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Abstract—In this paper the investigation of the ef-
ficiency of the multigrid method as a solution method
for large systems of algebraic equations that arise
from ordinary finite element analysis is presented.
The mathematical background for multigrid methods
and' some points regarding ‘definition of restriction
and prolongation matrices for multigrid finite element
analysis based on nested meshes are also given. The
convergence rate and computation speed of the V-
cycle and W-cycle multigrid algorithms are discussed
and: compared: with: 'the ordinary ICCG method. A
comparison of the computation speed between multi-
grid method and:the ICCG method is also presented,
showing that the multigrid method is very promising
as a fast and.accurate solution method for large sys-
tems of équa,tiqns, or as a solution method for adaptive
finite element computations.

Index terms—Finite element methods, multigrid
methods, magnetostatics, iterative methods, relax-
ation methods, linear algebra.

I. INTRODUCTION

For the past four decades tremendous developments in
hardware and software technology have been witnessed.
As a result, huge research work has been done in the field
of numerical methods, improving their performance and
broadening the area of their application. In the same
time, a number of numerical ‘methods already theoreti-
cally. described, however not yet effectively used due to
their numerical complexity, has emerged with large speed
and great success mainly as a result of vigorous increase in
computer’s -performances. The solution of large systems
of linear -algebraic equations is only one field where such
vigoréus reséarch has been performed. It is well'known
that'a huge class of physically based problems such as
those which arise from boundary value problems can be
easily solved after transformmg them into a system of lin-
ear: a.lgebrauc equatlons Today, various direct and indirect
" (iterative-or relaxation) methods for the solution .of such
systems:of equations have already been successfully pro-
posed: [1].- However, for highly complex, especially three-
dimensional ‘simulations such‘as the ‘computation of fluid
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dynamics, transient phenomena, propagations etc., still a
large scale simulation is indispensable. These simulations
are usually very time consuming, therefore scientists al-
ways look for new and improved procedures for increasing
the computational speed.

One of the most popular methods for decreasing the
computation time needed for solving linear systems of
algebraic equations is the multigrid solution method.
This method is. theoretically known for some time, its
practical application begins in 1970s with the work of
Brandt [2]. Later on with the works of Briggs, Bram-
ble, Rude, and especxally Hackbusch and McCormick, the
multlgnd method becomes very popular for the solution of
various problems that arise when partial differential equa-
tions are discretized using regular or irregular meshes such
as in the case of the finite difference or the finite element
method [3-8]. It has been reported that the multigrid
method can solve elliptic partial equations discretized on
N grid points in O(N) operations, which is much faster
than' any other rapid solution methods which can go as
far as O(N log N)) operations'[9]. Multigrid methods show
the same good convergence rate even for the solution of
elliptic partial equations with nonlinear coefficients or for
the solution of systems of nonlinear equations. However,
on the other hand, there is not a single multigrid algo-
rithm which can be successful]y ‘applied to a wide range
of physical problems. Rather than that, the multigrid
method gives an ideas on how to adjust the principles of
multigrid algorithms to a partlcular ;problem [10].

Recently, in the field of elec omagnenc computation
large scale simulations have become available particularly
for three-dimensional field" computations ‘and transient
electromagnetic field analysis [11]. For uch time consum-
ing analysis it is interesting to mvestlgate ‘the application
of multigrid algorithms as a solution method While for
the discretization of elliptic equatlons using’the finite dif-
ference method, the multigrid method was widely applied,
it is interesting to investigate it§ properties dnd benefits
when' applied' ‘to" the filiite' élement analysis. Recently,
several authors presentéd:some: initial research results in
using the multigrid method for electromagnetic field com-
putation, however; only as:a precondltoner but'not as a
solution method [12] (18]

In this ] paper, we present an application of the multigrid
method “as a full solution'method for a system of linear
algebraic equations generated by means of the finite ele-
ment method. First, we briefly addr‘ess'the mathematical




background of the multigrid method and describe why the
multigrid method is faster than other relaxation meth-
ods. Next, we discuss some issues regarding the numeri-
cal implementation of the multigrid method over several
finite element meshes with various mesh densities. We
also discuss the types of multigrid algorithms and their
differences, benefits and computational effects. Finally,
we compare the convergence rate and the computational
speed of several multigrid algorithms with the ICCG (In-
complete Cholesky Conjugate Gradient) method as one
of the most commonly used iterative method for the solu-
tion of a large scale system of linear algebraic equations.
The paper will be concluded with some final remarks and
points for future research in this area.

