XXII INTERNATIONAL SCIENTIFIC CONGRESS

WINTER SESSION 19 - 22.03.2025, BOROVETS, BULGARIA

MACHINES TECHNOLOGIES. TECHNOLOGIES. TECHNOLOGIES. NATERIALS 2025 DOCEEDINCS

ISSN 2535-0021 (PRINT) ISSN 2535-003X (ONLINE)

SCIENTIFIC-TECHNICAL UNION OF MECHANICAL ENGINEERING - INDUSTRY 4.0 BULGARIA XXII INTERNATIONAL CONGRESS WINTER SESSION "MACHINES.TECHNOLOGIES.MATERIALS" 19–22.03.2025 BOROVETS, BULGARIA

PROCEEDINGS

YEAR VIII, ISSUE 1 (30), BOROVETS, BULGARIA 2025

VOLUME I MACHINES. TECHNOLOGIES. MATERIALS.

ISSN 2535-0021 (PRINT) ISSN 2535-003X (ONLINE)

ALL ARTICLES ARE PUBLISHED AFTER PEER REVIEW BY TWO INDEPENDENT REVIEWERS.

PUBLISHER:

SCIENTIFIC TECHNICAL UNION OF MECHANICAL ENGINEERING INDUSTRY-4.0

108, Rakovski Str., 1000 Sofia, Bulgaria tel. (+359 2) 987 72 90, tel./fax (+359 2) 986 22 40, office@mtmcongress.com www.mtmcongress.com

INTERNATIONAL EDITORIAL BOARD

Chairman: Prof. DHC Georgi Popov

Members:			
Prof. Ahmet Ertas	TR	Prof. Mihail Aurel Titu	RO
Prof. Andrzej Golabczak	PL	Prof. Mohamed El Mansori	FR
Prof. Gennady Bagluk	UA	Prof. Movlazade Vagif Zahid	AZ
Prof. Detlef Redlich	DE	Prof. Nadežda Jankelová	SK
Prof. Dipten Misra	IN	Prof. Oana Dodun	RO
Prof. Dmitry Dmitriev	UA	Prof. Peter Kostal	SK
Prof. Dmitry Kaputkin	RU	Prof. Raul Turmanidze	GE
Prof. Dobre Runchev	NM	Prof. Roumen Petrov	BE
Prof. Esam Husein	KW	Prof. Seiji Katayama	JP
Prof. Eugene Eremin	RU	Prof. Sergej Dobatkin	RU
Prof. Idilia Bachkova	BG	Prof. Sergej Nikulin	RU
Assoc. Prof. Iryna Charniak	BY	Prof. Svetlana Gubenko	UA
Acad. Ivan Vedyakov	RU	Prof. Sveto Cvetkovski	NM
Prof. Janette Brezinová	SK	Prof. Vadim Kovtun	BY
Prof. Juan Alberto Montano	MX	Prof. Viacheslav Prokhorov	RU
Prof. Ilir Doci	KO	Prof. Wu Kaiming	CN
Prof. Milan Vukcevic	ME	Acad. Yurij Kuznetsov	UA

