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Abstract   

Among the numerous nanomaterials, metal nanoparticles, like silver nanoparticles 

(AgNPs), are the most employed. Significant focus has been given to their dual role 

due to their versatile properties. Beneficial, on the one side, as potent antimicrobial 

properties determine different applications in medicine, agriculture and food 

safety, to potentially harmful on the other side. Mycotoxins, secondary metabolites 

produced by toxigenic strains of fungi, are highly toxic substances recognized for 

their influence on processes of mutagenesis and carcinogenesis, hepatotoxicity, 

immunosuppression and estrogenic properties in animals and humans, posing 

severe threats to health through contaminated food and feed. Thus, this paper 

explores the toxicity mechanisms of AgNPs and their inhibitory effects on aflatoxins, 

a class of mycotoxins produced mostly by Aspergillus species that pose significant 

health risks. The interaction between AgNPs and aflatoxins is examined, 

highlighting the potential of AgNPs in mitigating aflatoxin contamination. The 

article gives a summary of the synthesis, properties and dual roles of AgNPs in the 

toxicity and inhibition of aflatoxins, concentrating on their possible uses and safety 

concerns at the end. It is found that, there are elements that affect AgNP’s toxicity, 

like particle solubility, surface area, surface charge, size, concentration, 

formulation, tendency to agglomerate and exposure duration. Therefore, assessing 

the safe levels of AgNP exposure and developing guidelines for their use in different 

fields are crucial for minimizing the risks. It can be summarized that the 

biosynthesized AgNPs generated through green synthesis, owing to their 

biocompatibility and low toxicity, could be applied in harmless concentrations as 

strong antifungals and anti-mycotoxins. This can offer significant potential for 

enhancing food safety due to their strong antimicrobial properties, which can 

inhibit the growth of foodborne pathogens and extend shelf life. However, the 

potential for nanoparticle migration into food must be considered, which raises 

critical concerns about human health, regulatory challenges and environmental 

impact. 
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Introduction   

Nanotechnology has revolutionized various scientific fields, offering novel solutions 

to complex problems. It is an interdisciplinary domain that encompasses the 

production, manipulation and deployment of substances at scales less than 100 

nm. This field focuses on materials at the molecular level and has recently 

expanded to a large number of uses (1). Among the numerous nanomaterials, 

metal nanoparticles (NPs) are among the most employed. Numerous systems have 

been thoroughly studied with metals like gold and silver incorporated, as well as 
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metal oxide containing NPs like SiO2, TiO2 and cupric oxide (CuO) 

(2-6).  

 Silver nanoparticles (AgNPs) are the focus of more 

thorough research in the fields of infection and inflammation 

prevention concerning their exceptional properties. AgNPs 

dissolve quickly and, because of their small stature and great 

surface area, have a low likelihood of causing drug resistance (4, 

7). However, AgNPs can be cytotoxic and genotoxic because they 

interact in human cells with electron transport chain enzymes 

and DNA, resulting in disrupted production of ATP, DNA damage 

and generation of various types of reactive oxygen species (ROS) 

(8). It's intriguing, though, that AgNPs do not show cytotoxicity in 

vitro when they are used as antimicrobial coat/biofilm on 

surfaces of medical devices (implants, catheters) and wound 

dressings. Instead, AgNPs show strong antibacterial activity 

against typical pathogenic bacteria (9). Regarding the 

aforementioned, AgNPs are still being thoroughly researched as 

antimicrobial materials, but in this context, their ability to inhibit 

aflatoxin generation is not well characterized.  

 Mycotoxins are secondary metabolites that can 

contaminate a variety of food products when hazardous strains 

of fungi/molds produce them. Representatives of Aspergillus, 

Penicillium and Fusarium genera produced the most frequently 

detected mycotoxins. Given the significant harm that mycotoxins 

cause to the health of both humans and animals, it is especially 

problematic when they are found in cereals, nuts, milk and other 

food products (10). Aflatoxin B1, Ochratoxin A and fumonisin B1 

are the three mycotoxins that are particularly harmful to 

mammals (11). Aflatoxins, which are a subgroup of the 

mycotoxins group, mostly produced mainly by Aspergillus flavus 

and Aspergillus parasiticus, are difuranocoumarin derivatives. 

