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Abstract  

The first model with k-level thinking with Gaussian noise shows that small deviations for 
common knowledge led to “almost” common knowledge equilibria. The second model 
demonstrated the semantic economy idea: as agents exchange and adapt beliefs, they create 
shared informational value by reaching a consensus that reflects network-wide insights rather 
than mere individual optimization. Higher reasoning depth does not change Nash equilibria 
but shifts up Kantian beliefs. The shift up in Kantian beliefs suggests a greater alignment 
toward strategies that maximize collective welfare, rather than purely individualistic or 
competitive outcomes. This doesn't alter the Nash equilibrium, where players still act 
independently, but it emphasizes a higher baseline of cooperative or altruistic expectations 
among players due to more profound belief hierarchies in the reasoning process. In the third 
model: networked economic context where agents interact in an economic network where 
competitive advantage depends on the informational value generated across the network, 
results differ from the second example: Nash beliefs adjust based on others' best responses 
(shift up), while Kantian beliefs account for mutual benefit, dampening large shifts. Nash and 
Kantian equilibria differ when only three agents exist versus network economy.  

Keywords: Kripke semantics, Common knowledge, Kantian equilibrium, Nash equilibrium, 
Agreement theorem, Bounded rationality  
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1.Introduction  

In game theory it is more than well known that phenomena such as market speculations and 
“agree to disagree” can not be observed in equilibrium in a model of Bayesian rational agents, 
see Geanakoplos, J. (1989/2021). In classical game theory, or the neoclassical school of 
economic thought, rationality is assumed on the assumption that agents can unilaterally 
change their strategies, so Stalnaker(1994) applied Kripke (1963) work to game theory and 
showed that rationalizability is characterized with common belief in rationality, and that Nash 
equilibria are characterized with rationality and knowledge of the opponents belief, see Fourny, 
G. (2018) .But Nash concept seemed week in some ways ,too strong in others, to “yield 
plausible recommendations in all cases”, see Stalnaker(1994). Myerson (1991), expresses 
doubt that any solution concept can satisfy all criteria of adequacy1, suggesting that perhaps 

 
1 For instance, does Nash solution concept satisfy general existence theorem? The answer is that the two 
concepts differ: Nash Equilibrium is a concept from non-cooperative game theory, where players (agents) make 
individual decisions with the goal of maximizing their own payoffs, given the actions of others. The General 
Existence Theorem pertains to competitive markets and the existence of a general equilibrium in an economy 
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the best we can do is to find various notions that offer a useful way "to formalize part of our 
intuitive criteria about how rational intelligent players might behave in a game." So we 
introduced the concept of Kantian equilibrium in our analysis, following Osborne,M.J., 
Rubinstein,A.(2023), and Roemer (2010), Roemer (2019).Similar to the General Existence 
Theorem, Kantian equilibria tend to result in Pareto-efficient outcomes since players’ 
strategies maximize collective welfare. This parallels the goal of the General Existence 
Theorem by Arrow, Debreu (1954), which is to achieve efficient allocation through market 
equilibrium.But for the existence of equilibria: For Kantian equilibria, existence theorems are 
often proven using fixed-point theorems like Brouwer’s or Kakutani’s, similar to Nash 
equilibrium proofs, rather than the Walrasian conditions required by the General Existence 
Theorem2. Knowledge and interactive knowledge are central elements in economic theory. So 
again, this question can rational agents “agree to disagree”? see Geanakoplos (1992). 
Bayesian Nash equilibrium3 implies that agents cannot agree to disagree; it implies that they 
cannot bet when the bet is common knowledge; and most surprising of all, it does not include 
speculation. So here comes no trade theorem The agreement theorem underlies an important 
set of results that place limits on the trades that can occur in differential information models 
under the common prior assumption(see Kreps, (1977); Milgrom and Stokey, (1982)).These 
no-trade theorems(The No-Trade Theorem is an economic theory that explains why rational 
agents with common knowledge and identical prior beliefs should not engage in trade purely 
based on the exchange of information) state, in various ways, that rational risk-averse traders 
cannot take opposite sides on a purely speculative bet. Common knowledge Is one of the key 
components of no-trade theorem. Common knowledge means that all agents not only know 
the available information but also know that others know this information—and they know that 
everyone else knows that everyone knows, and so on (infinite recursion). In the context of the 
No-Trade Theorem, if there’s common knowledge about asset values, market conditions, or 
other relevant factors, no agent can gain a unique informational advantage. The theorem 
assumes that agents start with identical prior beliefs about the state of the world and update 
these beliefs in a Bayesian manner upon receiving new information. If agents start with the 
same beliefs and interpret information in the same way, any information revealed by one 
agent’s desire to trade will immediately lead others to adjust their beliefs, again removing the 
incentive for trade. Rubinstein (2021) proposes 4 models of bounded rationality: Limited ability 
to solve a set of propositions, Reducing the complexity of strategies, Belief formation on the 
basis of a small sample; Diversified views of the world. In this paper we include Luce choice 
axiom Luce, R. D. (1959/2005) with bounded rationality which is rationality in a sense of Selten 
(1998).,Simon (1957). These were all motivations for writing this paper. Kripke semantics was 

used in modeling to represents possible worlds and accessibility, and knowledge 
representation (For any agent 𝑖 in world 𝑤, the agent knows 𝑝 if 𝑝 holds in all worlds accessible 
to 𝑖 from 𝑤).Bounded rationality was represented through k-level thinking—where each agent 

reasons only up to a finite depth, limiting how much they can consider other agents' potential 
reasoning. Aumann’s Agreement theorem when applied to agents in a Kripke frame, common 
knowledge is achieved through repeated information exchanges. Cognitive Hierarchy Theory 
describes agents who operate at different levels of reasoning (or depth) in our models K-Level 
thinking captures this by allowing each agent to compute beliefs based on others' beliefs 

 
where prices adjust so that supply equals demand across all markets, see Arrow, Debreu (1954); McKenzie, 
(1954). 
2 Kantian equilibrium does not rely on prices to coordinate agents’ actions; instead, it relies on a shared 
cooperative principle. Kantian equilibrium does not involve clearing of markets as in a Walrasian equilibrium, 
which is central to the General Existence Theorem. Kantian equilibrium can apply to cooperative settings where 
players are not necessarily price-takers, which is a core assumption of the General Existence Theorem unlike 
Nash equilibria. 
3 Common knowledge of rationality and optimization 
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iteratively up to their reasoning depth. And semantic economy goals are achieved through 
cooperation, knowledge-sharing, and creating shared understandings.  

2.Kripke semantics,classical and intuitionistic Kripke model, and Zermelo-Fraenkel 

set theory 

 
Kripke semantics is a formal system used to model modal logic—logics that involve modalities 
like necessity (□) and possibility (◊). These modalities express statements about what is 
necessarily true or possibly true, often in the context of knowledge, belief, or time. Kripke 
semantics provides a structure to interpret these modalities using possible worlds. The 
concept of Kripke model is due to Kripke (1959), Kripke(1962),Kripke (1963),Kripke (1965).  
 
Definition 1  A classical Kripke model (due to Ilik et al.(2010) is given by a quintuple (𝐾, ≤
, 𝐷, ⊩𝑠, ⊩⊥ ), 𝐾 inhabited, such that (𝐾, ≤)is a poset4of possible worlds,𝐷 is the domain function 

assigning sets to the elements of K such that: 

Well-formed formula 1 

∀𝑤, 𝑤′ ∈ 𝐾, (𝑤 ≤ 𝑤′ ⇒ 𝐷(𝑤) ⊆ 𝐷(𝑤′) 
i.e., 𝐷 is monotone. Let the language be extended with constant symbols for each element of 

𝒟 ∶= ∪ {𝐷(𝑤) ∶  𝑤 ∈  𝐾}.And,(−): (−) ⊩𝑠 is a binary relation of “strong refutation” between 
worlds and atomic sentences in the extended language such that: 
Well-formed formula 2 

𝑤: 𝑋(𝑑1, … , 𝑑𝑛) ⊩𝑠⇒ 𝑑𝑖 ∈ 𝐷 (𝑤), ∀𝑖 ∈ {1, … , 𝑛}

𝑤: 𝑋(𝑑1, … , 𝑑𝑛) ⊩𝑠, 𝑤 ≤ 𝑤′: 𝑋(𝑑1, . . , 𝑑𝑛) ⊩𝑠
 

 
The relation  ⊩ is called the satisfaction relation, evaluation, or forcing relation5 Given a 

model 𝑀 (usually a transitive model of ZFC-Zermelo–Fraenkel set theory,see Zermelo 
(1930)), any poset (𝑃, <)in it is a notion of forcing and its elements forcing conditions. 

A 𝐺 in 𝑀 is said to be generic if it is a filter and any dense set in 𝑃 that belongs to 𝑀 has a 
nonempty intersection with 𝐺. There's a theorem that states that for a transitive model 𝑀 of 

ZFC and a generic set 𝐺 ⊂there's a transitive model 𝑀[𝐺] of ZFC that extends 𝑀 and, 
associated with that, we define a forcing relation ⊩ where some element 𝑝 ∈ 𝐺 forces a 

formula 𝜑 iff 𝑀[𝐺] ⊨ 𝜑, i.e., (∃𝑝 ∈ 𝐺)𝑝 ⊩φ if 𝜑 is valid in 𝑀[𝐺], this will happen for every 
generic 𝐺 if 𝜑 is said to be in the forcing language. 
 
Definition 2  For ℙ ∈ 𝑉 a poset and 𝑝 ∈ ℙ,we say 𝑝 forces 𝜑 and write 𝑝 ⊩ 𝜑 iffor every 

generic over 𝑉  filter 𝑋 containing, 𝑝, 𝑉[𝑋] = 𝜑.  

Definition 3 The relation (−): (−) ⊩𝑠 of strong refutation is extended to the relation between 
worlds 𝑤 and composite sentences 𝐴 in the extended language with constants in 𝐷(𝑤), 
inductively, together with the two new relations. A sentence 𝐴 is forced in the world 𝑤 (notation 

𝑤 ∶  𝐴 ⊩) if any world 𝑤′ ≥  𝑤,which strongly refutes 𝐴, is exploding. A sentence 𝐴 is forced in 

the world 𝑤 (notation 𝑤 ∶  𝐴 ⊩) if any world 𝑤′ ≥  𝑤,which forces 𝐴, is exploding 

 
4 A partially ordered set (normally, poset) is a set, 𝐿, together with a relation, ≤, that obeys, ∀ 𝑎, 𝑏, 𝑐 ∈  𝐿: 
(reflexivity) 𝑎 ≤  𝑎; (anti-symmetry) if 𝑎 ≤  𝑏 and 𝑏 ≤  𝑎 then 𝑎 =  𝑏; and (transitivity) if 𝑎 ≤  𝑏 and 𝑏 ≤  𝑐 
then 𝑎 ≤  𝑐. The relation ≤ is called a partial order on 𝐿. See, Dickson (2007). 
5 In mathematics or set theory forcing is a technique for proving consistency and independence results. 

https://en.wikipedia.org/wiki/Forcing_(mathematics)
https://en.wikipedia.org/wiki/Filter_(mathematics)
http://planetmath.org/denseinaposet
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Well-formed formula 3 

𝑤: 𝐴 ∧ 𝐵 ⊩s  𝑖𝑓 𝑤: 𝐴 ⊩ ⋁ 𝑤: 𝐵 ⊩  

𝑤: 𝐴 ∨ 𝐵 ⊩s  𝑖𝑓 𝑤: 𝐴 ⊩ ⋀ 𝑤: 𝐵 ⊩  

𝑤: 𝐴 → 𝐵 ⊩s  𝑖𝑓 𝑤: ⊩ 𝐴 ⋀ 𝑤: 𝐵 ⊩

𝑤: ∀𝑥𝐴(𝑥)𝑖𝑓 𝑤: 𝐴(𝑑) ⊩ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑑 ∈ 𝐷(𝑤)

𝑤: ∃𝑥. 𝐴(𝑥) ⊩𝑠, ∀ 𝑤′ ≥ 𝑤⋀𝑑 ∈ 𝐷(𝑤′), 𝑤′: 𝐴(𝑑) ⊩; 
⊥ is always srongly refuted

⟙ is never strongly refuted

 

 
The Zermelo-Fraenkel axioms are the basis for Zermelo-Fraenkel set theory. 
 