CONTENTS

MACHINES

Designing and modeling of grapple buckets Nikolay Stankov
Exergy analysis of 160 MW three cylinder steam turbine segments
Mrzljak Vedran, Poljak Igor, Prpić-Oršić Jasna, Baressi Šegota Sandi
Changes in the mass moment of inertia of the planetary gear mechanism reduced to the axis of the sun gear depending on the ratio between the radii of the sun and planet gears Sasko Milev, Blagoja Nestorovski, Darko Tasevski, Zoran Dimitrovski
Dynamic behavior of RC structures with post-tensioned slabs Enkeleda Kokona, Helidon Kokona
<u>TECHNOLOGIES</u>
Thermal Effects of High-Speed Machining: Analysis of Cutting Zone Temperatures, Tool Behavior, and Cutting Forces
Martin Necpal, Marek Vozár
Large-scale distortion analysis of the welding and thermal straightening process chain Nikolay Doynov
Plasma jet surface hardening of tool steel - computational investigation using different modelling approaches Nikolay Doynov
Modeling of martensite distribution in stainless steel wire during thermomechanical processing PhD Volokitina I.E.; PhD Panin E.A
Modeling of microstructure evolution during the combined process "radial-shift broaching with drawing" by cellular automata method
PhD Volokitina I.E.; PhD Panin E.A., PhD Volokitin A.V.; T.D. Fedorova
Composite modifications obtained through various technological approaches based on inorganic binders and foam glass materials
Lyuben Lakov, Bojidar Jivov, Gabriel Peev, Dimo Mihaylov, Mariya Georgieva
Building eco-friendly houses with construction coatings, bricks and panels based on sedimentary rocks Lyuben Lakov, Krasimira Toncheva, Marieta Gacheva, Mariya Georgieva
Electrical and thermal monitoring for remote diagnostics of X-ray generators Nikolay Zografov, Ivan Garkov, Dimitar Todorov
Optimization of a casting technology with the tools of Magmasoft software package Angel Velikov, Georgi Evt. Georgiev, Raul Turmanidze
Measurement comparison between 3D model of the promotional school windmill shaft and two different prototypes made on a 3D printer Ender 3 S1 Plus Vid Božič
Approach of Artificial Intelligence to accelerate FEM simulations Olga Karakostopulo
The influence of vibrations on the friction of removable electrical connectors during operation, and the causes of malfunctions in electrical contacts Denis Derbush

Mooring system for fuel oil unloading	70
Klodian Gumeni, Jozef Kola, Agim Anxhaku	
Assessment of the risk of electromagnetic emissions through monitoring for an object on the territory of the Metropolitan municipality	
Anna Bouzekova-Penkova, Dimitar Teodosiev, Adelina Miteva	75
Investigation of extruded polyethylene blend films tensile creep elongation with different open holes configuration	ns
Konstantin Chukalov	78
Mathada of Tamparatura Maaguramant in Haat Affaatad Zana during Walding	
Valentin Anguelov	81
	01
Мрежа от автономни безпилотни летателни апарати за контрол на урбанизиран район	
Иван Гарванов, Магдалена Гарванова	86
Системи за откриване и противодействие на безпилотни летателни апарати	
Магдалена Гарванова, Иван Гарванов	89
Анализ на маканичнита во лиави пранали од проволитани 133 mm авти завийали изатрат на самакалиа ва	5
Анализ на механичните вылнови процеси сыпровождащи 122 пшп артилерииски изстрел на самоходна газ Лоц. п-р. Бойчев Я. Л. п-р. Асенов Ст. Н. инж. Василев К. В.	оица 93
Tailoring magnetic properties and radiolabeling of magnetite-based nanoparticles for biomedical applications	
B. Dojcinovic, M. Ognjanovic, H. Kolev, S. Vranješ Đurić, D. Janković and B. Antic	95
<u>MATERIALS</u>	
Lightweight heavy geopolymer foam based on fayalite slag: influence of alkali concentration on cellular structur	e Of
Aleksandar Nikolov, Liliya Tscetanova, Borislav Bardov	90
Surface-modified polyethersulfon nanofiltration membranes - preparation properties and biotechnological pros	nects
Darinka Christova, Silvia Bozhilova, Mariela Alexandrova, Maya Staneva, Filip Ublekov	100 peeds
On the tribological characterization of novel SiNb and SiW cast irons	
Ş. Hakan Atapek, Gülşah Aktaş Çelik, Abdulaziz Alkan, İrem Altın, Şeyda Polat, Eleni Kamoutsi,	
Gregory Haidemenopoulos	104
Fores Studys Analysis of Motallis Materials using the Unner Bound Mathed	
Force-Stroke Analysis of Metallic Materials using the Upper Bound Method Kaan Ozel Selouk Selvi, Mehmet Sahin, Mumin Sahin	107
	107
Influence of Al ₂ O ₃ content on the mechanical properties of sintered Al-10Cu-xAl2O3 composites	
Tatiana Simeonova, Rumen Krastev, Georgi Stoilov, Vasil Kavardzhikov	112
Application of thermal-derivative analysis to study phase transformation in AlSi7Mg alloy with different iron co	ntent
Jarosław Piatkowski, Leszek Chowaniec, Tomasz Matula	116
Investigation of Di Tauringle angetal danad with Sa aktained using Duidaman method	
Investigation of Bl ₂ 1e ₃ single crystal doped with Se obtained using Bridgman method Saša Marianović, Emina Požega, Dragana Božić, Vesna Marianović	120
Sasa Warjanović, Elinina i ozega, Dragana Bozić, vesna Warjanović	120
Advanced characterization methods of titanium allov	
Magdalena Jajčinović, Ljerka Slokar Benić, Ivana Ivanić	122
Phase transformations in titanium biomedical materials	
Magdalena Jajčinović*, Ljerka Slokar Benić, Stjepan Kožuh, Ivana Ivanić	126
Study on the Failure of Heat Exchanger Tubes in the Chemical Industry	
Suudy on the Fahure of near Exchanger 1 ubes in the Unemical Industry Julieta Daniela Chelaru	130
	150
Investigation of hardness and tensile strength ratio of a polvethylene blend	
Konstantin Chukalov	132
Structure and properties of magnetostrict materials of the Fe-Ga AND Fe-Ga-Al systems	
Dmytro A. Honcharuk, Gennadii A. Bagliuk, Oleksiy I. Khomenko	135

