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Abstract –The COVID-19 pandemic, caused by the 
SARS-CoV-2 virus, has emerged as one of the most 
significant global crises of this century, with severe 
health and socio-economic impacts worldwide. Existing 
research has highlighted the critical role of 
comorbidities in influencing COVID-19 outcomes, but 
effective prediction models remain a challenge. This 
study investigates the potential of machine learning 
algorithms to predict the outcomes of COVID-19 based 
on patients' comorbidities. The algorithms K-Nearest 
Neighbors, Decision Tree, Logistic Regression, and 
Random Forest are applied to an epidemiological 
dataset comprising only positive COVID-19 cases, 
obtained from the Public Health Institute of North 
Macedonia. Additionally, two ensemble learning 
techniques, XGBoost and RUSBoost, are used to 
enhance prediction accuracy. The models achieved high 
accuracy of 90% across the various algorithms. These 
findings suggest that machine learning models can be an 
effective tool for predicting COVID-19 outcomes, 
especially when comorbidity data is available. 
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1. Introduction

The initial outbreak of COVID-19 occurred in 
Wuhan, Hubei Province, China in late 2019. 
Recognized for its high contagion, COVID-19 
attained pandemic status on March 12th, 2020, 
declared as such by the World Health Organization 
(WHO). This declaration came amidst a surge in 
confirmed cases reported across numerous countries 
and regions globally. There were about 125 600 
confirmed cases across 118 countries. A pandemic 
denotes the widespread prevalence of an infectious 
disease, reaching nearly every corner of the world [1], 
[2]. 

The symptoms of COVID-19 are fever, dry cough, 
fatigue, with occasional gastrointestinal symptoms. 
These symptoms are more severe in older adults with 
underlying chronic conditions, and many patients also 
experience shortness of breath, which can resemble 
flu-like symptoms. The virus is primarily transmitted 
through direct contact with respiratory droplets from 
an infected person, particularly through sneezing and 
coughing [3]. 

Expert systems and other artificial intelligence 
techniques are crucial for diagnosing and containing 
the COVID-19 pandemic. Implementing these non-
therapeutic approaches can alleviate significant 
pressure on healthcare systems by offering optimal 
diagnostic and predictive methods for managing 
2019-nCoV effectively. The vaccination is used as a 
primary strategy to control the coronavirus (COVID-
19) pandemic, also known as SARS-CoV-2.

However, there remains insufficient data on how 
different clinical and sociodemographic factors 
impact outcomes related to COVID-19. Despite 
extensive global research for mortality and morbidity 
rates and the effects of various sociodemographic and 
clinical characteristics on COVID-19, gaps in 
understanding persist [4]. 

In recent years, in order to predict the spread of 
infectious disease and due to potential to provide 
accurate and timely forecast machine learning (ML) 
models are utilized.  
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 Infectious diseases pose significant public health 
challenges worldwide, affecting millions of 
individuals and placing immense strain on healthcare 
systems. Therefore, developing effective prediction 
models is crucial for early detection, prevention, and 
control of these diseases [5]. 

To forecast the spread of infection, various ML 
techniques have been utilized. These models leverage 
epidemiological data, demographic information, and 
environmental factors to generate predictions [6]. 

In [7] authors indicate that integrating multimodal 
data, such as gene expression, clinical characteristics, 
and comorbidities, significantly improves the 
accuracy of disease severity prediction. Machine 
learning models, particularly XGBoost, demonstrated 
exceptional precision, with 95% accuracy and a 0.99 
AUC, in distinguishing severity groups. 

The paper [8] indicates that lung-related 
comorbidities, such as chronic obstructive pulmonary 
disease and asthma, along with vascular conditions 
like cardiovascular and cerebrovascular diseases, are 
most significantly associated with COVID-19 
severity.  

The paper [9] examines the applications of 
machine learning (ML) in the fight against COVID-
19, emphasizing the importance of various algorithms 
such as LR, RF, KNN, and SVM, as well as the need 
for further research using advanced methods like 
boosting and stacking. 

In [10], the prognostic capabilities of various 
machine learning algorithms, including J48 decision 
tree, k-NN, MLP, SVM, XGBoost, NB, RF, and LR, 
were evaluated for predicting COVID-19 mortality 
using a comprehensive set of features, such as chest 
computed tomography severity score data, 
demographics, risk factors, clinical manifestations, 
and laboratory findings.  