These are highly toxic substances recognized for causing 

hepatotoxicity, immunosuppression, mutagenicity, 

carcinogenicity and estrogenic effects in mammals, posing severe 

threats to health through contaminated food and feed (12-14). 

Aflatoxin B1 and B2 and aflatoxin G1 and G2 are the main aflatoxins 

that are found naturally (Fig. 1). The term "aflatoxicosis" refers to 

the illnesses brought on by consuming aflatoxin. Aflatoxin B1 

stands out as one of the most powerful natural carcinogens 

among all aflatoxins (15). Hepatocellular carcinoma is the main 

illness linked to aflatoxin B1 (16). The toxicity of aflatoxin B1 

varies depending on the species, gender and age.  

 Given previous findings, it is crucial to develop methods 

and techniques (physical, chemical or biological) for detoxifying 

mycotoxins. Traditional methods of mycotoxin mitigation, such as 

chemical treatments and thermal processing, often have 

limitations, including incomplete removal, nutrient loss, or 

environmental concerns. One of the interesting and promising 

approaches to address this issue is the use of NPs. AgNPs offer a 

novel and effective alternative in the fight against mycotoxins. 

Their use as components in food packaging materials and 

coatings, provides innovative solutions to reduce contamination 

risks and improve food quality. It is recognized for its ability to 

disrupt various processes in the cell of microorganisms, including 

metabolism, altering the composition and capabilities of cell 

membranes and inhibiting protein expression related to ATP 

production. The three main mechanisms of action in mycotoxin 

mitigation by AgNPs are (a) disruption of cell membranes, 

interference with enzymatic processes and induction of oxidative 

stress; (b) adsorption of mycotoxins directly from the 

contaminated food or feed; and (c) synergistic action with 

mycotoxin-degrading enzymes (10, 17).  

 In mammalian tissues, silver, which exists naturally and 
has low toxicity, is regarded as a powerful antibacterial agent, 

leading to the widespread use of AgNPs in applications such as 

water purification, washing machines, textiles, cosmetics, 

cooking utensils, toys, in consumer goods that are antiseptic and 

disinfecting, as well in wound dressings and implant surfaces (18

-21). The incorporation of AgNPs into food-related products 

must consider the potential for nanoparticle migration into food, 

which could pose health risks through the ingestion route. Long-

term exposure to AgNPs through ingestion of food remains 

poorly understood and there is a need for comprehensive 

toxicological studies to establish safety thresholds. Additionally, 

the environmental release of AgNPs during manufacturing, 

usage, or disposal could disrupt ecosystems, particularly 

microbial communities, which could be essential for soil- and 

water-ecosystem health (4, 7, 11, 18). Thus, this review aims to 

elucidate the dual role of AgNPs in exerting toxicity towards 

fungal pathogens and inhibiting aflatoxin production. 

Synthesis and Properties of AgNPs  

AgNPs are usually produced through either top-down or bottom

-up techniques. The first strategy is a physical method that 

entails disassembling bulk materials into NPs by using 

techniques like evaporation-condensation, laser ablation or ball 

milling (22–24). These techniques, however, are energy-intensive 

and costly. In contrast, the second approach synthesizes AgNPs 

through chemical reactions where atoms self-assemble into 

nuclei and grow into nanoscale particles. In this method, 

chemical reactions with reducing substances (such as sodium 

borohydride, N, N-dimethyl formamide) are primarily used (25). 

While chemical synthesis is common, it poses environmental 

risks due to the hazardous chemicals involved, which can be 

carcinogenic, genotoxic and cytotoxic.  