1.Axiom of Extensionality: If 𝑋 and 𝑌 have the same elements, then 𝑋 = 𝑌. 
Well-formed formula 4 

∀𝑢(𝑢 ∈ 𝑋 ≡ 𝑢 ∈ 𝑌) ⇒ 𝑋 = 𝑌 

2. Axiom of the Unordered Pair (axiom of pairing): For any 𝑎 and 𝑏 there exists a set {𝑎, 𝑏} that 
contains exactly 𝑎 and 𝑏.  
 
Well-formed formula 5 

∀𝑎∀𝑏∃𝑐∀𝑥 (𝑥 ∈ 𝑐 ≡ (𝑥 = 𝑎 ⋁ 𝑥 = 𝑏)) 

 
3.  Axiom of subsets(Axiom of Separation or Axiom of Comprehension): If 𝜑 is a property (with 
parameter 𝑝), then for any 𝑋 and 𝑝 there exists a set 𝑌 = {𝑢 ∈ 𝑋: 𝜑(𝑢, 𝑝)} that contains all 

those  that have the property 𝜑 .  
4. Axiom of the sum of set (Axiom of Union): For any 𝑋 there exists a set 𝑌 = ⋃ 𝑋, the union 
of all elements of 𝑋.  
Well-formed formula 6 

∀𝑋∃𝑇∀𝑢(𝑢 ∈ 𝑌 ≡ ∃𝑧(𝑧 ∈ 𝑋 ⋀ 𝑢 ∈ 𝑧))  

5. Axiom of the power set: For any 𝑋 there exists a set 𝑌 = 𝑃(𝑋), the set of all subsets of 𝑋. 
 
Well-formed formula 7 

∀𝑋∃𝑌∀𝑢(𝑢 ∈ 𝑌 ≡ 𝑢 ⊆ 𝑋) 
 
6. Axiom of Infinity: There exists an infinite set. 
 
Well-formed formula 8 

∃𝑆 [∅ ∈ 𝑆 ⋀(∀𝑥 ∈ 𝑆) [𝑥 ⋃{𝑥} ∈ 𝑆 ]] 

7. Axiom of Replacement: If 𝐹 is a function, then for any 𝑋 there exists a set 𝑌 = 𝐹[𝑋] =
{𝐹(𝑥): 𝑥 𝑖𝑛 𝑋}. 
Well-formed formula 9 

∀𝑥∀𝑦∀𝑧 [𝜑(𝑥, 𝑦, 𝑝) ⋀ 𝜑(𝑥, 𝑧, 𝑝) ⇒ 𝑦 = 𝑧] ⇒ ∀𝑋∃𝑌∀𝑦[𝑦 ∈ 𝑌 ≡ (∃𝑥 ∈ 𝑋)𝜑(𝑥, 𝑦, 𝑝)] 

https://mathworld.wolfram.com/AxiomofSubsets.html
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8. Axiom of Foundation: Every nonempty set has an ∈ in -minimal element. 
Well-formed formula 10 

∀𝑆 [𝑆 ≠ ∅ ⇒ (∃𝑥 ∈ 𝑆 )𝑆 ⋂ 𝑥 = ∅  ] 

9. Axiom of Choice: Every family of nonempty sets has a choice function. 
 
Well-formed formula 11 

∀𝑥 ∈ 𝑎∃𝐴(𝑥, 𝑦) ⇒ ∃𝑦∀𝑥 ∈ 𝑎𝐴(𝑥, 𝑦(𝑥)) 

 
A Kripke model MM for a propositional logical system ,classical, intuitionistic, or modal  Λ   is 

a pair (ℱ, 𝑉), where ℱ: = (𝑊, 𝑅) is a Kripke frame, and 𝑉 is a function that takes each atomic 
formula of Λ  to a subset of 𝑊. If 𝑤 ∈ 𝑉(𝑝), we say that 𝑝 is true at world 𝑤. We say that 𝑀 is 

a 𝛬-model based on the frame ℱ if 𝑀 = (ℱ, 𝑉) is a model for the logic 𝛬. Since the well-formed 
formulas (wff’s) of 𝛬 are uniquely readable, 𝑉 may be inductively extended so it is defined on 
all wff’s. The following are some examples: 
 
Well-formed formula 12 

in classical propositional logic:𝑃𝐿𝑐𝑉(𝐴 → 𝐵) ≔ 𝑉(𝐴)𝑐 ⋃ 𝑉(𝐵); 𝑆𝑐 ≔ 𝑊 − 𝑆  
 
in the model propositional logic: 
Well-formed formula 13 

𝐾, 𝑉(□𝐴) ≔ 𝑉(𝐴)□, 𝑤ℎ𝑒𝑟𝑒 𝑆□ ≔ {𝑢| ↑ 𝑢 ⊆ 𝑆},∧↑ 𝑢 ≔ {𝑤|𝑢𝑅𝑤}  
In Propositional Intuitionistic Logic: 
Well-formed formula 14 

𝑃𝑖𝑉(𝐴 → 𝐵) ≔ (𝑉(𝐴) − 𝑉(𝐵))
#

, 𝑆# ≔ (↓ 𝑆)𝑐 ,∧↓ 𝑆 ≔ {𝑢|𝑢𝑅𝑤, 𝑤 ∈ 𝑆 } 

 
About Kripke semantics, A Kripke model is a tripleℳ = 〈𝑊, 𝑅, 𝑣〉, where 𝑊 a non-empty set of 
possible worlds, 𝑅 is a preorder (i.e., a reflexive and transitive relation) on 𝑊, and 

𝑣: 𝑉𝑎𝑟 ×  𝑊 →  {0, 1} is the variable valuation function. The function 𝑣 is required to be 
monotonic w.r.t. 𝑅: if 𝑥𝑅𝑦, then 𝑣(𝑝, 𝑥)  ≤  𝑣(𝑝, 𝑦) ∀ 𝑝 ∈  𝑉𝑎𝑟. In other words, if 𝑣(𝑝, 𝑥)  =  1 

and 𝑥𝑅𝑦, then 𝑣(𝑝, 𝑦)  =  1. By 𝑅(𝑥) we denote the set {𝑦 | 𝑥𝑅𝑦}. In different worlds, different 
formulae are considered true. If formula 𝐴 is true in world 𝑥 of ℳ, we write 𝑀, 𝑥 ⊩ 𝐴; is called 
the forcing relation and defined as follows: 
Well-formed formula 15 

ℳ, 𝑥 ⊮⊥, 𝑓𝑎𝑙𝑠𝑖𝑡𝑦 𝑖𝑠 𝑛𝑒𝑣𝑒𝑟 𝑡𝑟𝑢𝑒 

ℳ: 𝑥 ⊩ 𝑝, 𝑖𝑓𝑓 𝑣(𝑝, 𝑥) = 1
ℳ: 𝑥 ⊩  𝐴 ∧ 𝐵 𝑖𝑓𝑓 ℳ, 𝑥 ⊩ 𝐴, ℳ, 𝑥 ⊩ 𝐵 (𝑐𝑜𝑛𝑗𝑢𝑐𝑡𝑖𝑜𝑛)

ℳ: 𝑥 ⊩  𝐴 ∨ 𝐵 𝑖𝑓𝑓 ℳ, 𝑥 ⊩ 𝐴, ℳ, 𝑥 ⊩ 𝐵

ℳ: 𝑥 ⊩  𝐴 →  𝐵 𝑖𝑓𝑓 ∀𝑦 ∈ 𝑅(𝑥), ℳ, 𝑦 ⊭ 𝐴,∧  ℳ, 𝑦 ⊭ 𝐵

 

 
 
This definition is designed to preserve monotonicity of forcing: if ℳ, 𝑥 ⊩  𝐴 and 𝑥𝑅𝑦, then 

𝑀, 𝑦 ⊩ 𝐴. If the Kripke model has only one world (|𝑊|  =  1), then it is a model for classical 
propositional logic. Intuitionistic propositional logic is sound w.r.t. Kripke semantics: 
 
Theorem 1  if ⊢𝐼𝑛𝑡 𝐴,then for every Kripke model ℳ = 〈𝑊, 𝑅, 𝑣〉 and for every possible world 

𝑥 ∈ 𝑊  of this model ℳ, 𝑥 ⊩ 𝐴.  

http://planetmath.org/function
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Proof: in order to prove soundness, one needs to prove that if 𝐴 is an axiomof Int,then ℳ, 𝑥 ⊩
𝐴 and second if  ℳ, 𝑥 ⊩ 𝐴 → 𝐵 ⇒ ℳ, 𝑥 ⊩ 𝐵.The second part is easy: If 𝑥 ⊩ 𝐴 → 𝐵.then for 

every world 𝑦 ∈ 𝑅(𝑥) we have either 𝑦 ⊮ 𝐴 or 𝑦 ⊮ 𝐵.Since 𝑦 = 𝑥by reflexivity of 𝑅 ,then given 

𝑥 ⊩ 𝐴,we obtain 𝑥 ⊩ 𝐵. Here, we need to prove 𝑥 ⊩ 𝐴 → (𝐵 → 𝐶) → ((𝐴 → 𝐵) → (𝐴 → 𝐶)).In 

order to establish that a formula of the form 𝐸 → 𝐹 is true in 𝑥 ,one needs o check that ∀𝑦 ∈
𝑅(𝑥) if 𝑦 ⊩ 𝐸, then 𝑦 ⊩ 𝐹.Again ,lets consider arbitrary 𝑧 ∈ 𝑅(𝑦), such that 𝑧 ⊩ 𝐴 → 𝐵.On this 
turn we need to show that 𝑧 ⊩ 𝐴 → 𝐶. Let 𝑤 be a world from 𝑅(𝑧), such that 𝑤 ⊩ 𝐴 and finally 

we need 𝑤 ⊩ 𝐶. So, now: 
Well-formed formula 16 

𝑤 ⊩ 𝐴
↑

𝑧 ⊩ 𝐴 → 𝐵
↑

𝑦 ⊩ 𝐴 → (𝐵 → 𝐶)

↑
𝑥

 

By monotonicity, since 𝑦𝑅𝑤, 𝑧𝑅𝑤 , the formulae 𝐴 → (𝐵 → 𝐶) and 𝐴 → 𝐵  are also true in 𝑤. 
Since modus ponens6 is applicable for ⊩ ,we have 𝑤 ⊩ 𝐵 → 𝐶 ,𝑤 ⊩ 𝐵, 𝑤 ⊩ 𝐶 which is our goal 

∎ . 
Now, about Kripke completeness theorem. 
 
