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ABSTRACT: In this paper an analytical solution for two dimensional Soil-
Structure Interaction (2D SSI) model is presented. The model consists of three
parts: stress-free elastic, isotropic, homogeneous ground half-space, idealized
rigid semicircular foundation and rectangular homogeneous building. The in-
teractive system is excited by vertical incident P-wave. The presented analyt-
ical solution satisfies the stress-free boundary conditions at the half-space sur-
face. The analyzed solutions for foundation motion and the relative response of
the building can be further used for verification of numerical models developed
for 2D SSI

KEY WORDS: Soil-stricture interaction, wave propagation, P-wave.

1 INTRODUCTION

The serious consequences to the structures that some earthquakes (Niigita 1964,
Mexico City 1985, Kobe 1995) has taught the engineers that the structures are not
independent systems. Many of the damages and lost lives could have been saved
if they were treated as interactive system with the soil. Studying of the interaction
of the three constitutive elements of the soil-foundation-structure system is particu-
larly important for design and retrofit of important structures as nuclear power plants,
long bridges, tall buildings, etc. which collapse would cause tremendous disasters.
The fear of possible damage on nuclear plants, the Engineering Earthquake Research
Center in the University of Berkley was fully focused on study the soil structure in-
teraction (SSI) effects controlling nuclear power plant seismic response [1]. First SSI
models were based on homogenous half space with surface rigid stamp [1]. The ex-
pansion of informatics and development of the computer capacities has helped many
scientific fields to expand the margins of the problems that they are dealing with.
Among the branches that benefit from the computer era is the numerical calculus [2].
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None of the numerical models is applicable if it has not been verified by analytical so-
lution previously. Using the procedure of the analytical model for SSI under incident
SH waves, developed by Luco [3], for vertical incidence only and by Trifunac [4] for
arbitrary incidence, this paper shows the derivation of the analytical SSI model under
action of P-SV incident waves.

2 SOIL STRUCTURE INTERACTION

2.1 SOIL MOTION

The equation that is going to illustrate the soil-structure interaction is derived based
on a model containing infinitely long elastic shear wall of height H and thickness
h founded on rigid foundation with semicircular section which is embedded in elas-
tic, isotropic and homogeneous soil. The soil is subjected to incident plane wave,
traveling through the soil in vertical direction

(1) u(i) = Ae−i(kαz+ωt) ,

where kα is the wave number for the P-wave, kα = ω/α, ω is the frequency of the
wave, α, β is the velocities of the P- and SV-wave respectively, A is the amplitude of
incident plane wave, i is the imagination number and t marks the time.

Fig. 1. Shear wall, foundation and soil [3].

The total displacement from the incident P-wave consist of the free field, which is
sum of the displacements of the incident wave, u(i) and the reflected wave u(ir) with-
out presence of the foundation, and the dissipated wave produced from foundation’s
vibration, u(fr) [5].

(2) uz = u(i) + u(ir) + u(fr) .
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Fig. 2. The Deckard and cylindrical coordi-
nates.

The total displacement must satisfy the wave equation at each soil point (r ≥ h/2
and |θ| ≤ π/2)

(3)
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

=
1

α

∂2uz
∂t2

.

The total displacement must satisfy the boundary conditions of wave equation in
cylindrical coordinates at each points of the free surface (r ≥ h/2 and |θ| = π/2,
Fig. 2):

(4) σθz = −µs
r

∂uz
∂θ

= 0 ,

where µs is Lame parameter of the soil.
At the soil-foundation interface points (r = h/2 and |θ| ≤ π/2), the conditions

of continuity of displacements must be satisfied as well

(5) u(i) = ∆e−iωt ,

where ∆ is the unknown amplitude that should be determined with this model.
The free field displacement expressed with (6) below can be modified using the

Euler’s relations [8] between the exponential and trigonometric functions (7)

u(ff) = u(i) + u(ir) = Ae−iωt(e−ikαz + eikαz) ,(6)

cos θ =
1

2
(e−iθ + eiθ) .(7)

Knowing that z = r cos θ and substituting (6) in (7), we get

(8)
(
e−ikαz + eikαz

)
= 2 cos(kαr cos θ) .
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Expanding (8) in Jacobi-Anger series [6], we obtain

(9) cos (y cos θ) = J0 + 2

∞∑
n=1

(−1)n J2n (y) cos(2nθ) .

According to this, one can express the free field displacement with the Bessel
functions of first kind [6].