 Nowadays, chemical reduction, in which Ag+ ions are 

reduced to metallic silver by the action of reducing agents and 

green synthesis, which creates environmentally benign NPs 

using plant extracts or microbes, are the most widely used 
Fig. 1. Structural formulae of naturally occurring major aflatoxins. 
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techniques for synthesizing AgNPs (26-29). Therefore, green 

synthesis presents an eco-friendly alternative, utilizing bacteria, 

fungi, algae, or plant extracts to produce NPs without harmful 

chemicals. Biosynthesized NPs, generally using reduction ability 

of natural plant extracts, are declared to require less 

modifications and to be more biocompatible (30). The precise 

process by which green synthesis biosynthesizes metal NPs 

remains unclear. However, it is suggested that biomolecules 

such as proteins, polyphenols, polysaccharides, vitamins and 

enzymes which are present in microbial or plant extracts, have 

the ability for reactions of reduction with silver salts and 

subsequent conversion of the latest to AgNPs (31). The resulting 

AgNP’s physicochemical characteristics, including morphology, 

size, surface charge and shape, have a major impact on their 

biological activity. 

General mechanism of antifungal toxicity of metallic NPs  

Eukaryotic fungi can be frequently found in the environment and 
there are lot of representatives of them that function as 

opportunistic pathogens. There are a plethora of research works 

where the main subject of investigation is the efficacy of NPs as 

possible antifungal agents to address life-threatening fungal 

infections (10, 20, 32-34). These investigations have included 

mainly gold, silver, copper and titanium dioxide NPs. Metallic 

NPs interact with fungi in ways that, according to the type of 

NPs, the fungus species and the surrounding circumstances, 

may be advantageous or detrimental (35).   

 It has been discovered that a variety of NPs can act 

against fungal species that are resistant by causing alterations in 

the cell wall, including modifications of the surface, cell 

aggregation, formation of pores and total deformation of the 

fungal cell. Fig. 2 illustrates the complex antifungal toxicity of NPs.  

 Research indicates that during adsorption, NPs have the 

ability to embed themselves in the cell walls of fungi, changing 

their morphology (36, 37). Fungal cells' inner membranes are 

also deformed, resulting in modifications to the arrangement of 

organelles. These include a process of increasing the number of 

vesicles and vacuoles in the cell, as well as the decrease of the 

content of cytoplasm, which causes the contents of the cell to 

leak out. Smaller NPs can avoid serious cell wall damage by 

entering cells through fluid-phase endocytosis. NPs exposure 

can also alter gene expression and protein levels and some NPs 

can interact with nucleic acids inside the cell (38). Fungal hyphae 

and spores are highly susceptible to the effects of NPs. The 

hyphae may undergo deformation and shrinkage and the 

growth patterns may be altered, resulting in thinning and 

clumping of the hyphae fibers. Interruption of hyphal 

development is essential for colonization and pathogenesis for 

which biofilm formation and adherence are required. In this 

direction, NPs can prevent the production of biofilms (39). NPs 

can also affect existing biofilms by depositing extracellular 

polysaccharides, which are vital for structural integrity and may 

cause damage to the cells and oxidative stress by inducing the 

generation of ROS in fungal cells (40, 41).  

Toxicity of AgNPs against fungi producing aflatoxins 

The low cost and ease of manufacture of AgNPs, along with their 

antibacterial, antioxidant and anticancer capabilities, make 

them appealing as therapeutic agents. Ongoing discussions 

surround their toxicity and biocompatibility, though.  

 Ag+ ions and AgNPs have the ability to modify the 

transcriptomes, epigenomes and metabolomes of fungal cells, 

resulting in notable alterations of the cell functions. An 

important part here is the gene down-expression, especially of 

genes linked to lipid metabolism, ergosterol production, redox 

metabolism and the tricarboxylic acid cycle, which results in 

structural alterations, especially in the membranes of fungal 

cells (42). The exact genes affected by AgNPs are not defined yet.  

 AgNPs have demonstrated strong antifungal properties 

which can differ due to their structural characteristics. 

Predominantly spherical and small-sized nanoparticles are 

particularly effective against various strains of fungi which are 

pathogenic for plants. AgNPs are incredibly tiny, which makes it 

easy to pass through the membranes. The toxic potential of 

those NPs is partially linked to the generation of ROS in the 

exposed cell. Dimensions between 10 and 30 nm have shown 

relatively potent antifungal activities (43, 44). Three-nm-sized 

AgNPs were found to be very effective against forty-four distinct 

strains belonging to six different fungus species, including 30 

strains of T. mentagrophytes and 14 strains of Candida species 

(45, 46). Research has shown that the concentration, chemical 

composition and dimensions of AgNPs have a major impact on 

the filamentous fungus Penicillium verrucosum development 

and mycotoxin production. AgNPs ranging from 0.65 to 5 nm can 

adhere to the mycelial surface, enter fungal cells and form 

aggregates in the cytoplasm and various organelles (47).  