Theorem 2 If a formula is true in every possible world of any Kripke model, then it is 
derivable in Int. 
 

We proceed, let 𝐴 be the formula such that ⊬𝐼𝑛𝑡 𝐴. Now, a countermodel for 𝐴, that is model 

ℳ that contains a world 𝑥, such that ℳ, 𝑥 ⊮ 𝐴.This will be the canonical model for 
Int.denoted by ℳ0. 
 
Definition 4 A set 𝛤 of formulae is called disjunctive theory7: 

1. Γ is deductively closed, i.e.Γ ⊢𝐼𝑛𝑡 𝐵 , so 𝐵 ∈ Γ 
2. Γ is consistent i.e. Γ ⊬𝐼𝑛𝑡⊥ 
3. Γ is disjunctive i.e. Γ ⊬𝐼𝑛𝑡 𝐴 ∨ 𝐵, Γ ⊢𝐼𝑛𝑡 𝐴 ∧  Γ ⊢𝐼𝑛𝑡 𝐵  

 
Definition 5 The canonical model  for Int is the model ℳ0 = 〈𝑊0, 𝑅0, 𝑣0〉 where:𝑊0 is the set 
of all disjunctive theories,𝑅0 is the subset relation 𝛤𝑅0𝛤2 ⟺ 𝛤1 ⊆ 𝛤2,𝑣0 is defined as follows: 

𝑣0(𝑝, 𝛤) = 1 ⟺ 𝑝 ∈ 𝛤.  

 

Lemma 1 Let  ℳ0, 𝛤 ⊩ 𝐵 ⇔ 𝐵 ∈ 𝛤 

This is called Main Semantic Lemma.  Or the Main Semantic Lemma states: 
1. If a formula 𝜙 is provable in the modal logic i.e. ⊢ 𝜙 , then 𝜙 is true in all models i.e. 

𝑀 ⊨ 𝜙. 

 
6 It can be summarized as "P implies Q. P is true. Therefore, Q must also be true." Or 

𝑃→𝑄,    𝑃

𝑄
 see Stone (1996). 

7 Disjunctive theory typically refers to a theory or logical framework that uses disjunctions (logical OR 
statements) as a central component. The disjunction is a fundamental logical connective in both classical and 
non-classical logics, and a disjunctive theory would emphasize the role of such disjunctions in reasoning or 
inference. 
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2. If 𝜙 is true in all models, then 𝜙 is provable i.e. 𝑀 ⊨ 𝜙 implies ⊢ 𝜙. 
 
For this part of the paper see more in https://homepage.mi-ras.ru/~sk/lehre/penn2017/ Logic 
II (LGIC 320 / MATH 571) (University of Pennsylvania, Spring 2017). 
 
Lemma 2 This holds in classical Kripke semantics   

1. 𝑤: ⊩ 𝐴 ⇔ ¬𝐴 ⊩𝑠 

2. 𝑤: 𝐴 ⊩⇔ 𝑤: ⊩ ¬𝐴 
3. 𝑤: ¬𝐴 ⊩⇔ 𝑤: ⊩ 𝐴 

4. 𝑤: ¬𝐴 ⊩⇔ 𝑤: ¬𝐴 ⊩𝑠 
5. 𝑤: ⊩ 𝐴 ⇔ 𝑤: ⊩ ¬¬𝐴 

6. 𝑤: 𝐴 ⊩⇔ 𝑤: ⊩ ¬¬𝐴 ⊩ 
7. 𝑤: ¬𝐴 ⊩𝑠⇔ 𝑤: ⊩ ¬¬𝐴 ⊩⇔ 𝑤: ⊩ 𝐴 

 
Proof: under number 1 obvious because  𝑤: ⊥⊩; under second it is obvious because: 𝑤: ⊩ 𝐴 →
𝐵 ⇔ ∀𝑤′ ≥ 𝑤, 𝑤′: ⊩ 𝐴 ⇒ 𝑤′: ⊩ 𝐵, 𝑤: ⊩ 𝐴 ∧ 𝐵 ⇔ 𝑤: ⊩ 𝐴 ∧ 𝑤: ⊩ 𝐵, 𝑤: ⊩ 𝐴 ∨ 𝐵 ⇐ 𝑤: ⊩ 𝐴 ∨ 𝑤: ⊩
𝐴(𝑑), 𝑤: ⊩ 𝐴 ∨ 𝐵 ⇐ 𝑤: ⊩ 𝐴 ∨ 𝑤: ⊩ 𝐵, 𝑤: ⊩ ∃𝑥𝐴(𝑥) ⇐ ∀𝑑 ∈ 𝐷(𝑤), 𝑤: ⊩ 𝐴(𝑑)∎, see Ilik et 
al.(2010). 
 
So, now in turn basic elements of Kripke frame can be simply written as:  
Well-formed formula 17 

ℱ = (𝑊, 𝑅) 
𝑊 is non-empty set of worlds,𝑅 ⊆ 𝑊 × 𝑊 is a binary accessibility relation on 𝑊, which 

determines which worlds are accessible from other worlds. 𝑤𝑅𝑤′ means that the world 𝑤′ is 
accessible from world 𝑤.A Kripke model ℳ extends the frame: 
Well-formed formula 18 

ℳ = (𝑊, 𝑅, 𝑣) 
 

𝑊, 𝑅 are the same as in Kripke frame. 𝑉: 𝑃𝑟𝑜𝑝 → 2𝑊is a valuation function, where Prop is a 

set of propositional variables8 and 2𝑊 is the power set of 𝑊 . For each propositional variable 
𝑝 ∈ 𝑃𝑟𝑜𝑝, 𝑉(𝑝) ⊆ 𝑊.  
 
 
 

2.1 Truth in Kripke Models 
 
The truth of a formula of a world 𝑤 ∈ 𝑊 in a Kripke model ℳ = (𝑊, 𝑅, 𝑣) is defined 
inductively. Let 𝜑 represents formula in modal logic. Here, we define ℳ, 𝑤 ⊨ 𝜑 to mean that 

𝜑 is true in model ℳ at world 𝑤. The truth conditions are as follows: 
 

1. For a propositional variable 𝑝: 
 

Well-formed formula 19 

ℳ, 𝑤 ⊨ 𝑝, 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑤 ∈ 𝑉(𝑝) 
 

 
8 A propositional variable in propositional logic is a countable infinite set of symbols denoted by 𝑉,representing 
unknown truth values that can be either true or false in logical expressions. 

https://homepage.mi-ras.ru/~sk/lehre/penn2017/
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That is 𝑝 is true at world 𝑤 if 𝑤 is in the set of worlds where 𝑝 is true.  
2. Negation: 

Well-formed formula 20 

ℳ, 𝑤 ⊨ ¬𝜑 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ℳ, 𝑤 ⊭ 𝜑 
 
The ¬𝜑 is true at 𝑤 if 𝜑 is not true at 𝑤.  
 

3. Conjunction 
Well-formed formula 21 

𝜑 ∧ 𝜓
ℳ, 𝑤 ⊨ 𝜑 ∧ 𝜓 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ℳ, 𝑤 ⊨ 𝜑, ℳ, 𝑤 ⊨ 𝜓 

 

 
That is 𝜑 ∧ 𝜓 is true at 𝑤 if both 𝜓 and 𝜑 are true at 𝑤.  
 

4. Modal operators  
 
For the necessity operator □𝜑 : 

Well-formed formula 22 

ℳ, 𝑤 ⊨ □𝜑 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ∀𝑤′ ∈ 𝑊 , (𝑤𝑅𝑤′ ⇒ ℳ, 𝑤′ ⊨ 𝜑 ) 
 
That is □𝜑 is true at 𝑤 if 𝜑 is true in all worlds 𝑤′ that are accessible from 𝑤. 
           For the possibility operator ⋄ 𝜑: 
 
Well-formed formula 23 

ℳ, 𝑤 ⊨ ⋄ 𝜑 if and only if  ∃𝑤′ ∈ 𝑊 , (𝑤𝑅𝑤 ∧ ℳ, 𝑣 ⊨ 𝜑) 
 
That is, ⋄ 𝜑 is true at 𝑤 if 𝜑 is true in at least one world, 𝑤′ that is accessible from 𝑤. 
 

2.2 Properties of the Accessibility Relation 𝑹 
 
Different modal logics impose different conditions on the accessibility relation 𝑅. Some of the 
key properties are: 
 

1. Reflexivity: ∀𝑤 ∈ 𝑊, 𝑤𝑅𝑤 This means that each world can access itself. Reflexivity 
corresponds to knowledge logic, where if something is true in a world, the agent 
knows that it is true. 

2. Symmetry: ∀𝑤, 𝑤′, 𝑤′′ ∈ 𝑊 , 𝑤𝑅𝑤′ ⇒ 𝑤′𝑅𝑤.This means that if 𝑤′ is accessible from 

𝑤,is also accessible from 𝑤′ .Symmetry is relevant in shared knowledge. 
3. Transitivity: ∀𝑤, 𝑤′, 𝑤′′ ∈ 𝑊 , (𝑤𝑅𝑤′ ∧ 𝑤′𝑅𝑤′′) ⇒ 𝑤𝑅𝑤′′.This means that if 𝑤′ is 

accessible from 𝑤 , and 𝑤′′ is accessible from  𝑤. Transitivity is often epistemic logic. 
4. Euclidean: ∀𝑤, 𝑤′, 𝑤′′ ∈ 𝑊, (𝑤𝑅𝑤′ ∧ 𝑤𝑅𝑤′′) ⇒ 𝑤′𝑅𝑤′′. This is another condition in 

epistemic logic.  

2.3 Validity and Satisfaction in Kripke Models 
 
A formula 𝜑 in a Kripke model ℳ = (𝑊, 𝑅, 𝑣) is valid if : 
Well-formed formula 24 

ℳ, 𝑤 ⊨ 𝜑, ∀𝑤 ∈ 𝑊  
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This is, 𝜑 is true in all possible worlds of the model. A formula 𝜑 is valid in Kripke frame ℱ =
(𝑊, 𝑟) if it is trus in every Kripke model based on that frame.  

3.Common knowledge  

 
First, we will outline Geanakopolos (1992) model of common knowledge. Model outline is as 
follows:  Let there be a set 𝑁 of agents, where each agent 𝑖 ∈ 𝑁 holds information. Let the 
state of the world be represented by Ω, which is a set of possible states 𝜔 ∈ 𝛺. Each agent  𝑖 
is associated with an information partition 𝒫𝑖 which is a partition of Ω . This partition represents 
the agent’s knowledge, i.e., what states of the world the agent can distinguish. If two states 𝜔, 
and 𝜔′ are in the same element of 𝒫𝑖 , then agent 𝑖 cannot distinguish between these two 

states. Now, knowledge can be represented as set theoretic concept, for each agent 𝑖, the 
information partition 𝒫𝑖 induces a knowledge operator 𝐾𝑖, where for any event 𝐸 ⊆ 𝛺, 𝐾𝑖(𝐸) 

is the set of states in which agent 𝑖 knows that 𝐸 has occurred. Formally we define this as: 
equation 1 

𝐾𝑖(𝐸) = {𝜔 ∈ Ω| ∀𝜔′ ∈ 𝒫𝑖(𝜔), 𝜔′ ∈ 𝐸 } 
In words agent 𝑖 knows that event 𝐸 occurs if, at state 𝜔 , all the states indistinguishable from 
𝜔 i.e. those in same partition cell are also in 𝐸. Common knowledge among all agents can be 
derived using set theory.  
 