(10) u(ff) = Ae−iωt

[
2J0(kαr) + 4

∞∑
n=1

(−1)n J2n (kαr) cos (2nθ)

]
.

The foundation is obstacle in the path of the incident wave. Hence, according to
physics of waves, when the wave hits the foundation, one part of the wave should
be reflected and one refracted. Since the foundation is ideally stiff the refracted part
of the wave does not exist. The reflected wave is traveling to the infinity and hence,
besides the wave equation, it must satisfy the Sommerfeld’s radiation conditions at
infinity [7]. That involves the Henkel functions in the description of the soil displace-
ments from the reflected wave

(11) u(fr) = e−iωt

[
a0H

(1)
0 (kαr) +

∞∑
n=1

anH
(1)
2n (kαr) cos (2nθ)

]
.

The coefficient a0 and an are obtained by imposing (5)

a0 = [∆− 2J0 (kαr)A]
1

H
(1)
0 (kαr)

,(12)

an = (−1)n+1 4J2n(kαr)

H
(1)
2n (kαr)

A, n = 1, 2, 3 . . .(13)

In total three forces are influencing the foundation. The first one f bz is vertical
and it is coming from the weight of the wall. The other two, are from the influence
of the soil on the foundation in horizontal (fsx) and vertical direction (fsz ). The total
displacement is a result of state of foundation’s equilibrium of these three forces and
the inertial force

(14) − ω2M0∆e−iωt =
(
fsz + f bz

)
, −ω2M0∆e−iωt = fsx ,

where M0 is the mass of foundation.
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Fig. 3. Radial stresses in cylindrical coordinate system.

The force from the soil that acts horizontally on the foundation can be determined
by integration of the horizontal projection of the stresses at the soil-foundation inter-
face

(15) fsx =

π/2∫
−π/2

σrxa
2 sin θdθ , fsz = 2

π/2∫
0

σrza
2 sin θdθ .

Figure 3 illustrates that the stresses σrx and σrz are obtained as horizontal and
vertical projection of σrr and τrθ stresses (16). According to the angular coordinate
θ, one can conclude that one half of the horizontally projected stresses are in negative
and the other half are in positive direction. Hence, in horizontal direction there are
two equal forces acting in opposite direction which leads to resulting force equal to
0. On the left half σrr is in negative direction τrθ is in poisitive direction, and on the
right half σrr is in positive direction and τrθ is in negative direction. On the other
hand, for the vertically projected stresses on both halves they have same signs and
hence the symmetry is used and the integration is made only for half of the interval

(16)
[
σrx
σrz

]
=

[
− sin θ cos θ
cos θ sin θ

] [
σrr
τrθ

]
,

[
σrx
σrz

]
=

[
sin θ − cos θ
cos θ sin θ

] [
σrr
τrθ

]
.

Substitution of the relations (16) into (15), leads to the expressions of the forces
of the horizontal and the vertical influence of the soil to the foundation

fsx =

0∫
−π

2

(−σrr sin θ + τrθ cos θ)rdθ −

π
2∫

0

(σrr sin θ − τrθ cos θ)rdθ = 0 ,(17)

fsz = 2

π/2∫
0

(σrr cos θ + τrθ sin θ)rdθ ,(18)
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where

σrr = λ

(
∂ur
∂r

+
∂uθ
2∂θ

+
ur
r

+
∂uy
∂r

)
+ 2µ

(
∂ur
∂r

)
,

τrθ = µ

(
∂uθ
∂r
− uθ

r
+
∂ur
r∂θ

)
,

ur = uz cos θ , uθ = uzsinθ .

(19)

The total displacement in z-direction is obtained substituting (10) and (11) in (2)

(20) uz = e−iωt

(
A
[
2J0(kαr) + 4

∞∑
n=1

(−1)n J2n (kαr) cos (2nθ)
]

+
[
a0H

(1)
0 (kαr) +

∞∑
n=1

anH
(1)
2n (kαr) cos (2nθ)

])
.

Substituting solutions for a0 (12) and an (13) into (20) leads to

(21) ∆uz = e−iωt

(
A
[
2J0 (kαr) +

∞∑
n=1

(−1)nJ2n (kαr) cos (2nθ)
]

+
[
− 2J0 (kαr)A+ 4

∞∑
n=1

(−1)n+1J2n(kαr)A cos (2nθ)
])

(22)
∂ur
∂r

=
∂uz
∂r

cos θ = e−iωt
[
−∆

H
(1)
1 (kαr)

H
(1)
0 (kαr)

+ 2A
J ′0 (kαr)H

(1)
0 (kαr)− J0 (kαr)H

′(1)
0 (kαr)

H
(1)
0 (kαr)

]
cos θ .

