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Abstract—An improved ‘method for inverse shape
optimization of magnetic dtevviCes,ﬁs'ing' the Genetic Al-
gorithms(GAs) with dynamically adjustable parame-
ters is presented. The Proposed method starts from an
initial population using large number of bits per chro-
mosome enabling searching for the optimal solution in
a wider region without aggravating the computational
speed. Later, as the optimization process evolves, the
searching space is gradually decreased by restriction
of the number of bits and by translation and reduc-

tion of the searching space according to the values of

the objective fiinction, th‘erefore, dynamically adjust-
ing to the best fit solution decreasing the computation

resources to a minimum. The obtained results exhibit
acceleration of the optimization process and increase
of the solution ‘accuracy. :

Index tefﬁ'ps—_Genetic algorithms, optimization
methods, finite element methods, magnetic materi-
als/devices, magnetization processes.

I. INTRODUCTION

In general, searching techniques can be divided into
two distinctive groups: deterministic and stochastic tech-
niques. The deterministic searching techniques are usu-
ally based on the calculation of the gradient of the objec-
tive function, therefore, they are not generally applicable
to any problem because they requiré’gradiént computa-

tion which for some problems with large number of param-
eters is difficult or even impossible to evaluate. Searching
for only one function at time, they could very easy trap
themselves into local optimum instead of the global op-
timum which is desired. On the other hand, for stochas-
tic methods, such as the Genetic Algorithms, Evolution-
1y Strategies or Artificial Life, computation of gradients
$ not necessary. Therefore, recently stochastic methods
1ave been widely applied for multivariable inverse shape
'ptimization, mainly due to their ability-to avoid being
rapped in a local optimum of ‘the” ob jective: function.
“hey usually work with coded iriformation rather than di-
ectly with the optimized functions, thus, thej can be ad-
1sted 6 a particular problem easily. “However, since they
rovide a searching algorithm for the solution which exists
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in the multidimensional space, they are usually computa-
tionally expensive.

GAs as a stochastic searching technique have the same
advantages and disadvantages that are shared by all
stochastic methods (1], [2]. They work fine with multidi-
mensional searching space, do not need any gradient com-
putation and could, successfully avoid any local optimum.
However, they usually required a long computation time.
It is commonly known that at the beginning of the search- -
ing process GAs exhibits fast and good convergence rate,
however, as the searching procedure evolves with time,
the convergence rate becomes extremely slow. :

Recently, we proposed‘a, new method for improving the
convergence rate using a ﬂe;dble and contracting searching
space [3]. However, since we usually do not know where is
the optimum of the objective function, it is usually very
difficult to choose the appropriate initia] searching space.
Additionally, since the searching ‘space is gradually re-
duced, there is 3 possibility that the optimal point can
become excluded from the searching Space, In that case,
instead of obtaining a global optimum our searching pro-
cedure would result only with a local optimum. Therefore,
the reduction of the searching space must be done in cor-
relation with the values of the objective function and its
changes from generation to generation.’ Even more, this
correlation should not be limited only to the best value of
the objective function, but rather it should be established
with several top values of the objective function at each
generation. e : ; .

The main objective of'this paper is to improve the pre-
viously.  proposed. method for inverse shape optimization
based on the GAs as a searching technique by using di-
rectly the information from the objective function and by
dynamically changing and adjusting the parameters of the
searching algorithm; such as the number of bits' and the
width of the searching space. First; we present the pro-

- cedure for "improving;yt_:he‘chara,cteristic of the 'searching
‘properties of the GA by means of dynamically adjusting

its working parameters. Next, to verify the usefulness of
our method a comparison between three various search-
ing procedures using GAs is given for a model of 3 die

press mold. Finally, we conclude our paper with some
final remarks and points for future research.

II. PropPosep METHOD

As nientianed above, we have already proved in our
recent paper [3], that changing of the width of the search-

0018-9464/99$10.00 © 1999 IEEE



ing space could be very advantageous for increasing the

speed and accuracy of the optimization process. However,
since the user usually does not know if or where inside
the searching space is the global optimum of the objec-
tive function, the decision of the position and width of the
searching space must be considered very carefully. Natu-
rally, it seems beneficial to choose a wider initial searching
space ensuring that the optimal value will be always in-
cluded inside it. However, even a small increase of the
searching space almost always results in large increase of
the computation time. However, because the searching
procedure is discontinuous with jumps between available

solutions inside the searching space which best fit our ob- .

jective function from generation to generation, the large
number of bits, therefore, the larger number of possible
solutions must be considered. Thus, if we choose a wider.
searching space and if we want accurate results, we must
increase the number of bits. Consequently, the computa-
tion time again will be prolongated.