 Fungal-NP interactions are significantly influenced by the 

concentration of NPs used, which affects different strains of the 

fungus. Through electrostatic attraction, AgNPs stick to the 

fungal surface and release Ag+ ions that seep inside the cell (48). 

Prior research has aimed to establish the ideal concentration 

required for achieving effective antifungal activity, but the exact 

concentration of AgNPs affecting fungal cells is not established 

yet. Aspergillus niger and Penicillium chrysogenum exhibit altered 

enzymatic profiles, reduced synthesis of organic acids (citric, 

maleic and oxalic acid) and up to 80% less generation of 

mycotoxins when 45 ppm of AgNPs are applied (49). It's 

interesting to note that there are findings that claim that 

potency has often increased at lower doses in comparison to 

greater concentrations. Good examples are AgNPs (in 

concentration of 20 ppm) formed by using extracts from two 

plants, Momordica charantia and Psidium guajava. When 

applied to different fungal strains, including Aspergillus flavus, 

Aspergillus niger and Fusarium oxysporum, AGNPs efficiently 

suppressed their growth and mycotoxin production (50). The 

contradictory results (antifungal activity increased with greater 

concentrations) were obtained in a separate investigation where 

Fig. 2. Mechanism of antifungal toxicity of metallic NPs. 
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AgNPs produced from Camellia sinensis leaves extracts (green 

and black tea) in concentrations of 10, 25, 50 and 100 ppm, were 

examined for their effectiveness against Aspergillus parasiticus 

and Aspergillus flavus. Besides AgNPs in this study CuNPs 

(copper nanoparticles) and FeNPs (iron nanoparticles) were 

synthesized and compared concerning their antibacterial and 

antifungal activity. Their adsorbent capacity for aflatoxin B1 in 

solution was evaluated also. AgNPs, compared to CuNPs and 

FeNPs, showed enhanced antibacterial and antifungal 

properties and decreased the generation of aflatoxins with the 

maximum level of inhibition in the concentration of 100 ppm 

(51). Opposite were the results for the adsorbent capacity of 

three types of NPs in solution with aflatoxin B1 impurities, where 

AgNPs showed the lowest adsorbent properties.  A study that 

looked into how AgNPs affected A. parasiticus development and 

aflatoxin production found that the minimum inhibitory 

concentration (MIC) was 180 µg/mL. Moreover, at a dosage of 90 

µg/mL, AgNPs reduced aflatoxin production by 50% (52). The 

mechanism by which these NPs engage in interaction with 

fungus cells at non-growth-inhibitory concentrations remains 

unclear. 

 Against the pathogenic fungus Candida albicans, the 

formulation of AgNPs stabilized with sodium dodecyl sulfate 

(SDS) at a concentration of 0.05 mg/L showed the most growth 

inhibitory impact (32). Additionally, the study shows that the 

stabilizing agent utilized affects how effective AgNPs are against 

fungal growth. Mallmann et al. in 2015, also produced 

biosynthesized AgNPs, employing SDS as a stabilizer and ribose 

as an agent for reduction (53). The study found that the 

antifungal drug amphotericin B had similar and comparable 

efficiency to the highest antifungal activity of 80 µg of the 

biosynthesized AgNPs against Candida strains (C. albicans and C. 

tropicalis). Notably, stabilized silver nanoparticles did not exhibit 

cytotoxicity to human fibroblast cells, in contrast to ionic silver. 

Another study investigated a gel formulation containing AgNPs 

with a particle size of 7-20 nm, intended for topical use for 

indications such as wounds and burns. It was found that the 

evaluated formulation repressed the growth of C. albicans (MIC 

of 25 µg/mL) and A. niger (antifungal index 55.5%) (54).  