II. MULTIGRID METHODS

Today, for electromagnetic finite element analysis var-
ious linear system solvers are in common use, among
them the ICCG (Incomplete Cholesky Conjugate Gradi-
ent) method is probably the most popular. However, for
3D nonlinear or time dependent problems, even the ICCG
method results in lengthy computation. Moreover, as al-
ready mentioned in [13], the number of arithmetic opera-
tions for the ICCG method grows as much as N3/2 for 2D
and as much as N*/2 for 3D problems, respectively, where
N is the number of unknowns per finite element mesh.

Multigrid methods are set of techniques to solve a linear
system of equations by using several grids with different
mesh density levels. Their main advantage is that they
show a much faster convergence rate than other iterative
solution methods keeping the number of arithmetic oper-
ations per number of unknowns almost independent of the
size of the problem. These two properties make multigrid
methods very attractive for the solution of large systems
of equations. As we already mentioned in the introduc-
tion of this paper, there is not a single multigrid method
but there is rather a global multigrid method framework.
Each multigrid method is based mainly on three numer-
ical operations: smoothing, restriction and prolongation.
Next, we will discuss each of these operations in detail
using the simplest of all multigrid methods, the so-called
two-grid method.

A. Two-grid Method

In order to describe the properties of the multigrid so-
lution method, we will use the so-called two-grid solution
method which has no practical meaning but is very suit-
able to explain the main idea that lies behind the multi-
grid methods. As the name suggests, the two-grid method
is based on the development of two grids with different
mesh densities, a coarse grid (later on level #1 ) and a
dense grid (later on level #2). These two grids'in general
can have an arbitrary number of elements with arbitrary
shape, however, in this paper we will assume that those
two grids are so-called nested grids which simply means
that the nodes of the coarse grid coincide with some notes

Coarse grid - level #1 Dense grid - level #2

Fig. 1. Grid levels for two-grid method.

of the dense grid, as shown in Fig. 1. Even more, in this
paper whenever we discuss meshes with different grid den-
sities we refer to nested grids. The extension of the multi-
grid methods for non-nested meshes is possible and will
be presented somewhere else.

Since we already have two grids, the next step is to
define a system of linear algebraic equations which has to
be solved. We generate this system of equations using the
usual finite element procedure only on the dense grid —
level #2. Let

Kx=f (1)

denote a system of linear equations where K is the ma-
trix of the system, x is the unknown vector, and f stands
for the source vector. We will use x to denote the exact
solution of the above system, and % to denote the approx-
imation of the exact solution, usually obtained using some
kind of iterative method. Therefore, for the algebraic er-
ror e the following equation is valid

e=x-X . (2)

This error e is also a vector and its norm can be easily

established using any kind of standard vector norms [1].

However, what is most important for us is that since we’
don’t know the exact solution x we are not able to find the

error vector e either. Fortunately, we are able to compute

the residual vector r

r=f-KXx , (3)

which gives us some information on how well we approxi-
mated the exact solution x with X. It is easy to notice that
if r = 0, at the same time the error vector e also equals
zero. By simple rearrangement of (3) and its subtraction
from (1), a very important relationship between the error
vector e and the residual vector r can be obtained

Ke=r . 4)

This means that the error e regarding the residual r satis-
fies the same system of equations as the unknown solution
x regarding the source vector f. Additionally, if we have
the approximated solution ¥ and the error e, we can com-
pute the exact solution easily using

XxX=X+e . (5)

These are the two main components of any multigrid com-
putation algorithm. o
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Fig. 2. One cycle of two-grid solution method.

Now, before we proceed with the description of a two-
grid method, let us briefly address the reason why the
multigrid method is faster than other iterative solution
methods. First, if one expands the error e into a discrete
Fourier series, two sets of error components can be found:
one in the lower half of the frequency spectrum which are
usually called' smooth components, and’the other on the
higher frequency range usually called nonsmooth compo-
nents. It is known that when the size of the finite ele-
ments becomes very small (dense mesh), the relaxation
converges very slowly as a result of a very small reduction
of the smooth error components On contrary, many re-
laxation methods reduce the amphtude of the nonsmooth
componénts with each consecutive iteration by large fac-
tors, or as usually said, they smooth the error fast. There-
fore, they are good smoothing operators. What we actu-
ally have in multigrid methods is this: we perform only
few iteration steps on the dense grid level and reduce the

nonsmooth error components by a large factor — that’s -

what we call smoothing. Next, as a very important step,
we restrict the error on the coarser grid, where the smooth
error components from, the dense mesh look less smooth
on the coarse mesh, or in other words: they become nons-
mooth error components on this coarse grid and are ready
for further reduction by only several iteration steps using
the ordinary iterative solution method. The procedure
continues downward to the coarsest grid where even the
smoothest error components from the densest grid become
nonsmooth error components and can-be rapidly reduced.
With other words, when the relaxation process begins to
stall on one grid level, we move to a coarser grid level on
which the existing smooth error components could be re-
duced faster and where the relaxatxon procedure becomes
more effective.