Effect of technological parameters on the structure and physico-mechanical properties of Fe-FeCr800 system co	mposite
Yevheniia Kyryliuk, Stepan Kyryliuk, Genadii Bagliuk, Iaroslav Sytnyk	138
Investigation on maximum tensile force and Shore D hardness of 3D printed samples of Polyamide PA6-CF	
Konstantin Chukalov	142
Luminescent properties of sol-gel synthesized ZrO2 and Sm2O3 coatings on glass	
Stancho Yordanov, Mihaela Aleksandrova, Vladimir Petkov, Shaban Usun, Mariana Pavlova	145
Ensuring Clean Waterways: The Essential Role of Neutralization in Treating Technological Wastewater	
Dragana Božić, Ljiljana Avramović, Vanja Trifunović, Emina Požega, Vesna Marjanović, Zoran Avramović,	
Saša Marjanović	149
Methods for surface modification of polyethersulfone nanofiltration membranes	
Mariela Alexandrova, Silvia Bozhilova, Darinka Christova	151

INDUSTRIAL MANAGEMENT

The impact of AI on entrepreneurship education	
Daniela Pastarmadzhieva, Mina Angelova	152
Increasing the competitiveness of business organizations through reducing energy consumption and effective energy	7

management	
Krasimira Dimitrova	

Changes in the mass moment of inertia of the planetary gear mechanism reduced to the axis of the sun gear depending on the ratio between the radii of the sun and planet gears

Sasko Milev^{1*}, Blagoja Nestorovski², Darko Tasevski², Zoran Dimitrovski¹

Faculty of Mechanical Engineering, Goce Delcev University, Stip, North Macedonia, Krste Misirkov, 10A, 2000, Stip¹,

email: sasko.milev@ugd.edu.mk1*

Faculty of Mechanical Engineering, SS. Cyril and Methodius University in Skopje, North Macedonia²

Abstract: Direct Planetary gear mechanism normally consists of a single central gear at the center, an internal (ring) gear around the outside, some number of planet gears that go in between and a planet carrier. They are used to reduce or multiply the number of revolutions. For correct selection of the torque of the driving machine, it is necessary to know the moment of inertia of the planetary gear mechanism, which directly depends on the mass moment of inertia of the planetary gear mechanism and the angular acceleration. In this paper is analyzed the impact of the ratio of the radii of the central and planet gears on the mass moment of inertia of the planetary gear mechanism reduced to the axis of the central gear at a constant diameter of the internal gear. The changes in the reduced mass moment of inertia depending on the number of planet gears was also analyzed.