Definition 6 We can define common knowledge of an event 𝐸 as the event where everyone 

knows 𝐸, everyone knows that everyone knows 𝐸, and so on ad infinitum. 

This is captured by the common knowledge operator 𝐾∗(𝐸) which is the intersection of all 
iterated knowledge operators: 
equation 2 

𝐾∗(𝐸) = ⋂ ( ⋂ 𝐾𝑖1
, 𝐾𝑖2

, … , 𝐾𝑖𝑛
(𝐸)

𝑖1,𝑖2,…,𝑖𝑛∈𝑁

)   

∞

𝑛=1

   

This intersection represents the set of states where 𝐸 is common knowledge—i.e., where all 

agents know 𝐸, all agents know that all agents know 𝐸, and so on. Geanakoplos’s work often 
involves Bayesian updating, where agents revise their beliefs based on new information. In a 
set-theoretic framework, we can model this as follows. Each agent 𝑖 has a prior belief which is 

represented by probability distribution 𝜇𝑖 ∈ Ω. When agent 𝑖 observes an event 𝐸, they update 
their belief using Bayes’ rule. The updated belief 𝜇𝑖(𝐸|𝜔) is defined as : 
equation 3 

𝜇𝑖(𝐸|𝜔) =
𝜇𝑖(𝐸 ∩ 𝒫𝑖(𝜔))

𝜇𝑖(𝒫𝑖|𝜔)
 

 

3.1 Common knowledge in Kripke frame  
 
Kripke frame with valuation function is: 
equation 4 

𝑀 = {𝑊, (𝑅𝑖)𝑖∈𝑁 , 𝑉} 
 

𝑉: 𝑃𝑟𝑜𝑝 → 2𝑊 is a valuation function that assigns a set of worlds to each proposition 𝑝 ∈
𝑃𝑟𝑜𝑝,∀𝑝, 𝑉(𝑝) ⊆ 𝑊 set of worlds where 𝑝 → 𝑡𝑟𝑢𝑒. Knowledge operator that we should define 
is 𝐾𝑖 for each agent 𝑖.Now, given a Kripke model 𝑀 = {𝑊, (𝑅𝑖)𝑖∈𝑁 , 𝑉} and a world 𝑤 ∈ 𝑊 ,agent 



Manuscript received: 15.11.2024                             International Journal of Economics, Management and Tourism 
Accepted:                                                  Vol 4, No. 2, pp. 58-85 

Online: ISSN 2671-3810 
                                                                                                                                                     UDC: 005.94:330.8  

 Original scientific paper  

 
 

10 
 

𝑖 knows 𝑝 at world 𝑤, if for ∀𝑤′ ⇒ 𝑤𝑅𝑖𝑤′ i.e. 𝑤′ is possible according to agent 𝑖′𝑠 knowledge 
in world 𝑤,𝑝 holds in 𝑤′ or formally: 
 
Well-formed formula 25 

𝑀, 𝑤 ⊨ 𝐾𝑖𝑝 ⇔ ∀𝑤′ ∈ 𝑊, (𝑤𝑅, 𝑤′) ⇒ 𝑀, 𝑤′ ⊨ 𝑝  
 
This means that agent 𝑖  knows 𝑝 at world 𝑤 if in all worlds they consider possible 𝑝 → 𝑡𝑟𝑢𝑒.We 
can define common knowledge9 here by using iterated knowledge operator over the agents. 
Now, let 𝐾𝑖 denote the knowledge operator for agent 𝑖 and let 𝑁 be the set of all agents. The 
common knowledge operator can be defined recursively: 
equation 5 

𝐶𝑝 = ⋂ 𝐾1, 𝐾2, . . , 𝐾𝑛𝑝

∞

𝑛=1

 

Alternatively, we can define common knowledge by creating a new relation 𝑅𝐶called common 
knowledge relation, which is transitive closure of the union of the individual relations 𝑅𝑖: 
equation 6 

𝑅𝐶 = ⋂ 𝑅𝑖

𝑖∈𝑁 

 

Then the common knowledge operator 𝐶 can be defined as: 
 
Well-formed formula 26 

𝑀, 𝑤 ⊨ 𝐶𝑝 ⇔ ∀𝑤′ ∈ 𝑊 , (𝑤𝑅𝐶𝑤′) ⇒ 𝑀, 𝑤′ ⊨ 𝑝 

This means that common knowledge of 𝑝  hold at world 𝑤 if, ∀𝑤′ worlds that are reachable 

through the common knowledge relation 𝑅𝐶, 𝑝  holds: 
 
 
 

3.2 Set-theoretic model of common knowledge in Kripke semantics 
 
The set of all possible worlds 𝑊  is forming the basic structure. The accessibility relations 𝑅𝑖 ⊆
𝑊 × 𝑊 represents the knowledge of each agent,𝑖.For a proposition 𝑝, we define set  
equation 7 

⟦𝑝⟧ = {𝑤 ∈ 𝑊 |𝑀, 𝑤 ⊨ 𝑝} 
The common knowledge of 𝑝  is the set of worlds where 𝑝 holds in all possible worlds that are 

reachable through the common knowledge relation 𝑅𝐶: 
equation 8 

⟦𝐶𝑝⟧ = {𝑤 ∈ 𝑊 | ∀𝑤′ ∈ 𝑊, (𝑤𝑅𝐶𝑤′) ⇒ 𝑤′ ∈ ⟦𝑝⟧} 

Here the set of worlds 𝑝  is a common knowledge,i.e. everyone knows 𝑝 ,everyone knows 

that everyone knows 𝑝,and so on. Common knowledge has several important properties, 
especially in Kripke semantics: 

1. Monotonicity: if  𝑝 is common knowledge, and 𝑝 ⇒ 𝑞,then 𝑞 is common knowledge 

 
9 A very basic assumption of studies in game theory is that the game is common knowledge, see   Rubinstein 
(1989).Situations without common knowledge are labeled as games with incomplete information see Harsanyi 
(1967) part I, Harsanyi (1968)part II, Harsanyi (1968)part III. 
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2. Fixed Point: Common knowledge of a proposition is a fixed point in the knowledge 
structure. Once a proposition becomes common knowledge, it remains so. 
 

3.3 Iterated knowledge  
 
Common knowledge can als0 be viewed as limit of iterated knowledge. First, we will define 
iterated knowledge operators 𝐾𝑝,for 𝑛 ≥ 1 as follows: 
equation 9 

𝐾1𝑝 = ⋀ 𝐾𝑖𝑝 

𝑖∈𝑁

𝐾2𝑝 = ⋀ 𝐾𝑖𝐾1𝑝 

𝑖∈𝑁

𝐾3𝑝 = ⋀ 𝐾𝑖𝐾2𝑝 

𝑖∈𝑁

 

𝐾1𝑝 everyone knows 𝑝, 𝐾2𝑝 everyone knows that everyone knows 𝑝, 𝐾3𝑝 everyone knows 
that everyone knows that everyone knows 𝑝. So common knowledge is the limit of the process: 
equation 10 

𝐶𝑃 = lim
𝑛→∞

𝐾𝑃
𝑛 

The knowledge operator 𝐾𝑖 for agent 𝑖  can be represented as set operation: 
equation 11 

𝐾𝑖⟦𝑝⟧ = {𝑤 ∈ 𝑊 |∀𝑤′ ∈ 𝑊, (𝑤𝑅𝑖𝑤′) ⇒ 𝑤′ ∈ ⟦𝑝⟧} 
 
The set contains all worlds where agent 𝑖  knows that 𝑝 is true. Common knowledge can be 
defined as intersection of iterated knowledge sets. The set of worlds where 𝑝 is common 
knowledge is the fixed point of the iterated knowledge process: 
equation 12 

⟦𝐶𝑃⟧ = ⋂ 𝐾𝑛⟦𝑝⟧

∞

𝑛=1

 

In formal logic, common knowledge is often described as the fixed point of a knowledge 
process. The fixed-point theorem states that common knowledge is the smallest set that 
satisfies the property of being known by all agents at all iterations. Mathematically, this can be 
expressed as: 
 
equation 13 

⟦𝐶𝑃⟧ = {𝑤 ∈ 𝑊 |𝑤 ∈ 𝐾𝑖(⟦𝐶𝑃⟧)∀𝑖 ∈ 𝑁} 
 

3.4 Standard model of knowledge as in Hintikka (1962) per Rubinstein (1998) 
 
An information structure is (Ω, 𝑃) ,where Ω is a set of states. It is a “full description of world” or 
at least relevant facts about the world. The second component is a function 𝑃 that assigns 
each state 𝜔 a non-empty subset of states, 𝑃(𝜔). The assumption that 𝑃(𝜔) ≠ ∅ means that 
the decision maker can not be so “wrong” as to exclude all possible states as being feasible, 
see Rubinstein(1998). Three properties of information structures usually associated with the 
term rationality are:  
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Property 1 𝜔 ∈ 𝑃(𝜔) 

This property expresses the condition that the decision maker never excludes the true state 
from the set of feasible states. This property ensures that each state 𝜔 ∈ 𝛺 belongs to its own 
information set 𝑃(𝜔). Hence, for each 𝜔, there exists a set ∃𝑃(𝜔) that contains 𝜔. This is the 
truthfulness condition: the agent knows the true state is part of their information set. 
 

Property 2  if  𝜔′ ∈ 𝑃(𝜔) ⇒ 𝑃(𝜔′) ⊆ 𝑃(𝜔) 

So, it is not possible for a decision maker who satisfies previous property to hold the view that 
𝜔′ ∈ 𝑃(𝜔),despite there beinga state 𝑧, so that 𝑧 ∈ 𝑃(𝜔′) and 𝑧 ∉ 𝑃(𝜔).Then, at 𝜔 a rational 
decision maker could consider that : the state 𝑧 is excluded and the state 𝜔′ one will not 

exclude 𝑧.Thus it must be that state is not 𝜔′. This contradicts assumption that 𝜔′ ∈ 𝑃(𝜔). This 
property implies positive introspection, meaning that if the agent considers 𝜔′ possible when 

the true state is 𝜔, then their information at state 𝜔′cannot reveal more information than what 
they already knew at 𝜔. Formally, the information set 𝑃(𝜔′) at 𝜔must be a subset of 𝑃(𝜔). 
 
Property 3 if  𝜔′ ∈ 𝑃(𝜔) ⇒ 𝑃(𝜔′) ⊇ 𝑃(𝜔) 

If an information structure satisfies propositions 1,3 also satisfies 2. And, if ω′ ∈ P(ω) then by 
proposition 3 P(ω′) ⊇ P(ω), by proposition1 𝜔 ∈ 𝑃(𝜔),and thus ω′ ∈ P(ω), which by 

proposition 3 implies that P(ω′) ⊇ P(ω). This property implies negative introspection, 
meaning that if the agent considers 𝜔possible when the true state is 𝜔, then the information 

set 𝑃(𝜔′) must reveal at least as much information as 𝑃(𝜔). Formally, the information set 
𝑃(𝜔′) must contain 𝑃(𝜔). 
 
Proposition 1 An information structure 𝛺, 𝑃 is partitional if and only if it satisfies Properties 
1,2,3. 