The main idea of our proposed methodology is ‘to-start
with a wider searching space and larger number of bits,
~and as the optimization process evolves by monitoring
of the value of the objective function and its changes,
gradually narrow the searching space and decrease the
number of bits. This procedure has the following features:

o Wider initial searching space will ensure that the
global optimal solution is always included inside that
space, if such a solution. exists.

e Larger initial number of bits will provide a smoother
optimization procedure for such wide searching space.
It will provide solutions with less discontinuity be-
tween populations, increase the accuracy of the re-
sults and decrease the computatlonal time.

¢ Reduction of the searching space using the values of

“the  objective function will ensure that at any time
several solutions with best fitness values of the ob-
jective function will be included inside the searching
space, thus, the possibility that the global optimal
solution does not exist inside the searchmg space is
excluded

¢ Decreasing the number of bits, accordmg to the val-
ues of the objective function will ensure a stable and
fast convergence rate for the entire searching process.

This procedure also acts as a kind of mutation factor -

which helps that the searching process does not, get
trapped by any local optimum. -

e Overall performance of the searching process is im-

* proved and the computation time is decreased up to
fifty percent in comparison with the original GA pro-
cedures.

A practical example of the proposed method is given in
Fig. 1. We start our optimization with three bits chromo-
some: generation, therefore inside the searching space we
have eight possible solutions with inter-solution interval
AL;. Then, lets have two solutions, one with the best

© process without any
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: The best value of tbe objecnve fumﬁon(pmbnbly global optimum)
O Second best value of the objective function(probably local optimum)

Fig. 1. Transition and contraction of the searching space.

and the other with the second best value of the objective
function among these eight solutions as show in the figure.
In the next population we reduce the searching space in
that manner that the both above computed solutions are
included inside this new searchmg space. Now, the inter-
solution interval became AL, < AL, while the number of
possible solutions is still eight. What we gained with this
is that we have sma.ller inter-solution interval which will
insure smoother apptoach towards the global optimum.
Also, since we included both, the best and the second best
solution from which one is. probably local but the other
is probably the globa.l optxmum, the possxblhty to avoid
the global solution from the searching space is minimized
or totally excluded. If we continued with this procedure,
after several generations we will have new much narrower
searching space, with eight possible solutions and with
very small inter-solution interval ALy, < ALp—;. How-
ever, the first thing that we will notice is that since this
inter-solution interval became very small, the convergence
of the optimization process decreases At that point, we
perform the second 1mprovement ‘we decrease the num-
ber of bits from three f:o two "What we have now is nar-
rower searchmg space vnth only four possible solutions
and with mter-solutxon interval ALy larger than that
of the prevmus three bi vgeneratlon AL,,. This proce-
dure will increase the convergence speed of the iteration -
] ion of the accuracy of the re-
sults. Later, we proceed w: h the reduction of the search-
ing space in order to nnprove the accuracy of the
solutlon These proced ures are executed until the desired
accuracy of the obJect ve functlon is achleved

Fma.lly, we would hke to point out the followings: (1)
any optimum. which hes inside that searching space can be
found, even if its position ’s'between two discrete possible
solutlons (a. very common. (;ase) asa result of the contrac-
tion of the searchmg space and decreasmg the number
of bits; (2) due to non-uniform changes of the objective
function it is impossible to define the exact timing when
the number of bits should be reduced. Therefore, in our
approa,ch the reduction of bits.is done accordmg to user’s
experience and the analyzed model; (3).the number of
significant solutions of the objective function which are
monitored for the reduction of the searching space (in the
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% : Observation points
(b) Enlarged view of die mold and cavity area

- Fig. 2. A model of a die press.mold.

above example two), can be defined by the user.