Keywords: PLANETARY MECHANISM, REDUCED MASS MOMENT OF INERTIA, PLANET CARRIER, SUN GEAR, PLANET GEARS

1. Introduction

Planetary gears can provide high transmission accuracy and support high torque transmission. They belong to the group of epicyclic mechanisms and are most often used for torque transmission and speed transformation. They can be used as reducers, when the angular velocity of the output shaft is lower than the angular velocity of the input shaft through which energy is supplied to the system, or they can be used as multipliers, when the angular velocity of the input shaft is lower than the output shaft angular velocity.

Planetary gears normally consist of; a single sun gear at the center (a), an internal (ring) gear around the outside (b), some number of planets (c) that go in between and a planet carrier H. Planets are the same size, at a common center distance from the center of the planetary gear, and held by a planetary carrier. During the operation of the planetary train, the input power drives the sun gear to rotate, and further drives the surrounding planetary gears which are housed in a rotating planetary carrier. Then the output shaft connected with the planetary carrier connects rotates to output the torque and rotating speed.

Fig.1.Planetary gear: (a) sun gear, (b) internal (ring) gear, (c) planets, H (planet carrier)

Number of planet gears can be different and they are typically spaced at regular intervals around the sun. More planet gears allow better force balance and lower forces by more load sharing. However, number of the additional planet gears do not change the kinematic but dynamic characteristics of the mechanism.

During the operation of planetary mechanisms, there are three phases in their movement: the start-up phase, the stationary mode of operation and the stopping phase. During the first phase, the speed of the driving member increases from zero to maximum and the work of the driving forces is greater than the work of the resistance forces. In the stationary mode, the work of the driving forces for a full cycle is equal in absolute value to the work of the resistance forces. During the stopping phase, the speed of the driving member decreases to zero, and the work of the resistance forces is greater than the work of the driving forces. (The resistance forces are understood as all the forces that oppose the movement of the mechanism).

It is necessary the drive unit to enable uninterrupted operation of the mechanism in all three phases, i.e. to provide a sufficiently large input torque that will be transmitted to the drive shaft of the planetary gear and to provide appropriate angular velocity of the input shaft at which the material moment of inertia is reduced.

The general form of the Lagrange equation of motion

$$\frac{d}{dt} \left(\frac{\partial E_k}{\partial \dot{q}_i} \right) - \frac{\partial E_k}{\partial \dot{q}_i} + \frac{\partial E_p}{\partial \dot{q}_i} = Q_i$$

applied to a planetary gear train is ;

$$\frac{d}{dt} \left(\frac{\partial E_k}{\partial \phi} \right) - \frac{\partial E_k}{\partial \phi} + \frac{\partial E_p}{\partial \phi} = M_i$$
(1)

where E_k is kinetic energy of the mechanism, φ is angle of rotation (generalized coordinate), $\dot{\varphi}$ is angular velocity (generalized velocity),

 M_i is generalized moment. The member $\frac{\partial E_p}{\partial \varphi}$ takes over the action in the mechanism of the forces from the weight and the elasticity of the members. These forces can be neglected since their influence is very small and the elasticity of the members of the planetary mechanism can be avoided by increasing their stiffness [1]. For efficient use of equation (1), we reduce the moments Mi of all members of the planetary mechanism to the input shaft and replace the total action of the thus reduced moments with a single member M* for which we further use the term reduced moment of inertia. The work of the reduced moments with respect to the possible displacements is equal to the total work of all forces acting on the mechanism with respect to the possible displacements, so equation (1) takes the form [2-3]

$$\frac{d}{dt} \left(\frac{\partial E_k}{\partial \phi} \right) - \frac{\partial E_k}{\partial \varphi} = \mathbf{M}^*$$
(2)

We replace the mass material moments of inertia of all the components of the planetary mechanism with a single material moment of inertia I* reduced to the input shaft. I* is called the reduced mass material moment of inertia.