Proof:  
 
1.Property 1 (Truthfulness): 𝜔 ∈ 𝑃(𝜔), meaning that the true state 𝜔 belongs to the set of 
states that the agent considers possible, denoted by 𝑃(𝜔). 
 
2.Property 2 (Positive introspection): If 𝜔′ ∈ 𝑃(𝜔) then 𝑃(𝜔′) ⊆ 𝑃(𝜔)𝑃, meaning that if the 

agent considers 𝜔′possible at state 𝜔, then the agent's information set at 𝜔 is a subset of the 
information set at 𝜔. 

3. Property 3 (Negative Introspection): If 𝜔′ ∈ 𝑃 then 𝑃(𝜔′) ⊇ 𝑃(𝜔), meaning that if the 
agent considers 𝜔′ possible at state 𝜔, then the information set at 𝜔contains the information 

set at 𝜔. 
 
Definition 7 A partitional information structure means that: The information structure is 
represented as a partition of the set 𝛺, meaning that each state 𝜔 ∈ 𝛺 belongs to exactly one 
element of the partition 𝑃(𝜔). The partition elements are mutually exclusive and exhaustive 

subsets of 𝛺. Each partition element represents the set of states that are indistinguishable to 
the agent in that state. 

If we combine properties 2 and 3 : 𝑃(𝜔′) ⊆ 𝑃(𝜔), 𝑃(𝜔′) ⊇ 𝑃(𝜔) ⇒ 𝑃(𝜔′) = 𝑃(𝜔). This means 
that for any two states 𝜔, 𝜔′ ∈ 𝛺, if 𝜔′ ∈ 𝑃(𝜔, then 𝑃(𝜔′) = 𝑃(𝜔), implying that all states that 
are in the same information set are indistinguishable from each other. This satisfies the 
condition that the information sets form a partition of 𝛺, where each state belongs to exactly 
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one partition element.Since the partition elements are mutually exclusive and exhaustive 
subsets of 𝛺, we conclude that 𝑃 is a partition.∎ 

Formally in Kripke logic: 

In Kripke logic, the truthfulness property states that if agent iii knows a proposition 𝜑, then 
𝜑 must hold in the actual world. 
 
Well-formed formula 27 

𝐾𝑖𝜑 ⟹ 𝜑 ⇒ ∀𝑤 ∈ 𝑊 , 𝑖𝑓 𝑤 ⊨ 𝐾𝑖𝜑 → 𝑤 ⊨ 𝜑 
 
In Kripke logic positive introspection can be presented as : 
 
Well-formed formula 28 

𝐾𝑖𝜑 ⟹ 𝐾𝑖𝐾𝑖𝜑 
 
This states that if agent 𝑖 knows 𝜑, then agent 𝑖 also knows that they know 𝜑. 
 
In Kripke logic, negative introspection can be expressed as: 
 
Well-formed formula 29 

¬𝐾𝑖𝜑 ⇒ 𝐾𝑖¬𝐾𝑖𝜑 
 
This means that if agent iii does not know 𝜑, then agent 𝑖 knows that they do not know 
𝜑.Common knowledge operator can be defined as follows: 
Well-formed formula 30 

𝐶𝐾(𝑝) ⇔ ∀𝑖, 𝐾𝑖(𝑝) ∧ ∀𝑖, 𝐾𝑖 (𝐾𝐾(𝐾𝐾(𝑝))) … 

This can also be modeled with fixed point logic10 where common knowledge can be reached: 
 
Well-formed formula 31 

𝐶𝐾(𝑝) ⇔ 𝐾1(𝑝) ∧ 𝐾2(𝑝) ∧ … . .∧ 𝐾𝑛(𝑝) ∧ 𝐾1(𝐾𝐾(𝑝)) ∧ 𝐾2(𝐾𝐾(𝑝)) … 

3.5 Back to Kripke’s S5 system  
 

Theorem 3  Kripke’s S5 system: 𝑁, 𝛺, {𝑇𝑖} ∈ 𝑁 is a knowledge space. And 𝐴 ∈ 2𝛺  is an event. 
Where, 𝑁 is a set of players, 𝐴 is a finite set of actions,𝛺 is the space of the states of the world. 
We will assume here that Ω is finite.𝑇𝑖 is the space of possible types of player 𝑖.And, 𝑡𝑖: 𝛺 → 𝑇𝑖 

is player i’s private signal or type. Information partitions is :𝑃𝑖(𝜔) = {𝜔′: 𝑡𝑖(𝜔′) = 𝑡𝑖(𝜔)}, that is 
𝑃𝑖(𝜔) is the set of states of the world for which player 𝑖  has the same type as he/she does in 

𝜔. And,𝜔𝑖 ∈ 𝑃𝑖(𝜔) ,the set {𝑃𝑖(𝜔)}𝜔∈𝛺is easily seen to be a partition 𝛺, and s called i’s 
information partition. A knowledge space can thus be given as:(𝑁, 𝛺, {𝑃𝑖} ∈ 𝑁),see Tamuz 

(2024). 

 
10 Consider the following iterative function representing mutual knowledge up to depth 𝑘: 𝐾𝑘(𝑝) =

𝐾1(𝐾𝑘−1(𝑝)) ∧ 𝐾2(𝐾𝑘−1(𝑝)), where 𝐾0(𝑝) = 𝑝; 𝐾1(𝑝) = 𝐾1(𝑝) ∧ 𝐾2(𝑝) … ∧ 𝐾𝑛(𝑝), 𝐾𝑘(𝑝), 𝑓𝑜𝑟 𝑘 >

1 represents each agent knowing up to depth 𝑘 that  𝑝 holds. The process of iterating this mutual knowledge 
level 𝐾𝑘(𝑝) will converge ат а fixed point: 𝐶𝐾(𝑝) = lim

(𝑘→∞)
𝐾𝑘(𝑝). 
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1. 𝐾𝑖𝛺 = 𝛺 A player knows that some state of the world has occurred. And given  𝐾𝑖𝐴  a 

set of states of world in which 𝑖  knows 𝐴 and 𝐴 ∈ 2𝛺:  

equation 14 

𝐾𝑖𝐴 = {𝜔: 𝑃(𝜔) ⊆ 𝐴} ≡ 𝐾𝑖𝐴 = ⋃{𝜔: 𝑃(𝜔) ⊆ 𝐴} 

2. 𝐾𝑖𝐴 ∩ 𝐾𝑖𝐵 = 𝐾𝑖(𝐴 ∩ 𝐵). A player knows 𝐴 and a player knows 𝐵 if and only if he 

knows 𝐴 and 𝐵.  
3. Axiom of knowledge:𝐾𝑖𝐴 ⊆ 𝐴 a player knows 𝐴 then 𝐴 has indeed occurred.  
4. Axiom of positive introspection: 𝐾𝑖𝐾𝑖𝐴 = 𝐾𝑖𝐴.If a player knows 𝐴 then he/she knows 

that he/she knows 𝐴. 
5. Axiom of negative introspection: (𝐾𝑖𝐴)𝑐 = 𝐾𝑖((𝐾𝑖𝐴)𝑐).If a player does not know 𝐴 then 

she knows that she does not know 𝐴.  
 

Proof:   
1. This follows from the definition 

2. 𝐾𝑖𝐴 ∩ 𝐾𝑖𝐵 = {𝜔: 𝑃𝑖(𝜔) ⊆ 𝐴} ∩ {𝜔: 𝑃𝑖(𝜔) ⊆ 𝐵 = {𝜔: 𝑃𝑖(𝜔) ⊆ 𝐴, 𝑃𝑖(𝜔) ⊆ 𝐵}} =
{𝜔: 𝑃𝑖(𝜔) ⊆ 𝐴 ∩ 𝐵} = 𝐾𝑖(𝐴 ∩ 𝐵) 

3. If 𝜔 ∈ 𝐾𝑖𝐴,so that 𝑃𝑖(𝜔) ⊆ 𝐴,since ωi ∈ Pi(ω) ,it follows that 𝜔 ∈ 𝐴  and so𝐾𝑖𝐴 ⊆ 𝐴. 
4. By the previous we have that 𝐾𝑖𝐾𝑖𝐴 ⊆ 𝐾𝑖𝐴. Now, let 𝜔 ∈ 𝐾𝑖𝐴 so that 𝑃𝑖(𝜔′) = 𝑃𝑖(𝜔),so 

it follows that 𝜔′ ∈ 𝐾𝑖𝐴 ,and since 𝜔′ is an arbitrary element of 𝑃𝑖(𝜔) it was  shown that 
𝑃𝑖(𝜔) ⊆ 𝐾𝑖𝐴 , and hence by definition 𝜔 ∈ 𝐾𝑖𝐾𝑖𝐴  

5. The left-hand side (𝐾𝑖𝐴)𝑐 represents the event that agent 𝑖 does not know 𝐴. The right 
side, 𝐾𝑖((𝐾𝑖𝐴)𝑐) represents the event that agent 𝑖 knows that they do not know 𝐴.In 
modal logic we apply positive introspection i.e. if an agent knows something, they know 
that they know it.Formally,  𝐾𝑖𝐴 ⇒ 𝐾𝑖𝐾𝑖𝐴. We also assume the negative introspection 
axiom i.e., if an agent does not know something, they know that they do not know it: 
(𝐾𝑖𝐴)𝑐 = 𝐾𝑖((𝐾𝑖𝐴)𝑐)∎ 

 

4.Reasoning Depth ,Kantian equilibrium and Nash equilibrium  

  
This literature on reasoning depth postulates that each player has a bound 𝑘 on reasoning, 
where  𝑘 ∈ {0,1, … }.So, a player with 𝑘 = 0  is a nonrational and nonstrategic type which is 
allowed to take any action, and his behavior is used by other players to anchor their beliefs, 
see Strzalecki, T. (2014).But for a general Level − 𝑘 reasoning we have, For any level 𝑘 ≥ 0, 

a Level-𝑘player maximizes their strategy by assuming that the other player is reasoning at 
Level 𝑘 − 1.And mathematically for player 𝑃1 we have: 
 
equation 15 

𝑆1
𝑘 = arg max

𝑠1∈𝑆1

𝑈1(𝑠1, 𝑆2
𝑘−1)  

Where 𝑆2
𝑘−1 is the strategy that 𝑃2 would select based on level 𝐾 − 1 reasoning. At 𝑆1

0 previous 

equals to:𝑆1
0 = arg max

𝑠1∈𝑆1

𝑈1(𝑠1, 𝑠2
𝑑𝑒𝑓𝑎𝑢𝑙𝑡

) ,where 𝑠2
𝑑𝑒𝑓𝑎𝑢𝑙𝑡

 is some default assumption about 𝑃2 

strategy11.Since the contribution by Nagel (1995), it is well established that limited depth of 

 
11 For level 1 reasoning we have: 𝑆1

1 = arg max
𝑠1∈𝑆1

𝑈1(𝑠1, 𝑆2
0) . A Level- 1 player, such as 𝑃1, assumes that 

𝑃2  is a Level-0 reasoner. 
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reasoning accounts for important features of experimental data which are missed by models 
of full rationality, see also Cooper et al.(2024).Here, we are not going to delve thoroughly into 
the literature on Kantian equilibrium but following Osborne,M.J., Rubinstein,A.(2023), and 
Roemer (2010), Roemer (2019), we will provide following definition: 

Definition 8: A vector of strategies 𝓛 = (𝓛𝟏, … , 𝓛𝒏) is a multiplicative Kantian equilibrium of 

the game 𝑮 = 𝑺(𝑽𝟏, … , 𝑽𝒏)  for ∀𝒊 = 𝟏, … , 𝒏 

equation 16 

arg𝛼∈ℝ+
max 𝑉𝑖(𝛼ℒ) = 1 

 
Formally there is a set of 𝑛 agents with payoff function 𝑉𝑖: ℝ+

𝑛 → ℝ,We define effort also 

as: ℒ−1 = (ℒ1, … ℒ1−1, ℒ𝑖+1, ℒ𝑛), and payoff function 𝑉𝑖 is strictly monotone and decreasing in 

ℒ−1 ∀𝑖 . 