Analyzing the numerator of the second term in the summation

(23) J ′0(kαr)H
(1)
0 (kαr)−J0(kαr)H

′(1)
0 (kαr)

= −J ′1(kαr)H
(1)
0 (kαr)−J0(kαr)(−1)H

′(1)
1 (kαr)

and implementing the cross product of the Bessel functions [9]

(24) J ′n+1 (x)H(1)
n (x)−Jn (x)H

′(1)
n+1 (x) =

2i

πx
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leads to the final form of the partial derivative
∂ur
∂r

(25)
∂ur
∂r

= e−iωt

[
−∆

H
(1)
1 (kαr)

H
(1)
0 (kαr)

−A 4i

πkαrH
(1)
0 (kαr)

]
cos θ .

According to the derivation of
δur
δr

, the remaining three partial derivatives of term
(19) are derived

∂ur
∂θ

=
∂uz
∂θ

cos θ = uz
∂

∂θ
cos θ = −uz sin θ ,(26)

∂uθ
∂r

=
∂uz
∂r

sin θ = e−iwt

[
−∆

H
(1)
1 (kαr)

H
(1)
0 (kαr)

−A 4i

πkαrH
(1)
0 (kαr)

]
sin θ ,(27)

∂uθ
∂θ

=
∂uz
∂θ

sin θ = uz
∂

∂θ
sin θ = uz cos θ .(28)

Substituting the last four expressions in (19) will give the final terms for calcula-
tion of the normal stress in radial direction and the shear stress σrr and τrθ involved
in (18). Because the displacement in z-direction is expressed with Bessel functions
that have argument different than the variable which is integrated, the integral in (18)
is solved by use of the tabular integrals of trigonometric functions (29)

(29)

π/2∫
0

cos2θdθ =
π

4
;

π/2∫
0

sin2θdθ =
π

4
.

After the integration, the force of influence from the soil to the foundation is
obtained.

fsz = −Mskαe
−iωtw2

r0

(
1

k2
α

+
1

k2
β

)[
−∆

H
(1)
1 (kαr)

H
(1)
0 (kαr)

− 4Ai

πkαrH
(1)
0 (kαr)

]
(30)

+
2Msω

2

r2
0

(
3

k2
β

− 1

k2
α

)
∆e−iωt

where kα =
ω

α
, kβ =

ω

β
are the wave numbers, α and β are the velocities of the P-

and SV-wave respectively and Ms =
r2

0π

2
ρs is the mass of the soil per unit length

removed for the foundation.



V. Kokalanov, V. Gicev, N. Stojkovikj 27

2.2 INFLUENCE OF THE STRUCTURE TO THE FOUNDATION

The influence force from the wall to the foundation is calculated as product of the
normal stress and the contact area

f bz = 2rσZZ = 2rE0
∂uZ
∂Z

∣∣∣
Z=H

(31)

= 2r∆k̄α tan
(
k̄αH

)
= ω2Mb

(
tan

(
kbαH

)
kbαH

)
∆e−iωt ,

where k̄α =
ω

α0
=

ω√
E0/ρ0

, Mb = 2r0Hρb, E0 is the elasticity modulus of the soil

and ρ0 is soil’s density.

2.3 INTERACTION

Substituting the forces form (30) and (31) into the equation of equilibrium (14), will
result in to equation with one unknown ∆, the desired displacement (22)

(32) − ω2M0∆e−iωt = −Mskαe
−iωtω2

r0

×
( 1

k2
α

+
1

k2
β

)[
−∆

H
(1)
1 (kαr)

H
(1)
0 (kαr)

− 4Ai

πkαrH
(1)
0 (kαr)

]
+

2Msω
2

r2
0

( 3

k2
β

− 1

k2
α

)
∆e−iωt + ω2Mb

(tan(kbαH)

kbαH

)
∆e−iωt ,

(33) ∆
[M0

Ms
+

2

r2
0

( 3

k2
β

− 1

k2
α

)
+
Mb

Ms

(tan(kbαH)

kbαH

)
− H

(1)
1 (kαr)

H
(1)
0 (kαr)

( 1

k2
β

+
1

k2
α

)]
=

4Ai

πr2
0H

(1)
0 (kαr)

(
1

k2
β

+
1

k2
α

)
.