$$J^* = \sum_{i=1}^{n} \left[J_{Si} \left(\frac{\omega_i}{\omega} \right)^2 + m_i \left(\frac{v_{Si}}{\omega} \right)^2 \right]$$
(3)

The following equations apply to planetary mechanisms:

$$\mathsf{E}\mathsf{K} = \frac{\mathsf{J}^* * \dot{\varphi}^2}{2} \tag{4}$$

$$\frac{\partial E_k}{\partial \dot{\varphi}} = J^* * \dot{\varphi} \qquad (5)$$

(13)

$$\frac{\partial E_k}{\partial \dot{\varphi}} = \frac{1}{2} \frac{dJ^*}{\partial \varphi} * \dot{\varphi}^2$$

$$(6)$$

$$\frac{d}{dt} \left(\frac{\partial E_k}{\partial \dot{q}_i} \right)^{"} = J^* * \ddot{\varphi} + \frac{dJ^*}{\partial \varphi} * \dot{\varphi}^2$$
(7)

By substituting (4), (5), (6) and (7) into (2) we obtain the following nonlinear differential equation (8):

$$J^{*} * \ddot{\varphi} + \frac{1}{2} \frac{dJ^{*}}{\partial \varphi} * \dot{\varphi}^{2} = M^{*}$$
(8)

By solving (8), we determine the value of the actual angular velocity of the input (drive) shaft on which the sun gear is mounted and on which the reduction is performed.

$$\omega_{i} = \sqrt{\frac{2}{J_{i}^{*}} \int_{\varphi_{0}}^{\varphi_{i}} M^{*} * d\varphi + \frac{J_{0}^{*}}{J_{i}^{*}} * \omega_{o}^{2}}$$
(9)

 $M^*=M^*(\varphi, \omega, t) = M_p - M_o$, where M_p is moment of motion, M_o is moment of resistance forces. J_0^* is the reduced mass moment at the initial moment.

Considering that in gear mechanisms the transmission ratio does not change during operation, the reduced mass moment of inertia remains unchanged, i.e. $J_0^* = J_i^*$ equitation (9) will be [4]:

$$\omega_i = \sqrt{\frac{2}{J_i^*} \int_{\varphi_0}^{\varphi_i} M^* * d\varphi + \omega_o^2}$$
(10)

From equitation (10) it is obvious that the angular velocity depends on the reduced mass moment of inertia I*.

2. Mass moment of inertia reduced to the axis of the sun gear

In this paper we will further examine changes in the mass moment of inertia of the planetary gear mechanism reduced to the axis of the sun gear depending on the ratio between the radii of the sun gear and planet gears. For this purpose, we first determine the expression for calculating the mass moment of inertia reduced on the sun gear using the law of kinetic energy [5-6].

Fig.2. Scheme of planetary mechanism

$$E_K^* = E_{Ka} + NE_{Kc} + E_{KH} \tag{11}$$

 E_{κ}^{*} – kinetic energy of the system

 E_{Ka} -sun gear kinetic energy

 E_{Kc} - kinetic energy of one planetary gear

E_{KH}- planet carrier kinetic energy

N- number of planetary gears

$$E_k^* = \mathbf{J}^* * \frac{\omega_a^2}{2} \tag{12}$$

 ω_a [1/s] - angular velocity of the sun gear

$$J_a = \frac{m_a \ast R_a^2}{2}; \ m_a = \rho_a \pi h R_a^2$$
 , where

J_a - mass moment of inertia of sun gear [kg*m²],

ma[kg]-sun gear mass, Ra[m]- sun gear radius, h-gear thickness

 $\rho_a[kg/m^3]$ - specific density of the material from which the sun gear is made

 $E_{Ka} = \frac{J_a * \omega_a^2}{2} = \rho_a \pi h R_a^4 \frac{\omega_a^4}{4}$

$$E_{Kc} = \frac{J_c * \omega_c^2}{2} + \frac{m_c * v_{sr}^2}{2}$$
(14)