Definition 9: In a strategic game 〈𝑁, (𝐴𝑖)
𝑖∈𝑁

(≽𝑖)
𝑖∈𝑁

〉 an action profile 𝑎 = (𝑎𝑖) = 𝐴  is a Nash 

equilibrium ∀𝑖 ∈ 𝑁 :(𝑎𝑖 , 𝑎−𝑖) ≽𝑖 (𝑥𝑖, 𝑎−𝑖), ∀𝑥𝑖 ∈ 𝐴𝑖.Where (𝑥𝑖 , 𝑎−𝑖) denotes the action profile 

that differs from 𝑎 only in that in action of individual 𝑖 is 𝑥𝑖 rather than 𝑎𝑖.And, 𝑁 = (1, . . , 𝑁) is 

a set of players, and 𝑢𝑖: 𝐴 → ℝ is  a payoff function for player 𝑖.And for preferences, ∀𝑖 ∈ 𝑁 ≽𝑖 

over the set 𝐴𝑖 =×𝑖∈𝑁 𝐴𝑖of action profiles. 
  

Definition 10: Let Γ = 〈𝑁, , 𝐻, 𝑃(≽𝑖)
𝑖∈𝑁

〉 be an extensive game A strategy profile 𝑠 is a Nash 

equilibrium of 𝛤 if for every player 𝑖 ∈  𝑁 we have:𝑧(𝑠) ≽𝑖 𝑧(𝑠−𝑖, 𝑟𝑖), for every strategy 𝑟𝑖 of 

player 𝑖. Where, for any strategy profile,𝜎(𝑧(𝜎) s the terminal history generated by 𝜎. 
 

Definition 11: Let 𝑠 be a strategy profile for the extensive game 〈𝑁 , 𝐻, 𝑃, (≽𝑖)𝑖 ∈ 𝑁〉. The 

terminal history generated by 𝑠 is (𝑎1, . . . , 𝑎𝑇 ) where 𝑎1 = 𝑠𝑃∅(∅) and 𝑎𝑡+1 = 𝑠𝑃(𝑎1,…,𝑎𝑡), 𝑡 =
1, … , 𝑇 − 1. 
 

5. Bounded rationality: Luce model with bounded rationality included  
 

Bounded rationality is understood as rationality exhibited by actual human economic behavior, 
see Selten (1998). Also see Simon (1957). Luce material draws from Luce (1959/2005). 
 
Definition 12  : 𝜌 has a Luce representation if there ∃𝑤: 𝑋 → ℝ++,where 𝜌 is a stochastic 

choice function,𝑋 is a set of alternatives and: 

equation 17 

𝜌(𝑋, 𝐴) =
𝑤(𝑋)

∑ 𝑤(𝑌)𝑦∈𝐴
 

Where 𝐴, 𝐵, 𝐶 ⊆ 𝑋 are finite choice problems or menus. A probability space here is:(Ω, ℱ, ℙ) 
and ℱ - measurable random utility function �̃�: Ω → ℝ𝑋. 
 
Axiom 1  Let 𝑇 ⊆𝑓𝑖𝑛𝑖𝑡𝑒 𝑈 such that,∀𝑆 ⊂ 𝑇, 𝑃𝑆 is defined: 

• If 𝑃(𝑥, 𝑦) ≠ 0,1 ∀𝑥, 𝑦 ∈ 𝑇 , then for 𝑅 ⊂ 𝑆 ⊂ 𝑇  
𝑃𝑇(𝑅) = 𝑃𝑆(𝑅)𝑃𝑇(𝑆); 

• If 𝑃(𝑥, 𝑦) = 0 for some 𝑥, 𝑦 ∈ 𝑇 , then ∀𝑆 ⊂ 𝑇  
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𝑃𝑇(𝑅) = 𝑃𝑇−{𝑥}(𝑆 − {𝑥}); 

Axiom 2  The ordinary probability axioms are : 

• For 𝑆 ⊂ 𝑇 ,0 ≤ 𝑃𝑇(𝑆) ≤ 1 
 

• 𝑃𝑇(𝑇) = 1   
 

• If 𝑅, 𝑆 ⊂ 𝑇  and 𝑅 ∩ 𝑆 = 𝜑,then 𝑃𝑇(𝑅 ∪ 𝑆) = 𝑃𝑇(𝑅) + 𝑃𝑇(𝑆) 
 
Independence of irrelevant alternatives, see Luce, R. D. (1977) : 
 

Lemma 3 if 𝑃(𝑥, 𝑦) ≠ 0,1 ∀𝑥, 𝑦 ∈ 𝑇, then Axiom1 implies that ∀𝑆 ⊂ 𝑇 such that 𝑥, 𝑦, ∈ 𝑆   

equation 18 

𝑃(𝑥, 𝑦)

𝑃(𝑦, 𝑥)
=

𝑃𝑆(𝑥)

𝑃𝑆(𝑦)
 

 
Proof: By the Axiom 1 we know that:𝑃𝑆(𝑥) = 𝑃(𝑥, 𝑦)[𝑃𝑆(𝑥) + 𝑃𝑆(𝑦)] 
So now:  
equation 19 

𝑃𝑆(𝑥)[1 − 𝑃(𝑥, 𝑦)] = 𝑃𝑆(𝑥)𝑃(𝑦, 𝑥) = 𝑃(𝑥, 𝑦)𝑃𝑆(𝑦)∎ 
 
One simple case of Luce model with bounded rationality will be shown in this section. With 
bounded rationality, the players are less sensitive to differences in utility, making the choice 
probabilities more balanced and less extreme than in a fully rational model. This dynamic can 
lead to slower convergence or even oscillations, depending on the balance between 
reinforcement and social influence. In this example parameters used are:𝜆 = 0.5-this is 

bounded rationality parameter,𝛼 = 0.1  - Learning rate for reinforcement,𝛽 = 0.05 - Social 
influence parameter,𝑇 = 100- Number of time steps. 
equation 20 

𝑃(𝑎𝑗) =
𝑒𝜆∙𝑢(𝑎𝑗)

∑ 𝑒𝜆∙𝑢(𝑎𝑘)𝑛
𝑘=1

 

Where 𝑢(𝑎𝑗) denotes utility of player choosing option 𝑎𝑗 and the modified probability would be 

:𝑃𝑖(𝑎𝑗) =
𝑢𝑖(𝑎𝑗)

∑ 𝑢𝑖(𝑎𝑘)𝑛
𝑘=1

.Dynamic version of previous equation include 𝑡 superscript:𝑃𝑖
𝑡(𝑎𝑗) =

𝑢𝑖
𝑡(𝑎𝑗)

∑ 𝑢𝑖
𝑡(𝑎𝑘)𝑛

𝑘=1

.Now for reinforcement Learning: In reinforcement learning, utilities are updated 

based on past choices and outcomes. So, if player 𝑖  chooses option 𝑎𝑗 at time 𝑡 − 1 ,then: 

equation 21 

𝑢𝑖
𝑡(𝑎𝑗) = 𝑢𝑖

𝑡−1(𝑎𝑗) + 𝛼 ∙ 𝛿𝑖
𝑡−1 

Where 𝛼 is learning rate and 𝛿𝑖
𝑡−1 represents the reward (or penalty) player 𝑖 received from 

choosing 𝑎𝑗at time 𝑡 − 1. Players may also update their utilities based on the choices of others, 

with a social influence factor. If player 𝑗 has chosen option 𝑎𝑘 more frequently, other players 

may increase their perceived utility of 𝑎𝑘: 
 



Manuscript received: 15.11.2024                             International Journal of Economics, Management and Tourism 
Accepted:                                                  Vol 4, No. 2, pp. 58-85 

Online: ISSN 2671-3810 
                                                                                                                                                     UDC: 005.94:330.8  

 Original scientific paper  

 
 

17 
 

equation 22 

𝑢𝑖
𝑡(𝑎𝑘) = 𝑢𝑖

𝑡−1(𝑎𝑘) + 𝛽 ∑ 𝑃𝑗
𝑡−1(𝑎𝑘)

𝑗≠1

 

Where 𝛽 is parameter governing the influence of others' choices on player  𝑖′𝑠 utility. Next ,it 
will be presented dynamic market with competing brands. Imagine a market with two 
competing brands, 𝐴 and 𝐵, and two players representing consumers who make probabilistic 
choices between the brands. Each consumer updates their perceived utility based on personal 
satisfaction (reinforcement) and by observing the choices of the other consumer (social 
influence). 
 
Figure 1 Dynamic interaction between Luce players  

 
Source: Author’s own calculation 
 
 
Figure 2 Luce’s choice model with bounded rationality parameter 𝜆 = 0.5 

 
Source: Author’s own calculation 

 
 

5.1 Conditional probability theory and Luce model  
 
The conditional probability of 𝑆 given 𝑇 such that 𝑝(𝑇) > 0 is defined as: 
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equation 23 

𝑝(𝑆|𝑇) =
𝑝(𝑆 ∩ 𝑇)

𝑝(𝑇)
 

 
Now if 𝑅 ⊂ 𝑆 ⊂ 𝑇 , following axiom 1(If 𝑃(𝑥, 𝑦) ≠ 0,1 ∀𝑥, 𝑦 ∈ 𝑇 , then for 𝑅 ⊂ 𝑆 ⊂ 𝑇 ; 𝑃𝑇(𝑅) =
𝑃𝑆(𝑅)𝑃𝑇(𝑆)) ;then: 
 
equation 24 

𝑝(𝑅|𝑆)𝑝(𝑆|𝑇) =
𝑝(𝑅 ∩ 𝑆)

𝑝(𝑆)

𝑝(𝑆 ∩ 𝑇)

𝑝(𝑇)
=

𝑝(𝑅)

𝑝(𝑆)

𝑝(𝑆)

𝑝(𝑇)
=

𝑝(𝑅 ∩ 𝑇)

𝑝(𝑇)
= 𝑝(𝑅|𝑇) 

 
For this section see more in Rényi, A.(1955). This is, of course, the formal analogue of part i 
of axiom 1. By taking three arbitrary sets, instead of 𝑅 ⊂  𝑆 ⊂  𝑇, a somewhat more general 
condition can be shown to hold. 
 
 
 
 
 
 
 
 
 
 
 
 

5.2 Matching law formulation   
 
Here it is formulated following theorem, and it is provided a proof.   
Theorem  1  Any matching law selection rule satisfies Luce's choice axiom. Conversely, 
if 𝑝(𝑎|𝐴) > 0 ∀𝑎 ∈ 𝐴 ⊂ 𝑋 , then Luce's choice axiom implies that it is a matching law selection 
rule. 

Proof: The matching law states that the probability of selecting an option 𝑎 from a set of 

alternatives 𝐴 is proportional to some positive utility or "value" 𝑣(𝑎) associated with 𝑎. 