Let us now come back to our original problem (1). Let
us first find the approximated solution X for the system
(1) by performing m iterative steps (usually m = 1 or 2)
using some kind of stationary iterative process such as the
Jacobi or the Gauss Seidel iterative scheme. This process
is called smooth’mg Next, after we have the approximated
solution X, we compute the residual vector ro according
to (3). The subscript 2 denotes that both the error and
the residual vector are computed for the dense grid (level
#82). Next, we try to estimate the residual vector r; on
the coarse grid (level #1). For that purpose we need a re-
striction operator R. This matrix R restricts the residual

error from the dense grid towards the coarse grid, there-
fore, this operation is called restriction. After we have
the estimation of the residual error ry on the coarse grid
level, we could solve (4) exactly using any kind of solu-
tion method (direct or even better iterative) and obtain
the correction vector e;.. However, this correction vector
is defined on the coarse grid only and has to be interpo-
lated on the dense grid in order to be added to the existing
approximated solution X. A new interpolation (prolonga-
tion) matriz P has to. be defined which interpolates the
correction vector from the, coarse grid toward the dense
grid. This operation is ca,iled prolongation. Finally, after
the computation of the correction vector ez for the dense
mesh, a new and 1mproved approximated solution X; can
be computed according to (5). This closes one cycle of
the two-grid iterative scheme. Later, the same procedure
could be performed in cycles until the desired accuracy
of the approx1mated solutlon X is achieved. A simplified
flowchart of one cycle of a ‘two- grid algorlthm is given in
Fig. 2.
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B. Types of Multigrid Solution Methods

As already mentioned, there is not a single multigrid
algorithm which can be applied with same success to all
problems. On contrary, the user must accommodate the
problem and find the algorithm which is most adequate
to his/her problem. Therefore, various multigrid algo-
rithms have been established and can be found in the lit-
erature [2-8]. However, several algorithms have attracted
the largest interest due to their efficiency and easy appli-
cation: the V-cycle, the. W-cycle and the F-cycle. While
the first two obtained their names according to the shape
of their main iterative cycle, the last one got its name from
its full name, the full multigrid method. Typical cycles
for V-cycle and W-cycle multigrid methods are given in
Fig. 3. As can be seen, the number of smoothing steps m
can be different and depends on the problem. Addition-



S: smoothing

R: restriction

P: prolongation
E: exact solution
PS: post-smoothing
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(b) W-cycle without post-smoothing
Fig. 3. V-cycle and W-cycle multigrid algorithms with four grids.

ally, smoothing steps can be performed before reaching
the coarsest grid as well as after coarse grid computations,
therefore two separate names exist — pre-smoothing and
post-smoothing with two user defined numbers of iteration
steps: m; — number of pre-smoothing iteration steps, and
my — number of post-smoothing iteration steps. In this
paper, we will discuss only the V-cycle and W-cycle algo-
rithms and the computer efficiency of both methods with
and without post-smoothing.

C. Restriction and Prolongation Operators

From all of the above mentioned, one can easily see that
the selection of a restriction matrix R and a prolongation
matrix P have paramount importance in order to obtain
a fast and stable multigrid solution algorithm. Various
authors have already suggested several types of restriction
and prolongation matrices such as five-point star or nine-
point star, etc., which can be used effectively, however,
mainly for finite difference computation schemes [5].