 $J_c = \frac{m_c * R_c^2}{2}; \ m_c = \rho_c \pi h R_c^2$, where

 $J_{\ensuremath{\mathcal{C}}}$ -mass moment of inertia of one planet gear $[kg*m^2]$

R_c-planetary gear radius, v_{sr} - planetary gear center speed

 $v_{sr} = (R_a + R_c) * \omega_H$

 ω_H [1/s] - angular velocity of the planet carrier

 $\rho_{c}[\text{kg/m}^{3}]$ - specific density of the material from which the planetary gears are made

At the mutual contact points of the sun gear with the planetary gears, the peripheral speed is

$$R_{a*}\omega_a = R_{c*}\omega_c \quad \rightarrow \quad \omega_c = (R_a \backslash R_c) * \ \omega_a$$

By substituting the previously mentioned equations into equation (13) we obtain

$$E_{Kc} = \rho_c * \pi * h * \frac{R_a^2}{2} * \frac{R_c^2}{2} * \omega_a^2 + \rho_c * \pi * h * \frac{R_c^2}{2} * (R_a + R_c)^2 * \omega_H^2$$
(15)

$$E_{KH} = \frac{J_H * \omega_H^2}{2} \tag{16}$$

where

$$\mathbf{J}_{H} = m_{H} * \frac{(R_{a} + R_{c})^{2}}{2} , \ m_{H} = \rho_{H} * \pi * (R_{a} + R_{c})^{2} * h$$

 $m_{\rm H}$ [kg] - mass of of the carrier H,

 J_H - mass moment of inertia of the carrier H [kg*m²]

 ρ_H [kg/m³] - specific density of the material from which the

carrier H is made,

Using above equatations for J_H and m_H equitation (15) will be transformed in

$$E_{KH} = \rho_H * \pi * h * \frac{(R_a + R_c)^4}{2} * \frac{\omega_H^2}{2}$$
(17)

According to the Willis Method for epicyclic mechanisms, for the ratio of angular velocities in the planetary mechanism we obtain[7-9]

$$i_{1H} = \frac{\omega_a}{\omega_H} = 1 - \frac{d_b}{d_a} = 1 - \frac{(R_a + 2R_c)}{R_a}$$
$$\frac{\omega_a}{\omega_H} = \frac{-R_a}{2 * R_c}$$
(18)

where Rb=Ra+2Rc

By substituting equations (12), (13), (15), (17) and (18) into equation (11), the following expression is obtained:

$$J^{*} = (\rho_{a} * \pi * h) * \frac{R_{a}^{*}}{2} + N(\rho_{c} * \pi * h) * \frac{2R_{a}^{*}R_{c}^{*} + R_{a}^{*}(R_{a} + R_{c})^{*}}{4} + \rho_{H} * \pi * h_{H} * (R_{a} + R_{c})^{4} * \frac{R_{a}^{2}}{4 * R_{c}^{2}}$$
(19)

Further, using equation (19), the values for the reduced mass moment of inertia were calculated. It was assumed that all parts of the planetary mechanism are made of same material with a density ρ [kg/m³]. The radius of the internal (ring) gear (b) remains constant during the calculations. Thickness of the carrier h_m, which has shape of a circular plate, is h_H=h/k, where h is thickness of gears.

$$J^{*} = (\rho * \pi * h) * \left(\frac{R_{a}^{4}}{2} + \frac{N * (2R_{a}^{2}R_{c}^{2} + R_{a}^{2}(R_{a} + R_{c})^{2})}{4} + \frac{(R_{a} + R_{c})^{4} * R_{a}^{2}}{4 * k * R_{c}^{2}}\right)$$
(20)

From equation (20) it is clear that for a given density of the material from which the mechanism is made and a given thickness of the gears, the value of the reduced mass moment depends on the ratio between the radii of the central and planetary gears, on the thickness of the carrier h which is taken to have the shape of a circular plate and on the number of planet gears.

