystallization screening for growing solid phases of single crystals of molecular salts of pyd by solvent slow-rate evaporation methods. Single-crystal x-ray diffraction (SCXRD) for structure determination of molecular salts of pyd with group of coformers among dicarboxylic acids and ortho-hydroxy benzoic acid derivatives.

Results

а)	b) HO OH
200 mg	
С)	d) HO OH
and the state of t	

Nom	Molecular salts	hydroge n bond	pyd IHB	ohha dimer
а	pyd succinate (2:1)	✓	✓	X
b	pyd fumarate (2:1)	✓	✓	X
С	pyd glutarate (2:1)	✓	✓	X
d	pyd adipate (2:1)	✓	✓	X
е	pyd gentisate (1:1)	✓	X	✓
f	pyd gallate (1:1)	X	X	X
g	pyd 5-sulfosalicylicate (1:1)	✓	X	✓
h	pyd vanillate (1:1)	✓	✓	X
i	pyd ferulate (1:1)	✓	✓	X

Nom. of

times a motif

occurs

(Nposs)

Nom.of

structures

Fragment Search Intramolecular HB in CSD	Nom. of times a motif could possibly occur (Nposs)	Nom.of poss structures
HO CH ₃	445	371

Nom.of

structures

Nom. of

times a

motif occurs

e) OHOOH	f)	34	но
	t t		ÓH OH
g)	h)		
HO SO OH OH	*	НО	1
	**		
i)		7	

	AND OH	н Он—о—сн _з	491		387	7	
	Any	н \ н—о—сн _з	413		317	7	
Fragm Seard	ch	Nom. of times a motif occurs	Nom.of structures	P_m	$=\frac{N_{obs}}{N_{poss}}$	$P_{S=}$	$\frac{S_{obs}}{S_{poss}}$
Intermole HB in C		(Nposs)	otractares		(%)	(%)
OH OH	—о—сн _а	208	170		42.3	4	14

-ragment	Nom. of		$P_{a} = \frac{N_{obs}}{N_{obs}}$	Sara	
Search	times a	140111.01	$P_{m=} \frac{N_{obs}}{N_{poss}}$	$P_{s=} \frac{S_{obs}}{S_{poss}}$	
ermolecular IB in CSD	motif occurs (Nposs)			(%)	
ОН ОН ОНО ОНЗ	208	170	42.3	44	
ОН ОН ОН	208	169	42.3	43	
ОН ОН ОН	50	44	12	13	
он он н—о—сн _з	42	39	10	12.3	

(5) Gilli G · et al	J.J.Am	Chem	Soc	1989	111	1023-1

(6) Zaworotko, M. J et al., WO2008153945A3, 2008.

(3) Bilton, C.; et al. Acta Crystallogr. B 2000, 56, 849-856

(4) Groom, et al.. Acta Crystallogr. B 2016, 72, 171-179.

(1) Bučar, D.-K. Cryst. Growth Des. 2017, 17, 2913-2918.

The anions and cations surrounding a **pyr** cation are

References

are shown in orange

shown in light grey to enhance clarity. Hydrogen bonds

(2) Corpinot, M. K.; Bučar, D.-K. Cryst. Growth Des. 2019, 19, 1426-1453

(7) Schultheiss, et al., CrystEngComm 2011, 13, 611-619.

(8) Sinha, A. S. et al., Cryst. Growth Des. 2015, 15, 984-1009.

Intramolecular HB in CSD	(Nposs)		(%)	(%)
НООН	27	22	6.1	5.9
E O	67	60	15.0	16.2
HO HO NH	21	18	4.72	4.8
HO DH NEW OH	8	8	1,8	2.1
HO O	103	91	23.1	24.5
HOO	16	15	3.6	4.0
HO DE NO SE	14	11	3.1	3.00
но	19	15	4.3	4.0
HO. CH ₃	144	112	32.3	30.1