 Concerning the all above, it can be summarized that, the 

AgNPs toxic potential is influenced by elements like particle 

solubility, surface area, surface charge, size, concentration, 

formulation, tendency to agglomerate and exposure duration. 

Usually, NPs smaller in size, are more reactive and have a bigger 

surface area, which makes them more hazardous. As aflatoxins 

pose significant risks in different types of products, necessitating 

effective mitigation strategies. AgNPs have shown promising 

inhibitory effects on aflatoxin production and fungal growth. The 

above-mentioned toxicity properties determine the mechanism of 

AgNPs anti-fungal action through multiple pathways, including:  

• Interaction with cellular membrane: AgNPs cause cellular 
membranes to rupture, which increases permeability and 

allows cell contents to seep out (17, 55, 56). The dissolution of 

AgNPs releases silver ions (Ag+), which are highly reactive and 

can interact with other cellular components, disrupting 

normal cellular functions. 

• Protein and DNA Interaction: AgNPs have the ability to attach 

to proteins and DNA, interfering with phosphate groups in the 

latter and sulfhydryl groups in proteins and enzymes. This can 

disrupt cellular activities and replication (56-58). AgNPs 

interfere with the biosynthetic pathway of aflatoxins by 

downregulating key enzymes and genes involved in their 

production. A significant decrease in aflatoxin levels when 

AgNPs are present has been demonstrated in multiple studies 

(59, 60). 

• ROS production: AgNPs cause oxidative stress in cells by 

producing ROS, which damages cells and causes DNA 

breakage and apoptosis. (41, 61). 

• Synergistic effects: Combining AgNPs with other antifungal 
agents or preservatives can enhance the inhibitory effect on 

aflatoxins, providing a more effective strategy for managing 

aflatoxin contamination (58). 

• Inhibition of mitochondrial functions: AgNPs exposure could 

trigger cytotoxicity primarily damaging mitochondria, their 

structure and morphology (induction of membrane potential 

collapse and swelling in the mitochondria), raising 

intracellular ROS levels and interfering with the dynamics and 

biogenesis of the mitochondria. Those events were shown in 

HepG2 cells (62) and also in mouse hippocampal HT22 cells 

exposed to AgNPs (63). 

AgNPs - Toxicological concerns and safety 

AgNPs have attracted a lot of attention because of their special 
qualities and variety of uses, especially in the industrial and 

medicinal domains (5, 6). Their beneficial role can be found in: 

• Antimicrobial applications: Their antimicrobial activity 

(including antifungal) is due to the release of silver ions (Ag+), 

which disrupt microbial membranes, denature proteins and 

interfere with DNA replication. This property is applicable in 

wound dressings, coatings for medical devices, water 

purification and food packaging. 

• Catalysis: Their large surface area and high reactivity enhance 
reaction rates. 

• Biomedical applications: Due to their biocompatibility and 

ability to target specific cells or tissues AgNPs are used in drug 

delivery, imaging and cancer therapy. 

• Sensors and diagnostics: Due to their optical and electrical 

properties, such as surface plasmon resonance AgNPs are 

employed as biosensors and diagnostic tools. 

Despite their benefits, the use of AgNPs raises concerns 
regarding their toxicity to non-target organisms and the 

environment. Their harmful role can be found in: 

• Cytotoxicity: This toxicity poses risks to tissues and organs if 

exposure is not carefully controlled. 

• Environmental impact: AgNPs can affect ecosystems when 

released into the environment. 

• Antimicrobial resistance: Resistant strains of microorganisms 
can be obtained when prolonged exposure to AgNPs is on site. 

This can reduce the long-term efficacy of AgNPs. 

 Research suggests that AgNPs may build up in human 

organs and tissues and may have negative effects (64, 65). Due to 

their many uses, people are exposed to them more frequently, 

which raises the possibility of short- and long-term toxicity. 
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AgNPs are harmful to human cells emanating from the different 

tissues and organs (liver, lungs, skin, brain, reproductive organs 

and vascular network), according to several investigations in in 

vitro models (65-67). Concerning human health, the possible 

exposures that pose the highest risk, are given in Table 1. 