Because the incoming P-wave and the reflected wave, which is also P-wave, are
in same phase, there is amplification of the amplitude. Recalling the assumption that
the foundation is ideally rigid and all its points are displaced equally, there is need
that the displacement which is analyzed must be normalized with twice the amplitude
of the P-wave.

(34)
∆

2A
= Ω ,
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(35)
1

Ω
=
iπr2

0H
(1)
0 (kαr)

2

k2
αk

2
β

k2
α + k2

β

[
M0

Ms
+

2

r2
0

( 3

k2
β

− 1

k2
α

)
+
Mb

Ms

(tan
(
kbαH

)
kbαH

)
− H

(1)
1 (kαr)

H
(1)
0 (kαr)

( 1

k2
β

+
1

k2
α

)]
.

3 ANALYSIS

By changing the material properties, the masses and the densities, or the geometries,
the expression (34) gives opportunity to obtain information of behavior of various
combinations of structures, foundations and soils.

The diagram in Fig. 4 is showing the results from arbitrary chosen values given
in Table 1 for the variable parameters of the equation (35). The abscissa axis demon-
strates the incident wave’s spectra through non-dimensional frequency kαr0 and the
ordinates represents the displacement Ω obtained with (35).

Fig. 4. Analytical solution for parameter from Table 1.

Table 1. Parameters for computation of the analytical solution

H=16 m αs =346.41 m/s βs =200 m/s ρs =1000 kg/m3 Ms =100530.9649 kg
r0 =8.0 m αb =346.41 m/s βs =200 m/s ρb =1000 kg/m3 Mb =201061.9298 kg
A=0.5 m αf =1732.05 m/s βf =1000 m/s ρf =1000 kg/m3 M0 =100530.9649 kg

In case of incident wave with frequency 0 the system is loaded statically and hence
the displacement at the beginning of the graph line is Ω = 1. The statically loading is
the part of (35) which is outside of the braces and it tends to be 1 when kαr0 tends to
be 0. This term doesn’t depend on the masses of the foundation and the object which
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(a)

(b)

Fig. 5. Analytical solution for half-space.

is proven with graph of solution when there is no object – halfspace (Fig. 5a) and
case of halfspace with circular opened channel (Fig. 5b) valda. The parameter values
for these two graphs are given in Tables 2 and 3, respectively.

Table 2. Parameters for analytical solution for half-space

H=0 m αs =346.41 m/s βs =200 m/s ρs =1000 kg/m3 Ms =100530.9649 kg
r0 =8.0 m αb =346.41 m/s βb =200 m/s ρb =1000 kg/m3 Mb =0 kg
A=0.5 m αf =346.41 m/s βf =200 m/s ρf =1000 kg/m3 M0 =100530.9649 kg

Table 3. Parameters for analytical solution for half-space with presence of circular opened
channel

H=0 m αs =346.41 m/s βs =200 m/s ρs =1000 kg/m3 Ms =100530.9649 kg
r0 =8.0 m αb =346.41 m/s βb =200 m/s ρb =1000 kg/m3 Mb =0 kg
A=0.5 m αf =346.41 m/s βf =200 m/s ρf =1000 kg/m3 M0 =0 kg

From Fig. 4 one can notice that with increase of kαr0 the displacement is raising
before it suddenly drops to 0. The maximum value of the in this range of the graph is
the maximum displacement that can occur in the foundation. This maximum, and the
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Fig. 6. Change of the amplitude’s maximum depending on mass ration.

frequency of the incident wave which makes this displacement, are dependent on the
foundation’s and structure’s stiffness represented by the masses of the foundation and
the structure respectively. Figure 6 is showing that with incensement of the stiffness
the maximum value is increased. The lowest value is when all masses are equal to
one, and the greatest value is when the mass of the structure, Mb, is 4.5 times greater
than the mass of the soil, Ms, and the mass of the foundation, M0, is 5 times greater
than mass of the soil, Ms.

Despite the influence on the maximum values, with change of the stiffness one
changes also the frequency of the incident wave which generates the maximal dis-
placement. The five curves in Fig. 7 are obtained for five different structure stiffness
(Mb/M0 = 2k, where k = {−2,−1, 0, 1, 2}). This graph is showing that for more

Fig. 7. Influence of the stiffness on the maximal displacements.
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stiff structure incident waves with lower frequencies are producing grater displace-
ments. Contrast to these, the maximal values between the zeros are bigger for less
stiff structures. Opposite to the previous rules for the maximal displacement, the
maximums between the zeros are appearing in higher frequencies for structures with
greater stiffness. Each next maximal displacement is smaller than the previous one,
which indicates that waves with larger frequencies are incite smaller displacements,
no matter of the stiffness of the structure.