The results demonstrated that ML-based predictive 
models, leveraging routine data, can provide timely 
and accurate risk stratification for COVID-19 patients. 
Notably, the RF model, with its extensive set of 
predictors, effectively identified high-risk patients at 
the time of admission, potentially improving survival 
outcomes. 

The paper [11] shows that the K-Nearest Neighbors 
(KNN) classifier with two neighbors achieves the best 
results in predicting the presence of COVID-19, with 
an accuracy of 98.37% and a low absolute error, 
providing valuable support for clinical practice in 
identifying patients with COVID-19 symptoms. 

The authors in [12] conclude that age and 
comorbidities, such as hypertension, diabetes, and 
cardiovascular diseases, are significant risk factors for 
severe cases of COVID-19. These findings underscore 
the importance of targeted preventive measures, 
including vaccination programs, to protect vulnerable 
populations.  

The study further emphasizes the shared 
mechanisms between chronic diseases and infectious 
conditions, such as inflammation and weakened 
immune responses, which increase susceptibility to 
severe outcomes. These insights call for tailored 
public health strategies to mitigate risks among high-
risk groups and reduce the burden of severe COVID-
19 cases. 

Paper [13] presents the results of the research, 
which combines machine learning methods using the 
k-means algorithm for clustering, followed by 
prediction and mapping of distribution patterns with 
KNN and ID3, show a 90% accuracy rate in applying 
to the spread of COVID-19 in Indonesia. 

Artificial intelligence techniques, particularly 
convolutional neural networks and transfer learning, 
have demonstrated significant potential in diagnosing 
and monitoring COVID-19 through chest imaging and 
laboratory data. Systematic reviews reveal the 
importance of AI in automating medical image 
analysis, emphasizing its role in addressing the 
challenges of manual annotation during the pandemic 
[14]. 

The paper [15] reviews 1,196 prediction models for 
COVID-19 from 2020, analyzed using a systematic 
search across databases like Google Scholar, Web of 
Science, and Scopus. 

This paper explores various algorithms for data 
classification, such as KNN, Decision Tree, Logistic 
Regression, and Random Forest. Furthermore, it 
incorporates two ensemble learning methods: 
XGBoost and RUSBoost. 

By using these advanced techniques and 
epidemiological data, this paper aims to develop 
accurate and reliable models for forecasting the spread 
of COVID-19.  

The analysis reveals that the Decision Tree 
algorithm exhibits slightly superior accuracy 
compared to other methods, achieving 92%. Similarly, 
Logistic Regression and the KNN algorithm also 
demonstrate high accuracy at 91% and 90%, 
respectively. In contrast, the Random Forest algorithm 
achieves a lower accuracy of 73%. Furthermore, 
employing ensemble learning techniques such as 
XGBoost and RUSBoost yields accuracies of 90% and 
87%, respectively.  

 
2. Data  
 

The dataset contains 501 patients in the period from 
2020 to 2021. The dataset encompasses 9 features, 
including 2 demographic variables (age and gender) 
and clinical indicators:  pneumonia, cardiovascular 
diseases (CVDs), diabetes, chronic kidney disease 
(CKDs), neuromuscular, liver disease, cancer and the 
outcome (death – D or recovered - R).   
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The algorithms are trained and evaluated using an 
epidemiological dataset comprising only positive 
COVID-19 cases in North Macedonia, provided by the 
Public Health Institute of North Macedonia [16]. 

In this study, the value 1 is assigned to males, while 
0 represents females. For comorbidities, a value of 1 
indicates the presence of a condition, and 0 indicates 
its absence. The dataset contains no missing values. 

Detailed information about COVID-19 patients, 
including demographic, clinical, and epidemiological 
characteristics, is provided in Table 1. 
  
Table 1.  Dataset features 

 

No. Feature Description 
1 Age 1. 0 - 15, 2. 16-30,  

3. 31-45, 4. 45-60.  
5>60.  