Formally, a selection rule follows the matching law if:𝑝(𝑎|𝐴) =
𝑣(𝑎)

∑ 𝑣(𝑏)𝑏∈𝐴
.Where 𝑣(𝑎) > 0, ∀𝑎 ∈

𝐴. Luce’s choice axiom or Independence from Irrelevant Alternatives (IIA) states that for any 
two options 𝑎, 𝑏 ∈ 𝐴: 
equation 25 

𝑝(𝑎|𝐴)

𝑝(𝑏|𝐴)
=

𝑝(𝑎|{𝑎, 𝑏})

𝑝(𝑏|{𝑎, 𝑏})
 

Under the matching law, we have: 𝑝(𝑎|𝐴) =
𝑣(𝑎)

∑ 𝑣(𝑐)𝑐∈𝐴
; 𝑝(𝑏|𝐴) =

𝑣(𝑏)

∑ 𝑣(𝑐)𝑐∈𝐴
 Hence: 

𝑝(𝑎|𝐴)

𝑝(𝑏|𝐴)
=

𝑣(𝑎)

∑ 𝑣(𝑐)𝑐∈𝐴
𝑣(𝑏)

∑ 𝑣(𝑐)𝑐∈𝐴

  . Similarly for the set {𝑎, 𝑏} : 
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equation 26 

𝑝(𝑎|{𝑎, 𝑏})

𝑝(𝑏|{𝑎, 𝑏})
=

𝑣(𝑎)
𝑣(𝑎) + 𝑣(𝑏)

𝑣(𝑏)
𝑣(𝑎) + 𝑣(𝑏)

=
𝑣(𝑎)

𝑣(𝑏)
∎ 

 
Since both ratios are equal, the matching law selection rule satisfies Luce’s choice axiom.  
Next, we may code and plot this theorem. First, we will define utilities: we will assign positive 
arbitrary values 𝑣(𝑎), ∀𝑎 ∈ 𝐴. Then we will calculate probabilities by the matching law:𝑝(𝑎|𝐴) =

𝑣(𝑎)

∑ 𝑣(𝑏)𝑏∈𝐴
.And we will verify Luce's Choice Axiom: check for each pair of options 𝑎, 𝑏 that 

𝑝(𝑎|𝐴)

𝑝(𝑏|𝐴)
=

𝑣(𝑎)

𝑣(𝑏)
. The plot shows the matching law probabilities for each option based on their assigned 

utilities. Here’s the summary of the ratios for each pair of options to verify Luce’s choice axiom: 
 

• Ratio 𝑎/𝑏: 
𝑝(𝑎|𝐴)

𝑝(𝑏|𝐴)
= 0.6;

𝑣(𝑎)

𝑣(𝑏)
= 0.6  

• Ratio 𝑎/𝑐: 
𝑝(𝑎|𝐴)

𝑝(𝑐|𝐴)
≈ 1.5;

𝑣(𝑎)

𝑣(𝑐)
= 1.5  

• Ratio 𝑏/𝑐: 
𝑝(𝑏|𝐴)

𝑝(𝑐|𝐴)
= 2.5;

𝑣(𝑎)

𝑣(𝑐)
= 2.5  

 
Since the probability ratios are equal to the utility ratios for each pair, the plot and calculations 
confirm that this selection rule satisfies Luce's choice axiom. The plot will be shown on the 
following page.  
Figure 3 Matchin law probabilities for options  

 
 
Source:  Author’s own calculation 
 

6.The Agreement Theorem 

 
Aumann (1976) posed the following question: could two individuals who share the same prior 
ever agree to disagree? See Levin (2016). That means if 𝑖, 𝑗 share common previous beliefs 

over states of the world, could it be that state arise at which it was commonly known that 𝑖 
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assigns probability of some evet 𝓅𝑖,and 𝑗 assigned probability of 𝓅𝑗 and𝓅𝑖 ≠ 𝓅𝑗. Aumann 

concluded that this sort of disagreement is impossible. Now, formally let 𝑝 be a probability 

measure on Ω which are agents’ prior belief. For any state 𝜔 and event 𝐸 , let 𝑝(𝐸|𝓅𝑖(𝜔)) 

denote 𝑖′𝑠 posterior belief, so that 𝑝(𝐸|𝓅𝑖(𝜔)) is obtained under Bayes’ rule.The event that 

agent 𝑖  assigns probability 𝓅𝑖 to 𝐸 is   {𝜔 ∈ Ω: 𝑝(𝐸|𝓅𝑖(𝜔) = 𝓅𝑖)} 
 
Proposition 2  Suppose two agents have the same prior belief over a finite set of states Ω. If 

each agent’s infomation function is partitional and it is common knowledge in some state 𝜔 ∈
 Ω that agent 1 assigns probability𝓅1 to some event 𝐸 and agent 2 assigns probability 𝓅2 to E, 

then 𝓅1 = 𝓅2 

Proof: If the assumptions are satisfied then there is some self-evident event 𝐹 and 𝜔 ∈ 𝐹 : 
 
equation 27 

𝐹 ⊂ {(𝜔′ ∈ Ω: 𝑝(𝐸|𝓅1(𝜔′) = 𝓅1) ∩ {(𝜔′ ∈ Ω: 𝑝(𝐸|𝓅2(𝜔′) = 𝓅2)}} 

Since Ω is finite, so is the number of sets in each union and let 𝐹 =∪𝑘 𝐴𝑘 =∪𝑘 𝐵𝑘 and for a 
nonempty disjoint sets 𝐶, 𝐷 with with 𝑝(𝐸|𝐶) = 𝓅𝑖 and 𝑝(𝐸|𝐷) = 𝓅𝑖 we have that 𝑝(𝐸|𝐶 ∪ 𝐷) =
𝓅𝑖,and ∀𝑘, 𝑝(𝐸|𝐴𝑘) = 𝓅1,then 𝑝(𝐸|𝐹) = 𝓅1 and similarly 𝑝(𝐸|𝐹) = 𝑝(𝐸|𝐵𝑘) = 𝓅2 ∎ 
 
 
 
 

7.Numerical examples 

 
First example: Let's assume the initial beliefs of the three agents are as follows for the two 
worlds: 
 
Table 1 agents initial beliefs  

Agent 1: [0.6, 0.4] 
Agent 2: [0.5, 0.5] 
Agent 3: [0.7, 0.3] 

 
In this python code defined parameters are  
 
# Define parameters : 𝑛𝑎𝑔𝑒𝑛𝑡𝑠 = 3  # Number of agents ,𝑛𝑤𝑜𝑟𝑙𝑑𝑠  = 2  # Number of worlds, 

𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠   = 5  # Number of iterations for belief updates, 𝑘𝑙𝑒𝑣𝑒𝑙𝑠 = [0, 1, 2]  # Levels of cognitive 

reasoning.We'll run the belief updates over 5 iterations to see how beliefs evolve. To simulate 

k-level thinking, we can add some Gaussian noise to the beliefs during updates. For each 

iteration, we'll calculate the Nash and Kantian equilibria based on the agents' beliefs. 
 
Table 2 

Iteration                  Agent 1 Agent 2 Agent 3 Nash EQ Kantian EQ 

1 
[0.78145853 
0.21999514] 

[0.69146899 
0.10070053] 

[0.82334435 
0.16441218] 

[0.82334435 
0.21999514] 

[0.76542396 
0.16170262] 

2 
[0.         
0.60697405] 

[0.12356335 
0.5870302 ] 

[0.05509522 
0.67869425] 

[0.12356335 
0.67869425] 

[0.05955286 
0.62423284] 

3 
[0.48865891 
0.30727302] 

[0.36306045 
0.36296319] 

[0.60827405 
0.2132603 ] 

[0.60827405 
0.36296319] 

[0.48666447 
0.29449884] 
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4 
[0.10082487 
0.16559914] 

[0.27067617 
0.2018131 ] 

[0.20415334 
0.17422747] 

[0.27067617 
0.2018131 ] 

[0.19188479 
0.18054657] 

5 
[0.49093557 
0.11045239] 

[0.67386333 
0.19782752] 

[0.55193592 
0.36106872] 

[0.67386333 
0.36106872] 

[0.57224494 
0.22311621] 

 
Figure 4 Evolution of agents beliefs with Kantian and Nash equilibria  

 
Source:  Author’s own calculation 
 
This numerical example provides insight into how agents' beliefs evolve in a structured way 
and how those beliefs can converge to equilibria based on the reasoning level of the agents. 
This model captures the interactions between bounded rationality, beliefs, and the moral 
reasoning framework of Kantian equilibrium. Each agent's decisions are based on their 
cognitive depth while considering the moral implications of their actions and beliefs. This 
framework can be further elaborated into computational models or simulations to analyze the 
dynamics of belief convergence, the impact of different levels of reasoning, and the 
emergence of common knowledge under various settings.  
 
Second example: To address this complex theoretical framework, let's integrate several core 
concepts into a single model by combining Kripke semantics, bounded rationality, common 
knowledge (especially relevant in Kripke semantics), Aumann's Agreement Theorem, Kantian 
and Nash equilibria, and k-level thinking in a cognitive hierarchy. I’ll outline each element of 
the framework, then derive a model that applies this to an economic network that operates 
within a semantic economy. The goal is to showcase how agents interact in such a network to 
create informational value. 
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Figure 5  

 
Source: Author’s own calculation 
 
Some equations of the model used for the previous plots are: Consider a Kripke model with a 
set of agents 𝐴 = {1,2, … , 𝑁} } and two accessible worlds 𝑊 = {𝑤1, 𝑤2} representing different 
economic states. 

Agent Beliefs and Bounded Rationality: 

• Each agent 𝑖 ∈ 𝐴 holds beliefs over 𝑊, denoted as 𝑏𝑖(𝑤) for world 𝑤. 
• Agents update their beliefs iteratively with a bounded rationality constraint, applying 

k-level thinking up to their cognitive hierarchy level 𝑘𝑖 

Belief Update Mechanisms: 

• Nash Belief Update: Agent 𝑖′𝑠 Nash belief update at level 𝑘𝑖 depends on the mean 

beliefs of other agents in the network. 

equation 28 

 

𝑏𝑖
𝑁𝑎𝑠ℎ(𝑤) =

1

𝑁 − 1
∑ 𝑏𝑗(𝑤)

𝑗≠𝑖

 

• Kantian Belief Update: Each agent 𝑖 updates beliefs by reflecting on the common 
benefit and adjusting towards a shared belief. 

equation 29 

𝑏𝑖
𝐾𝑎𝑛𝑡𝑖𝑎𝑛(𝑤) = 𝑏𝑖(𝑤) + 𝛼 (

1

𝑁
∑ 𝑏𝑗(𝑤)

𝑗

) 

 
Here, 𝛼 represents the level of introspection, capturing the Kantian principle of considering the 
joint outcome. 

Aumann’s Agreement and Almost Common Knowledge: 
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• After several rounds of belief updates, beliefs converge as per Aumann’s Agreement 
Theorem when almost common knowledge is established—i.e., agents share a 
sufficiently high belief in each other’s beliefs across worlds. 