III. APPLICATION

A. Analyzed Model and Optimization Goals

A die press mold model [3] which was used for opti-
mization by the proposed method is given in Fig. 2a. The
optimization goal is to optimize the shape of the central
spherical core and the die press mold which will result in
the desired intensity and direction of the magnetic flux
dens1ty vector B at several observation points along the
line A-B inside the mold’s cavity as shown in Fig. 2b.
F1ve control points P to Ps along the surface of the cen-
tra,l core, ‘and four control points Ps to Py a.long the die
mold are. estabhshed and they define the shape of the
model. The objectxve function is defined as the minimum
square error between the desired magnetic flux densxty
distributions in the z and y directions, respectlvely, By
and By, and their compgt;ed values B; and By:

}: [(Bos —

n-l

Obj = B:)? + (Boy — 'y):z] - 1)

where N is the number of observation pomts along central
cavity line A-B as shown in Fig. 2b.

Three different searching proCedures using GAs were
compared: (1) GA with fixed searching space and fixed
number of bits per population, (2) fixed number of bits
with reducing searching space [3], and (3) the proposed

TABLE I

COMPARISON BETWEEN INITIAL AND FINAL GA PARAMETERS

Method M @& @
Initial width of

the searching space [mm] 12.6 12.6 12.6
“TFinal width of
the searching space [mm 0.64 0.15
Initial number of bits 6 6 6
Final number of bits 6 6 4
: TABLE II
GA PARAMETERS
Number of chromosomes 14
Number of elite chromosomes 4
Number of control points 9
Crossover rate (%] 40
Mutation rate (%] 10

method with dynamically adjustable parameters such as .
reducing searching space and number of bits per genera-
tion. The GA parameters, the initial and the final width
of the searching space as well as the number of bits for all
three methods are given in Table I. To make comparison
among all three searching procédures accurate, for each of
them we used the same elite strategy, the same number of
chromosomes per population and the same crossover and
mutation rate coefficients as given in Table IIL.

B. Obtained Results and Comparison

The average inverse values of the objective function
Obj for all three different procedures explained above
and computed according to equation (1) are presented
in Fig. 3. As can be seen, the searching procedure (3)
exhibits a better convergence raté than both procedures
(1), and (2) for the entire optimization process. Addition-
ally, while procedure (2) which employs only reduction of
the searching space converges faster than the original GA
procedure (1), this procedure becomes slowly convergent
as the fitness of the objective functions improves. On
the other side, the proposed procedure (3) not only has a
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Fig. 3. Average inverse values of the objective function.
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faster convergence rate but also keeps that good conver-
gence rate for the entire optimization process.

From Fig. 3 one can easily notice that at 200 and 400
generations when the number of bits from 6 was decreased
to 5 and from 5 to 4, respectively, the convergence rate
was greatly improved. The decrease of the number of bits
keeps the convergence rate high and protects it from de-
creasing with the evolution of the optimization process as
can be seen for procedure (2). Therefore, the proposed
procedure, not only decreases the computation time by
improving the convergence rate of the optimization pro-
cess, but also improves the accuracy of the results. As can
be seen, almost half iterations were needed for achieving
the same accuracy of the optimization process for the pro-
posed method (3) in comparison with method (2). This
rate was even larger in favor of the proposed method (3)
in comparison with the traditional method (1).

Figure 4 shows thewc'omputed' results for the intensity of
the magnetic Rix density vector B along the observation
line A-~B shown in Fig. 2b using the proposed GA'pro-

cedure. As can be seen the obtained results are in very

good agreement ‘with the desired value of 1.5 T. Regard-
ing direction of the magnetic flux density vector, it should
always have the radial direction and should be equal with
the angle given also in Fig. 2b. Figure 5 shows the angle
of the magnetic flux vector along observation line A-B.
The obtained distribution agrees very well with that de-
sired for the entire observation domain, except’around a
angle of 45° which we believe is the result of non ‘enough
control Points around that area. Finally, the optimized
shape of the die press mold model together with the ob-
tained magnetic flux lines is presented in Fig. 6. It can
be seen that the obtained optimized shape of the centra]
core and die mold-area, are-very smooth as a result of ys-
ing spline functions for surface shape approximation [3].
The above presented final shapes were optimized after 600
generations and for total computation time of 185 minutes
on SGI Indigo2 Workstation. :
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Fig. 6. Optimized shape using prqppsed method and magnetic flux
lines.

IV. Concrusions

A new method for inverse shape optimization using GA
searching procedure was proposed. The method intro-
duces dynamic changes of the searching parameters such
as searching space and the number of bits according to the
informatjon gathered directly from the ob, jective function.
improved convergence rate of the optimization pro-
vith better accuracy of the obtained
alf the iteration steps of the currently
. The proposed method 'is* robust
various inverse shape optimization

results in almost h
available procedur
and easy applicable to
problems.
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