2 Sex 0, 1 
3 Pneumonia 0, 1 
4 CVDs 0, 1 
5 Diabetes 0, 1 
6 CKDs 0, 1 
7 Neuromuscular 0, 1 
8 Liver Disease 0, 1 
9 Cancer 0, 1 

10 Outcome 1-Recover, 0-Death 
 

Table 2.  Descriptive statistics 
 

No Variable mean std min max 
1 
2 
3 

Age 
Gender 
CVDs 

44.5 
0.48 
0.2 

17.47 
0.5 
0.4 

1 
0 
 

90 
1 
 

4 Diabetes 0.06 0.23 0 1 

5 Pneumonia 0.063 0.244 0 1 
 

6 Liver 
Disease 

0.003 0.063 0 1 

7 CKDs 0.015 0.125 0 1 

8 Neuromus
cular 

0.007 0.089 0 1 

9 Cancer 0.003 0.063 0 1 

10 Outcome 0.93 0.26 0 1 

 
The descriptive statistics of the data set given in Table 
2 include the minimum, maximum and mean values,  
and standard deviation for each feature. In Table 3 a 
sample of the data set is represented.   
 
 
 
 
 
 

 Table 3.  Sample of the dataset 
 

Variable      0 1 2 3 4 
Age 49 65 67 63 77 

Gender 0 0 1 0 0 

CVDs 1 1 0 0 0 

Diabetes 1 0 0 0 1 
Pneumonia 0 0 0 0 0 
Liver 
Disease 

0 0 0 0 0 

CKDs 0 0 0 0 0 

Neuromuscu
lar 

0 0 0 0 0 

Cancer 0 0 0 0 0 

Outcome R D R R D 

 
3. Methodology 
 

This study employs several machine learning 
algorithms to analyze an epidemiological dataset, 
including K-Nearest Neighbors (KNN), Decision 
Tree, Logistic Regression, and Random Forest. 
Additionally, advanced ensemble learning techniques, 
such as XGBoost and RUSBoost, are incorporated to 
enhance prediction accuracy. 

The K-Nearest Neighbours (KNN) is a 
straightforward and intuitive algorithm commonly 
utilized for both classification and regression tasks. It 
is nonparametric and instance-based, implying that it 
does not assume specific distribution for the data and 
relies on the entire dataset for making predictions [17]. 

The Decision Tree machine learning algorithm is 
used to segment learning tasks by recursively splitting 
the dataset into subsets until each partition becomes 
homogeneous that contains only a single class. 
Specific characteristics of the dataset are used for 
classification [18].  

Logistic Regression is a supervised machine 
learning algorithm used for binary classification to 
estimate the likelihood of a binary outcome (such as: 
yes/no, 1/0 or true/false) given input data. By applying 
a logistic (sigmoid) function, it models how 
independent variables relate to a categorical 
dependent variable. This method is favoured in 
machine learning for its straightforward approach and 
clear interpretation. Logistic regression can be 
adapted for multi-class classification by employing 
methods such as one-versus-rest (OvR) or 
multinomial logistic regression, allowing it to predict 
multiple classes rather than just two [19]. 
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Random Forest is a versatile machine learning 
algorithm used for classification and regression tasks. 
It builds an ensemble of decision trees and combines 
the output from these decision trees to produce more 
accurate predictions. For classification task, the final 
prediction is determined based on majority vote for a 
class label, while for regression task, the average of 
the prediction from all trees is the outcome. This 
method is popular for its ability to handle complex 
prediction tasks and to work effectively with large and 
diverse datasets [20]. 

XGBoost, short for Extreme Gradient Boosting, 
stands out as a robust and efficient machine learning 
algorithm primarily utilized for supervised tasks such 
as classification and regression. It falls under the 
gradient boosting family, renowned for its capability 
to manage intricate data relationships, estimate feature 
importance, and employ regularization techniques to 
prevent overfitting. By building an ensemble of weak 
prediction models, typically decision trees, XGBoost 
optimizes these models using gradient descent to 
minimize prediction. Its widespread adoption in 
machine learning competitions and practical 
applications is attributed to its reliability and ability to 
deliver precise predictions [21]. 

RUSBoost, or Random Under-Sampling Boosting, 
is a machine learning algorithm designed to tackle 
class imbalance in datasets, especially in binary 
classification tasks. It utilizes ensemble learning and 
sampling techniques to boost classifier performance. 

In order to balance the class distribution, 
RUSBoost starts randomly under-sampling to reduce 
the size of the majority class. It then trains a base 
classifier on each balanced subset of data. In 
subsequent iterations, it emphasizes misclassified 
instances from the minority class by assigning them 
higher weights. This iterative approach focuses on 
enhancing classification accuracy for the 
underrepresented class. The process continues until 
either the required number of classifiers is generated 
or a predefined stopping condition is met. 