Fixed-Point Condition in Cognitive Hierarchy: 

• For agents to reach a fixed-point agreement, each agent’s belief update (at any 

reasoning depth 𝑘𝑖) should stabilize across worlds: 

equation 30 

𝑏𝑖
∗(𝑤) = 𝑏𝑖(𝑤), ∀𝑖 ∈ 𝐴 ; 𝑤 ∈ 𝑊  

Semantic Economy and Informational Value Creation: 

• In an economic network, agents share and evolve their beliefs to create informational 
value, not merely to reduce costs. This added value emerges as agents reach 
consensus and stabilize around shared insights, enhancing collective knowledge 
within the network. 

Third example: To derive a mathematical model that unites Kripke semantics, bounded 
rationality, common knowledge (CK), Aumann's Agreement Theorem, Kantian Nash 
equilibrium, k-level reasoning, and Cognitive Hierarchy Theory within the framework of 
an economic network, we must consider a few foundational elements. This model will 
illustrate how cognitive reasoning and network interactions influence economic advantage, not 
through information cost reduction, but by generating new informational value across a 
network. 
 
 
 
 
 
 
Components of the Model 

1. Kripke Semantics: A framework for modeling knowledge and beliefs across possible 
worlds. 

2. Bounded Rationality: Agents have limitations in processing power and information. 
3. Common Knowledge (CK): Formally, an event ppp is common knowledge if 

everyone knows 𝑝, everyone knows that everyone knows 𝑝, ad infinitum. We will use 
fixed-point logic to represent this. 

4. Aumann’s Agreement Theorem: Two rational agents with common priors and 
knowledge of each other’s beliefs cannot agree to disagree. They will reach a 
consensus if they continue to exchange information. 

5. Kantian Nash Equilibrium (KNE): Each agent chooses a strategy that they would 
want all agents to adopt collectively. 

6. K-level Thinking in Cognitive Hierarchy Theory: Each agent is modeled as having 
a finite depth of reasoning. Agent 0 acts without considering others, agent 1 
considers agent 0’s reasoning, and so forth. 
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7. Networked Economic Context: Agents interact in an economic network where 
competitive advantage depends on the informational value generated across the 
network. 

Model Assumptions and Definitions 

• Agents 𝐴 = {1,2, … , 𝑁} in a networked economy. 
• Possible Worlds: Each agent has beliefs over a set of possible worlds 𝑊. 

• Information Sets: Each agent iii has a finite set of beliefs 𝐵𝑖 about events and 
possible worlds, representing bounded rationality. 

• Common Knowledge (CK): Defined through a fixed-point condition across agent 
beliefs in a given world 𝑤. 

• Kantian Nash Equilibrium (KNE): Agents choose strategies for a common good, 
reflecting rational expectations across the network. 

• K-level Reasoning: Each agent reasons up to level 𝑘𝑖 varying by agent. This 
represents the cognitive hierarchy in the network. 

   Step 1: Define Knowledge in Terms of Kripke Semantics 

• Let 𝑊 be the set of possible worlds, with 𝑤 ∈ 𝑊 representing a particular state of the 
world. 

Each agent 𝑖 has: 

• Access Relation 𝑅𝑖: An agent's relation on 𝑊 that reflects their perspective (or 
information) about the different possible worlds. 

• Knowledge representation: 𝐾𝑖(𝑝):Where 𝐾𝑖(𝑝) = {𝑤 ∈
𝑊|𝑝 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑖𝑛 𝑎𝑙𝑙 𝑎𝑐𝑐𝑒𝑠𝑖𝑏𝑙𝑒 𝑤𝑜𝑟𝑙𝑑𝑠 𝑏𝑦 𝑅𝑖} 

• For common knowledge (CK) of event 𝑝, it holds that:                                 

𝐶𝐾(𝑃) ⇔ 𝐾1(𝑝) ⋀ 𝐾2(𝑝) … … . ⋀ 𝐾𝑁(𝑝) ⋀ 𝐾1(𝐾𝐾(𝑝)) ⋀ 𝐾2(𝐾𝐾(𝑝)). . 

This means that for 𝑝 to be common knowledge, each agent must know 𝑝 and know 
that others know𝑝,iteratively, which creates a fixed-point in logic.  

Step 2: Represent Bounded Rationality and K-Level Thinking 

Each agent iii can reason up to a finite depth 𝑘_𝑖, which represents bounded rationality 
within Cognitive Hierarchy Theory: 

• Agent 0 has no reasoning about others. 
• Agent 𝒌 believes that others reason up to depth 𝑘 − 1 

Let 𝐵𝑖
𝑘 represent the beliefs of agent 𝑖 at reasoning depth 𝑘. If 𝑘 → ∞ agents would 

theoretically reach full common knowledge; however, bounded rationality limits 𝑘𝑖. 

Step 3: Incorporate Aumann’s Agreement Theorem and Kantian Nash Equilibrium 

1. Aumann’s Agreement Theorem implies that if agents iii and jjj have common priors 
and share beliefs up to common knowledge, they cannot “agree to disagree.” 
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2. For Kantian Nash Equilibrium (KNE), agents maximize social utility by adopting 
strategies they would prefer all agents to adopt, which is consistent with cooperative 
decision-making. 

Define each agent’s utility function in the economic network as: 

equation 31 

𝑈𝑖(𝑠) = 𝑓(𝑠) + 𝑔(𝑠, 𝐵𝑖
𝑘) + ℎ(𝐵𝑗

𝑘−1) 

𝑓(𝑠)-represents strategy dependent payoff, 𝑔(𝑠, 𝐵𝑖
𝑘) -personal information dependent 

component, ℎ(𝐵𝑗
𝑘−1):Network (others’ beliefs)-dependent component, capturing information 

value. 

Step 4: Competitive Advantage through Informational Value 

In a semantic economy, agents’ competitive advantage depends on the informational value 
they create for the network: 

equation 32 

𝑉𝑖 = ∑ ℎ(𝐵𝑗
𝑘−1) − 𝑐𝑜𝑠𝑡(𝐵𝑖)

𝑗∈𝐴

 

Where here:  

• informational Value 𝑉𝑖: Derived from the sum of other agents’ knowledge 
contributions. 

• Cost: The cost of acquiring or processing information. 

Thus, an agent maximizes utility by maximizing 𝑉𝑖 rather than minimizing information 
acquisition costs. This value-driven approach leads agents to choose strategies that enhance 
collective knowledge. 
 
Parameters in following simulation are: 
𝑛𝑎𝑔𝑒𝑛𝑡𝑠 = 2 # Number of agents 𝑛𝑑𝑒𝑝𝑡ℎ𝑠 = 10 # Levels of reasoning depth 𝑡𝑟𝑢𝑒𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.65 

# Initial true probability in the world. In this model and simulation model is improved to ensure: 
 

1. Depth of reasoning variation in the belief values for each equilibrium, showing 
progressive adjustments as reasoning depth increases. 

2. Distinct Nash and Kantian adjustments reflect the Kantian emphasis on aligned beliefs 
and mutual benefit, while the Nash framework remains based on best responses to 
others' beliefs at each depth level. 



Manuscript received: 15.11.2024                             International Journal of Economics, Management and Tourism 
Accepted:                                                  Vol 4, No. 2, pp. 58-85 

Online: ISSN 2671-3810 
                                                                                                                                                     UDC: 005.94:330.8  

 Original scientific paper  

 
 

26 
 

Figure 6 

 
Source: Author’s own calculation 
 
The plots show the belief evolution across reasoning depths, highlighting the differences 
between Nash and Kantian equilibria. 
 
Table 3   Nash Equilibrium Beliefs 

Agent 
Depth 

0 
Depth 

1 
Depth 

2 
Depth 

3 
Depth 

4 
Depth 

5 
Depth 

6 
Depth 

7 
Depth 

8 
Depth 

9 

Agent 1 0.6226 0.6167 0.6685 0.7090 0.6657 0.7442 0.7296 0.6846 0.7838 0.8089 
Agent 2 0.6607 0.6916 0.7107 0.7149 0.6666 0.7185 0.6828 0.7960 0.6981 0.7706 

Source: Author’s own calculation 
 
 
Table 4  Kantian Equilibrium Beliefs 

Agent 
Depth 

0 
Depth 

1 
Depth 

2 
Depth 

3 
Depth 

4 
Depth 

5 
Depth 

6 
Depth 

7 
Depth 

8 
Depth 

9 

Agent 1 0.6226 0.6092 0.6492 0.6763 0.6238 0.6850 0.6598 0.6084 0.6847 0.6948 
Agent 2 0.6607 0.6831 0.6902 0.6820 0.6246 0.6614 0.6175 0.7074 0.6098 0.6619 

Source: Author’s own calculation 
 
 
Nash vеrsus Kantian Equilibrium: The Nash equilibrium beliefs show a slightly greater upward 
trend as the depth of reasoning increases. This is because Nash beliefs adjust based on 
others' best responses, while Kantian beliefs account for mutual benefit, dampening large 
shifts. 

8.Conclusion  

 
Simulation of Kripke semantics, bounded rationality, common knowledge, Aumann's 
agreement theorem, Kantian Nash equilibrium, and k-level thinking within the framework of 
Cognitive Hierarchy Theory (CHT), captures the interactions between bounded rationality, 
beliefs, and the moral reasoning framework of Kantian equilibrium. Each agent's decisions are 
based on their cognitive depth while considering the moral implications of their actions and 
beliefs. When we estimate deviations of beliefs, we have in mind that: Nash equilibrium are 
the beliefs that maximize each agent's utility given the others' beliefs. Kantian Equilibrium 
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represents the average beliefs of all agents at a specific iteration, reflecting a consensus view. 
Results from the first example show that agents change their beliefs from the initial values. 
Simulations are done for 3 agents in 2 worlds, and evolution of beliefs is shown in 5 iterations. 
K-level thinking with Gaussian noise was employed here too. Results show that agents 1,2,3 
beliefs differ from Kantian and Nash equilibria. At 50% of iterations Kantian equilibrium is 
identical to neutral belief. Nash equilibrium follows Kantian equilibrium in the two worlds but 
exerts larger shifts from initial beliefs. At ¾ of iterations agents 1,2,3 beliefs converge with 
Kantian and Nash equilibria, and they diverge once again. This is in line with the idea that 
small departures from common knowledge can have a dramatic effect on the set of equilibria. 
So, even if each layer is certain about the payoffs structure, even small incremental uncertainty 
about other’s information can eliminate equilibria that exists when payoffs are common 
knowledge. This naturally leads to further explorations on this topic and some striking 
examples in the literature such as Rubinstein (1989). The fact that small perturbations of the 
information structure can eliminate Nash equilibria occurs because the Nash equilibrium 
correspondence (mapping from the parameters of the game to the set of equilibrium 
strategies) is not lower semi-continuous, see Levin (2016). The second example shows belief 
Evolution in world w1 and w2: The plots show each agent’s belief trajectory over different 
reasoning depths. Nash equilibrium beliefs tend to cluster closely, while Kantian beliefs evolve 
with greater alignment, showing the cooperative tilt in introspective (Kantian) reasoning. Nash 
beliefs: Each agent averages the beliefs of all other agents. Over several reasoning layers, 
these beliefs evolve toward a shared understanding, though agents are individually optimizing. 
When the reasoning depth increases, players recognize more intricate patterns in others' 
intentions and responses. This depth often leads to more robust cooperative expectations, as 
players anticipate others' willingness to adopt strategies that align more closely with a 
collective or “Kantian” principle. As a result, the Kantian beliefs about what is rational or 
optimal under cooperative strategies become stronger or "shift up."Nash equilibria differ from 
initial true probability in the world  
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