3. Results and discussion

The calculation performed below is for $h_H=h/4$, i.e. the thickness of the planet carrier is 4 times less than the thickness of the gears and reduced mass moment of inertia $J^*_{(N=K)} = J^*/(\rho \pi h)$ for N planet gears. In table 1 are given values for reduced mass moment of inertia depending on the ratio between the radii of the sun gear and planet gears.

Table 1: Reduced mass moment of inertia of the planetary gear mechanism reduced to the axis of the sun gear depending on the ratio between the radii of the sun and planet gears for 3,4,5,7 and 9 planet gears

Reduced mass moment of inertia for 3,4,5,7 and 9 planet gears depending on the ratio between the radii of the sun gear and planet gears								
i _{aH}	Ra	Rc	Ra/Rc	J* _(N=3)	J* _(N=4)	J* _(N=5)	J* _(N=7)	J* _(N=9)
0,176	0,85	0,075	11,3	6,608	6,764	6,921	7,234	7,547
0,250	0,8	0,1	8,00	3,228	3,360	3,493	3,759	4,024
0,333	0,75	0,125	6,00	1,813	1,925	2,037	2,262	2,486
0,429	0,7	0,15	4,67	1,113	1,207	1,301	1,489	1,677
0,538	0,65	0,175	3,71	0,724	0,802	0,880	1,037	1,194
0,667	0,6	0,2	3,00	0,490	0,554	0,619	0,749	0,878
0,818	0,55	0,225	2,44	0,340	0,393	0,446	0,552	0,658
1,000	0,5	0,25	2,00	0,239	0,282	0,325	0,411	0,497
1,222	0,45	0,275	1,64	0,170	0,204	0,238	0,307	0,375
1,500	0,4	0,3	1,3	0,120	0,147	0,173	0,227	0,281
1,857	0,35	0,325	1,08	0,084	0,104	0,125	0,166	0,206
2,333	0,3	0,35	0,86	0,057	0,072	0,087	0,117	0,147
3,000	0,25	0,375	0,67	0,038	0,048	0,059	0,080	0,101
4,000	0,2	0,4	0,50	0,023	0,030	0,037	0,050	0,064
5,667	0,15	0,425	0,36	0,013	0,017	0,021	0,028	0,036
9,000	0,1	0,45	0,22	0,006	0,007	0,009	0,013	0,016
19,00	0,05	0,475	0,10	0,001	0,002	0,002	0,003	0,004

In the upper half of Table 1, when the gear ratio is greater than 1, the planetary gear mechanism functions as a multiplier. In this case, the angular velocity of the sun gear is less than the angular velocity of the carrier. For a gear ratio of 1, the radius of the sun gear is twice the radius of the planet gears and in this case the angular velocities of the sun gear and the planet gears are equal. When the gear ratio is greater than 1, the planetary gear mechanism functions as a reducer and in this case the angular velocity of the sun gear is greater than the angular velocity of the sun gear is greater than the angular velocity of the carrier.

The dependence of the reduced mass moment of inertia on the ratio between the radii of the sun gear and planetary gears is shown at figure 3.

Figure 3: Reduced mass moment of inertia of planetary mechanism

When the number of planet gears is 9, the reduced moment of inertia as a function of the ratio of the radii of the sun gear and planet gears is given by the approximate equation

$$y=0.0517x^2-0.0073x+0.0243$$
 (21)

Based on the data in the Table 1 and Figure 3 it can be concluded that with an increase in the ratio between the radii of the sun gear and the planet gears, the value of the mass moment of inertia of the planetary mechanism reduced to the sun gear axis also increases. This dependence is described by second order curve - parabola. By increasing the number of planet gears, the coefficient in front of the quadratic element (21) also increases.

In table 2 are represented calculated the percentage increases of the reduced mass moment of inertia when the planetary mechanism has 4, 5, 7 or 9 planet gears compared to the reduced moment when there are only 3 planet gears.