RUSBoost proves effective in scenarios where 
class imbalance is problematic, aiming to enhance 
predictive accuracy by directly addressing skewed 
class distributions during training [22]. 
  
4. Evaluation Metrics 

 
Standard metrics, including accuracy, precision, 

recall, F1 score and cross-validation using ROC AUC 
scoring are used to assess model performance. 

The confusion matrix (Figure 1) displays predicted 
and actual values in a structured format. The positive 
cases that are correctly predicted as positive are 
denoted as TP, while the positive cases incorrectly 
predicted as negative are denoted as FN. The negative 
cases incorrectly predicted as positive are denoted as 
FP, while the negative cases correctly predicted as 
negative are denoted as TN.  

 
 

 
 

Figure 1. Confusion matrix 
 

Accuracy measures the ratio of correctly predicted 
instances to the total number of instances in the 
dataset.  

 
+

=
+ + +

TP TNAccuracy
TP FP TN FN

. 

 
Precision, also known as positive predictive value, 

represents the ratio of true positive predictions to the 
total number of positive predictions made by the 
model.  

=
+

Pr TPecision
TP FP

. 
 
Recall, also referred to as sensitivity or true 

positive rate, measures the model's capability to 
correctly identify all relevant instances, answering 
how many actual positives were predicted correctly by 
the model.  

=
+

R TPecall
TP FN . 
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The F1 score, which is the harmonic mean of 
precision and recall, offers a balanced assessment of a 
model's performance:  

⋅ ⋅
=

+
21 P RF
P R

. 

 
When dealing with imbalanced datasets, accuracy 

may not adequately reflect performance on minority 
classes.  

Instead, ROC AUC (Figure 2) evaluates how well 
effectively the model balances sensitivity (true 
positive rate) and specificity (true negative rate) 
across various thresholds, with higher values 
indicating better performance. 

 

=
+

TPTruePositiveRate
TP FN

, 

=
+

FPFalsePositiveRate
FP TN

 

 
 

Figure 2. ROC AUC curve 
 

5. Result 
 

The correlations between different features of the 
epidemiological dataset are represented in Figure 3. 
Age, cardiovascular diseases, and diabetes are 
significant factors influencing the disease's adverse 
outcomes. The data also demonstrates associations 
between age and cardiovascular disease, as well as 

between cardiovascular disease and diabetes. 
Similarly, there are correlations observed between age 
and pneumonia, and between cardiovascular disease 
and pneumonia. 

Table 4 shows the correlations coefficients 
between dependent variables and outcome of the 
disease as an independent variable. 

 
 

 

Figure 3. Correlation heatmap for epidemiological dataset 
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Table 4. Correlation coefficients between features and outcome of the disease 

 

Dependent  
variable Correlation coefficient 

age -0.28 
gender -0.095 
CVDs -0.28 
diabetes -0.19 
pneumonia -0.18 
liver disease 0.018 
CKDs -0.025 
neuro muscular -0.06 
cancer 0.018 

Age histograms for the epidemiological dataset for 
patients that recovered and died from COVID-19 are 
represented in Figure 4. 

Figure 4 shows that COVID-19 mortality was more 
prevalent among the older population. 

 
 

Figure 4. Patient’s age distribution who recovered or died from COVID- 19 
 

The evaluation of the used classifiers KNN, 
Decision Trees, Logistic Regression, Random Forest 
and ensemble methods XGBoost and RUSBoost are 
given in Table 5.  

Based on the results obtained, the recall and 
precision of classifiers for the minority class (patients 
with a deceased outcome) were found to be 
unsatisfactory. The imbalance in the number of 
examples between the two classes was addressed 
using specific techniques: 
- RUSBoost was used, which integrated random under 
sampling of the majority class with boosting 
techniques, (such as AdaBoost). This technique was 
specifically designed to handle class imbalances by 
reducing the majority class in each boosting iteration,  
thereby emphasizing examples from the minority 
class. 
 
 

 
- Furthermore, the SMOTE algorithm was used for the 
Random Forest classifier and XGBoost. SMOTE 
creates synthetic samples were used for the minority 
class to  ensure a balanced representation with the 
majority class. 
 