From (35) one can see that if the natural frequency of the structure is taken as
input, then this term results in 0. Knowing this, we can recognize that the natural
frequencies of the structure are the zeros in graphs. For example for the structure de-
scribed with Table.4 the natural frequencies are (2n+1)π/4, where n = 0, 1, 2, 3 . . .

4 RELATIVE RESPONSE

The amplitudes of the relative oscillations on top of the building are of great interest
because they can destroy the building if the building is exceeding the linear response
range. In [4] the relative response is defined as

|ru|=
∣∣∣ |uz|z̄=0−∆

∣∣∣= |∆| ∣∣∣∣ 1

cosk̄H
−1

∣∣∣∣ ,
where k̄ = ω/

√
Eb/ρb is the wave number at the building and D is the displacement

calculated with (33).
To include the relation of the geometrical and the material properties of the build-

ing and the halfspace we have used dimensionless ratio ε =
k̄H

kβa
.

Fig. 8. Relative displacement for M0/Ms = 1; ε = 2; Mb/Ms = 1, 2, 4 and D = 0.5.
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Fig. 9. Relative displacement for M0/Ms = 1; ε = 4; Mb/Ms = 1, 2, 4 and D = 0.5.

In both figures, Fig. 8 and Fig. 9, the purple lines that are tending to infinity are
plots of the curves of |D| = 0.5. The point where they tend to infinity is the natural
frequency of the building k̄H = (2n + 1)π2 , n = 0, 1, 2, . . . The other three curves
are finite because D = 0 at natural frequencies and infinite value multiplied with
zero results in a finite number. This shows that the soil-structure interaction effect is
functioning as a “damper” of the building response [10].

Another conclusion can be extracted from the diagrams in Fig. 8 and Fig. 9. When
the ratio Mb/Ms is increasing, the amplitudes of the peak value are declining.

Regarding ε, one can conclude that the increase of this dimensionless parameter
increases also the corresponding amplitudes, and the curves of the relative response
are narrowly banded around the natural frequencies.

5 CONCLUSIONS

In this paper an analytical solution for 2D SSI model of building on semicircular
foundation subjected to incidence P-wave is presented. The model is based on three
main assumptions:

• The shear wall is infinitely long and elastic because only by increasing the
length of the wall in perpendicular direction of the analyzed plane can make
the wall almost infinitely rigid in that direction and hence the deformation of
interest are those analyzed in the paper.

• The foundation is rigid with semicircular section because the influence of the
foundation on the elastic soil is dependent on and is changing with the distance
from the center of the interaction layer between the foundation and the wall.
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• The soil is elastic, isotropic and homogeneous soil which is ideal for deriving
analytical solution of the problem analyzed in the paper but is rare case in the
real world.

This can be a starting point for further analysis with different assumptions or less
approximations.

Set of parameters Mb/Ms, Mf/Ms and ε =
k̄H

kβr0
are used for description and

plotting the effects of the interaction and the relative response of the building. The
effects of the interaction are depending on the frequency of the incidence wave and
affect the amplitude of the foundation’s response.

• If building’s material (stiffness) and geometrical (height) properties are satisfy-
ing k̄H = (2n+ 1)π2 , n = 0, 1, 2, . . ., the building is at its natural frequencies
and the amplitude of the foundation’s displacement is tending to zero.

• In case of incident wave with frequency 0 the system is loaded statically and
hence the displacement is equal to one.

• This maximum amplitude of the foundations displacement, and the frequency
of the incident wave which makes this displacement, are dependent on the
foundation’s and structure’s stiffness represented by the masses of the foun-
dation and the structure respectively. For more stiff structures the maximum
amplitudes are greater.

• For more stiff structure the incident waves with lower frequencies are produc-
ing grater displacements.

The relative response is the difference between the displacement at the bottom
and the top of the building

• If the interaction is excluded, the relative response tends to infinite at the natu-
ral frequencies of the structure.

• The soil-structure interaction effect is functioning as a “damper” of the building
response.

• When the ratio Mb/Ms is increasing, the amplitudes of the peak value of the
relative response are declining.

• The increase of increases also the corresponding amplitudes and the curves

of the ε =
k̄H

kβr0
relative response are narrowly banded around the natural

frequencies.
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