Figure 4 shows a common relationship between nodes
of two nested 2D grids with adjoint levels ! and [ — 1,
where level [ corresponds to the dense grid and level [ — 1
to the coarse grid. If we use first order triangular finite
elements then the obtained results have C9 continuity, i.e.
they have linear continuity of the approximation function
and constant values of its first derivatives at any point
inside the finite elements. Therefore, at midpoints of all
three edges of an element, the approximated function can
be computed as a linear combination of its values at all

=« Coarse grid
—o— Dense grid

Fig. 4. Relationship between nodes of two adjoint grids.
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Fig. 5. Analyzed model of C-type ferrite and source coil.

three nodes. Using this reasoning, in our research for the
definition of the restriction and prolongation matrices we
used a simple straight injection method, by which the value
of the residual at each midpoint is equal to the half sum
of the residuals at both terminal nodes of that edge. This
simple prolongation method was chosen for two reasons:
(a) because it has the same interpolation order as the or-
der of the finite element approximation, and (b) because it
is easy to implement numerically. After the prolongation
matrix P is once defined as above, the restriction matrix
R can easily be computed using the following relationship

R.‘—-CPT , (6)

where, ¢ is a constant and the T stands for matrix trans-
position. Defining prolongation and restriction matrices
according to (6) has one additional benefit: it provides
a straightforward way for the computation of the system
matrix for level ! — 1 if the system matrix for level [ is
already know as follows

Ki;=RK, P . (7)

Equation (7) opens new perspectives for the multigrid
method, where instead of generating a set of grids with
different grid density levels, one can generate only the
densest grid level and all lower grid levels and respectively
their system matrices can be generated automatically, or,
starting from the coarsest grid one can adaptively increase
the level of density using some kind of error evaluation
method and adaptive mesh generation algorithm. In this
paper, we use the former technique.

ITI. INVESTIGATION OF THE EFFICIENCY OF THE
MULTIGRID METHOD

A. Analyzed Model

Next, we investigate the efficiency of the multigrid so-
lution method for electromagnetic field computations. A
2D magnetostatic model ‘which consist of a C-type fer-
rite-and a source coil is shown in Fig. 5. ‘Four different
nested meshes were automatically generated using the ini-
tial coarse mesh division. The number of nodes and-finite
elements for each grid are given in Table I.



TABLE 1
NUMBER OF NODES AND ELEMENTS PER GRID LEVEL
Mesh Number of nodes | Number of elements
level #1 78 129
level #2 284 516
level #3 1083 2064
level #4 4229 8256
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Fig. 6. Comparison of the convergence rate.

B. V-cycle vs. W-cycle

Initially, we made the comparison between the conver-
gence rates and the computation speed for the V-cycle
and the W-cycle without post-smoothing step on one side
and the ordinary ICCG method as most widely used iter-
ative method for the solution of a system of linear alge-
braic equations.on the other side. Figure 6 shows the
convergence characteristics for all three solution meth-
ods, V-cycle and W-cycle multigrid method and the ICCG
method, respectively. It is easily visible that both multi-
grid methods exhibit fast and stable convergence with
convergence rates larger than that of the ICCG method.
Additionally, the W-cycle converges faster and with. a
smaller number of iteration cycles than the V-cycle multi-
grid method. The computation time for all three methods
is'presented in Table II. As.can be seen, although the num-
ber of computation operations per:cycle for the W-cycle
multigrid is larger than that for the:V-cycle multigrid,
because these operations are performed on grid levels as
much coarse as possible, (see Fig. 3(b)); W-cycle is still
faster than V-cycle and should be preferred. Regarding
memory usage both multigrid methods use approximately
the same amount of computer memory which also prefers
the W-cycle multigrid method as faster iterative solution
method.

C. Post-smoothing Influence on Convergence Rate

As shown:above; the W-cycle exhibits a faster conver-
gence mainlyas a result of the fact that most parts of the
computation are performed on coarse grids. Therefore,
one can easily conclude that the computation of highly
accurate results on a coarse grid could-automatically lead
to a more accurate solution with a smaller number of it-
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Fig. 7. Comparison of the convergence rates for V-cycle and W-cycle
multigrid method with (m1 = m2 = 2) and without post-smoothing
procedure (m; = 2,mz = 0).

eration cycles and hence would be faster. To investigate
this property of the multigrid method we made a compar-
ison of ‘the number of iterative steps, computation time
and the convergence rate for W-cycles with and without
post-smoothing, respectively. * The obtained results are
summarized in Table I1I.