Table 2. Percentage increases of the reduced mass moment of inertia `when the planetary mechanism has 4, 5, 7 or 9 planet gears

Increase in the reduced mass moment of inertia with 4, 5, 7 and 9 planetary gears compared to the reduced mass moment of inertia with 3 planetary gears [in percentage]						
IaH ratio	Ra/Rc	J*N=4/ J*N=3	J*N=5/ J*N=3	J*N=7/ J*N=3	J*N=9/ J*N=3	
-0,176	11,33	2,37	4,74	9,48	14,22	
-0,250	8,000	4,11	8,23	16,46	24,69	
-0,333	6,000	6,18	12,36	24,72	37,08	
-0,429	4,667	8,45	16,90	33,80	50,70	
-0,538	3,714	10,83	21,65	43,31	64,96	
-0,667	3,000	13,24	26,47	52,94	79,41	
-0,818	2,444	15,62	31,25	62,50	93,75	
-1,000	2,000	17,96	35,92	71,84	107,76	
-1,222	1,636	20,21	40,42	80,85	121,27	
-1,500	1,333	22,36	44,71	89,42	134,14	
-1,857	1,077	24,37	48,73	97,46	146,19	
-2,333	0,857	26,21	52,42	104,84	157,26	
-3,000	0,667	27,86	55,71	111,43	167,14	
-4,000	0,500	29,28	58,56	117,12	175,67	
-5,667	0,353	30,45	60,91	121,81	182,72	
-9,000	0,222	31,37	62,74	125,47	188,21	
-19,00	0,105	32,02	64,05	128,09	192,14	

The results of the table 2 are graphically shown on the figure 4.

Figure 4: Percentage increases of the reduced mass moment of inertia `when the planetary mechanism has 4, 5, 7 or 9 planet gears compared with 3 planet gears mechanism

From the data in Table 2 represented at Figure 4 it can be concluded that at the same ratio of the radii of the sun gear and planetary gears, with an increase in the number of planetary gears, the value of the reduced mass moment of inertia also increases. The percentage increase in the reduced mass moment of inertia when the number of planet gears increases is greatest at the largest planetary mechanism ratios, that is, at the smallest ratios of the radii of the sun gear and planet gear. With an increase in the ratio between the radii of the sun gear and planetary gear, this percentage increase decreases. It follows that the percentage increase is smaller in cases when the planetary mechanism works as a multiplier than when it works as a reducer.

4. Conclusion

By changing the ratio of the radii of the sun gear and planet gears in planetary mechanisms, the mass moment of inertia reduced to the sun gear axis is also changed, and with it the reduced torque M^* is also changed, which directly affects the characteristics of the planetary mechanism. On the other hand, an increase in the reduced mass moment of inertia can be achieved by increasing the number of planetary gears. The number of planetary gears does not affect the kinematic characteristics, but it does affect the moment of inertia.

5. References

- J.J.Uicker Jr., G.R.Penock., J.E.Shigley, Oxford University Press (2017) Theory of Machines and Mechanisms, 5-th edition
- [2] R.Budinas, J.Nissbet., Mc Graw Hill Education (2020) Shigley's Mechanical Engineering Design
- [3] T.Petrovic, T.Ivanov and M.Milosevic, Forsch Ingenieures (2009), A new structure of combined gear trains with high transmission ratios
- [4] Y.Chen, Springer China Machine Press (2021) Automotive Transmissions, Design, Theory and Applications
- [5] K.Arnaudov., D.Karaivanov, CRC Press, Taylor & Francis Group (2018), *Planetary Gear Trains*
- [6] D.Stamboliev, Ss.Cyril and Methodius University in Skopje, Macedonia ((1976) *Prenosnici na vozilata*
- [7] W.Jiang., Wiley (2019). Analyses and Design of Mechanical *Elements*.
- [8] J.Meriam, L.Kraige., J.Bolton, Wiley (2018) Engineering Mechanics, Volume 2, Dynamics
- [9] S.Simeonov, S.Milev, Goce Delcev University Stip (2019), Praktikum po Masinski elementi