Table 5. Evaluation of the classifiers 
 

cl
as

si
fie

r 

precision recall F1 

re
co

ve
r 

de
ad

 

re
co

ve
r 

de
ad

 

re
co

ve
r 

de
ad

 

KNN 0.92 0.33 0.98 0.11 0.95 0.17 
DTs 0.95 0.57 0.97 0.44 0.96 0.5 
LR 0.92 0.5 0.99 0.11 0.95 0.18 
RF 0.92 0.13 0.77 0.33 0.84 0.18 
XGBoost 0.94 0.17 0.79 0.44 0.86 0.25 
RUSBoost 0.95 0.29 0.87 0.56 0.90 0.39 
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Using XGBoost, initially an accuracy of 0.90 was 
achieved. However, the recall for the minority class 
was zero. Implementing the SMOTE method 
improved the recall for the minority class, but this 
enhancement came at the cost of lower accuracy 
overall (Table 6). 

These methods were implemented to mitigate the 
challenges posed by class imbalance in the dataset, 
aiming to improve the performance of the classifiers 
particularly for the underrepresented class of patients 
with deceased outcomes. 

For the KNN classifier, by analyzing the accuracy 
change across different k values, the optimal value of 
6 for k was determined. 

Regarding the Decision Tree classifier, three 
models were developed using different splitting 
criteria (Gini, entropy, and log loss), to assess the 
quality of each split, resulting in comparable 
outcomes. 

In the case of the Random Forest classifier, an 
accuracy of 0.91 was achieved initially, but 
encountered a challenge with zero recall for the 
minority class. When employing the SMOTE method 
to address class imbalance, although the accuracy 
decreased (0.73), the issue with minority class recall 
persisted. 

 

Table 6. Accuracy of the classifiers 
 

classifier accuracy 

KNN 0.90 

DTs 0.92 

LR 0.91 

RF 0.73 

XGBoost 0.90 

RUSBoost 0.87 

 
Using Logistic Regression, initially an accuracy of 

0.91 was achieved using the 'newton-cg' solver.  
However, the recall for the minority class was zero 

under these conditions. By introducing polynomial 
features with a degree of 2, the recall for the minority 
class while maintaining the same level of accuracy 
was improved.  

Figure 5 displays the decision tree model 
constructed from the epidemiological database. The 
decision tree was obtained using WEKA software [23] 
and J48 class for generating C4.5 decision tree class. 
while maintaining the same level of accuracy was 
improved. 

 

 
 

Figure 5. Decision tree for the epidemiology database 
 

6. Conclusion 
 
This study explored the application of multiple 

machine learning (ML) algorithms, including K-
Nearest Neighbors (KNN), Decision Trees, Logistic 
Regression, Random Forest, and ensemble methods 
such as XGBoost and RUSBoost, for predicting 
COVID-19 outcomes in North Macedonia.  

By leveraging epidemiological data with 
demographic and clinical features, the study achieved 
promising results, particularly in identifying critical 
risk factors like age and comorbidities (e.g., 
cardiovascular diseases, diabetes, and pneumonia). 
Techniques like SMOTE and RUSBoost were utilized 
to address class imbalances, enhancing the prediction 
of outcomes for minority classes (e.g., deceased 
patients). 
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The findings demonstrate the effectiveness of ML 
models in predicting disease outcomes with 
accuracies reaching up to 92%. While the Decision 
Tree model performed slightly better, KNN, Logistic 
Regression, and XGBoost also delivered high 
accuracy. However, challenges with recall for the 
minority class persist, highlighting the need for further 
optimization. The study underscores the potential of 
ML to support healthcare systems by providing timely 
and accurate risk stratification, enabling more 
effective allocation of medical resources and tailored 
interventions. 

To improve the performance of the current model 
in predicting COVID-19 outcomes, future research 
should focus on several key aspects: 

-Developing models that analyze temporal trends 
to predict disease progression dynamically, enabling 
proactive medical interventions and personalized 
healthcare management.     

-Incorporating additional clinical and 
environmental variables, such as vaccination status, 
genetic predispositions, and socio-economic factors, 
to improve predictive accuracy. 

-Integrating advanced machine learning methods, 
such as ensemble deep learning models or hybrid 
approaches that combine rule-based and data-driven 
methods, to enhance both interpretability and 
performance of the model. 
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