As can be seen, the post-smoothing process could con-
siderably improve the performance of the multigrid so-
lution method. For'a small nimber of relaxation steps
(m1 = my < 2) the convergeénce rate improves and the
number of cycles and the computation time decreases.
On contrary, if the number: of steps increases:then multi-
grid without post-smoothing is faster than with post-
smoothing. The computatlon time and thé number of
iteration cycles was optxmal for my = m; = 2, resulting
in the W-cycle multxgnd method being almost 5 times
faster than the ori rinal ICCG method. Figure 7 shows
the compa.nson of the' co “ergence rate for the V-cycle
and W-cycle mult1 TiC I thpds with and w1thout post-
smoothing. Tt is a"" ar nt that the convergence rate im-
proves using post‘-‘ 'OOthl’ g. The improvements, how-
ever, can be different or dlfferent problems and it is on
the user to deﬁne the Optlmum value of relaxation steps
according to h1s/her problem '

D. Multz'grid Method fbirvL,arg,e Scaie Problems

We showed that eVen "fio\r a modest problem size
the multigrid method (especially ‘W-cycle with post-
smoothing) is much faster than the currently widely used
ICCG method. However, it is of paramount importance
to investigate how this conclusion can be generalized for
large scale problems, i.e. problems. with a huge num-

TABLE II

COMPARISON OF THE COMPUTATION TIME

] V-cycle | W-cycle [ ICCG |

Computation time [sec] 0.96 0.47 1.52
Number of cycles/iterations 27 9 128
Memory usage [MB] 6.5 6.5 4.5

SGI Indigo2
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TABLE 111
POST-SMOOTHING INFLUENCE ON THE MULTIGRID ITERATIVE PROCESS
Number of Without With

relaxation steps post-smoothing (| post-smoothing

W-cycle Cycles CPU Cycles CPU
mi1=mp=1 15 0.63 8 0.42
m; =mg =2 9 0.47 5 0.34
my =mg =3 7 0.42 7 0.46
CPU time in [sec], SGI Indigo2
—_ ?g T 17.95
8 6 [ W-cycle
o " L] V-cycle
85 M icc
g 10
g
2 6
g 4
© (2) 001 0.01 0.01 | 003 003 002 | 007 0.5 018
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Number of uknowns

Fig. 8. Computation time of multigrid method vs. size of the prob-
lem. '

ber of unknowns. These problems which need numeri-
cal solutions of systems of several hundred thousands up
to millions simultaneous equations, recently appeared in
numerical computation such as in very complex three di-
mensional field problems, fluid dynamics, transient phe-
nomena analysis and ‘simulations, etc. For such problems,
a large amount of memory and computation time is nec-
essary. We present here a simple investigation of the ef-
ficiency of the multigrid method over the ordinary ICCG
method as a function of the ‘size of the problem, i.e. the
number of equations in the system. The obtained results
are summarized in Fig. 8. It can be seen that the power
of the multigrid method increases strongly with the in-
crease of the size of the system that has to be solved. For
example, if the multigrid is only five times faster than
the ICCG method for the solution of a system of about
5,000 unknowns, by doubling the number of unknowns
the speed-up ratio becomes more than 10 in favor for the
multigrid method. Therefore, one can conclude that the
efficiency of the multigrid method increases with the in-
crease of the size of ‘a system of equations that has to be
solved.

Regarding electromagnetic field analysis, multigrid has
a wide potential, especially for the solution of problems
that result in less sparse system matrices; or even with full
matrices such as 3D eddy-current analysis, transient elec-
tromagnetic phenomena or simulations of coupled electro-
mechanical:or electro-thermal field problems. - Addition-
ally, the multigrid method opens a wide research area re-
garding ‘adaptive solution methods and a possibility for
a fast and ‘accurate solution of a large class of problems
in connection with’ appropriate error estimation criteria
and mesh subdivision algorithms. It is also very impor-
tant to extend ’ﬁﬁé’application area of multigrid methods

using non-nested grids and to develop new and more ef-
fective restriction and prolongation methods adequate to
one’s own problem. A comparison of the efficiency of the
multigrid method based on nested and non-nested finite
element meshes is very interesting and is planned as a
future work.

IV. ConcLusions

We presented an investigation on the efficiency of the
multigrid method for the solution of a system of lin-
ear algebraic equations obtained using the finite element
method. The convergence rates and the computation
speed of two main algorithms based on the so-called V-
cycle and W-cycle multigrid were compared with that of
the ordinary ICCG method. All multigrid solutions were
based on nested finite element meshes due to its simplicity
and computational efficiency. The influence of the post-
smoothing procedure and the efficiency of the multigrid
method in correlation with the number of unknowns were
also investigated. Multigrid methods largely improve the
convergence rate and decrease the computation time in
comparison with the ICCG method. Additionally, the effi-
ciency of multigrid methods increase strongly with the in-
crease of the size of the problem which has to be solved.
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