 The dual role of AgNPs necessitates careful consideration 

of their design, usage and disposal. Strategies such as surface 

modification, dose optimization and eco-friendly synthesis 

methods help mitigate risks while maximizing benefits. 

 Therefore, assessing the safe levels of AgNPs exposure 

and developing guidelines for their use in different fields are 

crucial. For example, the determination of specific exposure 

levels for food applications versus medical applications could be 

valuable. Establishing comprehensive regulations and 

regulatory measures to control the production, usage and 

disposal of AgNPs is mandatory to minimize their environmental 

and health impacts. Risk assessment is also an important part of 

safety considerations, consequently, conducting thorough risk 

assessments, including toxicity studies and exposure 

evaluations, can help identify potential hazards and establish 

safe usage guidelines.  

 Green-synthesized AgNPs are gaining significant attention 

due to their environmentally friendly and sustainable production 

methods. Green synthesis involves the use of plant extracts, 

microorganisms, or natural polymers as reducing/stabilizing 

agents. These biomolecules often impart biocompatibility to the 

AgNPs and eliminate harmful chemical residues present in 

conventionally synthesized NPs. Green synthesis methods allow 

for better control over the size and morphology of AgNPs, which 

are critical factors in determining their interaction with biological 

systems. Biomolecules used for green synthesis often added 

additional stability to the obtained AgNPs, preventing 

agglomeration and ensuring consistent biological activity. This 

stability reduces the risk of unintended interactions that might 

lead to toxicity. Their reduced toxicity compared to chemically 

synthesized counterparts makes them an excellent choice for 

biomedical and industrial applications (28). Promoting green 

synthesis methods using biological materials can reduce the 

reliance on hazardous chemicals, mitigating the toxicological risks 

associated with AgNPs production.  

 Last but not least, increase of public awareness by 

educating consumers and industries about the potential risks of 

AgNPs and encouraging responsible usage, can help prevent 

misuse and overexposure.  

 

Conclusion   

AgNPs present a promising solution for controlling aflatoxin 
contamination due to their potent antifungal properties and 

ability to inhibit aflatoxin production. Besides the fact that AgNPs 

hold great promise in aflatoxin mitigation, their widespread 

application requires addressing certain challenges such as 

toxicological concerns (the potential health impact of AgNPs 

residues in food or feed), environmental impact (the fate and 

sustainability of AgNPs in agricultural and ecological systems) and 

regulatory approval (clear guidelines and safety standards 

particularly under varying environmental conditions and 

prolonged exposure). 

 Beyond their established role in food safety, extending 

their impact to critical industries such as medicine and 

environmental management holds immense promise. The 

broader implications of AgNPs demand a balanced approach 

that integrates robust regulatory frameworks, sustainable 

production methods and continued research into their long-term 

effects on human health and the environment.  

 In order to balance effectiveness and safety, their 

application needs to be carefully monitored. Understanding the 

mechanisms of toxicity and implementing safety measures are 

essential to harness the advantages of AgNPs while minimizing 

their risks.  

 It is imperative that future research concentrates on 

creating safer synthesis procedures, thorough toxicity 

assessments and efficient regulatory structures to guarantee the 

sustainable and secure application of AgNPs. The biogenic AgNPs 

generated via green synthesis have the potential to be employed 

as effective antifungals and anti-mycotoxins at nontoxic levels 

due to their low toxicity and biocompatibility. By leveraging their 

multifunctional properties through eco-friendly production 

methods, AgNPs exemplify the future of nanotechnology as a 

sustainable, versatile and transformative solution across diverse 

fields. This broader perspective underscores the importance of 

continued research and innovation in the development of AgNPs 

for a greener and healthier future. 

 AgNPs represent an innovative approach to aflatoxin 
mitigation by addressing both fungal growth and toxin 

detoxification. By integrating AgNPs into existing food safety and 

regulatory strategies, the burden of mycotoxins in food systems 

on a global level can be significantly reduced. The process of 

advancing their practical applications requires a multidisciplinary 

effort including nanotechnology, toxicology and regulatory 

sciences to ensure AgNPs safe and sustainable use.  
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