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RELIABIITY: RELIABILITY OF THE IMPROVED NETWORK
Marija Mihova', Natasha Maksimova’, Kiro Gorgiev'

Abstract. One of the problems of interest in the field of multi-state network

reliability is to found a minimal number of components that should be improved. in
order to obtain a network with higher level of work, The main purpose in this paper is
how to find the minimal number of components that should be exchanged, so that we
will have system that works in a higher level and have the greatest possible reliability.
Keywords: Reliability, multi-state systems, network reliability, minimal path

vectors.

aran- .
bl of 1. Introduction
The two-terminal reliability (2TR) is a well-known network binary
' reliability problem. Usually, when reliability of the systems is analyzed, it is
: assumed that the system and its components can be in either in a working or in a
Edonia, failed state. These models arc k.nown as binary state models. It is l'oul.'nd l!mt such
e ~models are unable to describe some systems, as telecommunication and
i - transportation  systems, water distribution, gas and oil production and
EOf In- hydropower generation systems. These systems may provide a service or
ce levels and better results may be

" function at degraded component performan
E obtained using a multi-state reliability approach. .
Important tools in reliability theory are importance measures. They are

used to evaluate and rank the impact of individual components within a system.
There are few authors that present and evaluate composite importance measures
¢ for multi-state system with multi-state components (MSMC). Ramircz-Marqucz
~and Coit [1] proposed two main importance measures for multi-state systems:
quantification of the impact of a component as a whole on system reliability and
-~ quantification how a particular component state or set of states affect system
~ reliability. Ramirez-Marquez, Roco, Gebre. Coit and Tortorella [2] gives another
jmportance Measures for multi-state systems with multi-state components:
unsatisfied demand index (UDI), multi-state failure frequency index (MFFT) and
multi-state redundancy importance (MRI). The first one provides insight
regarding a component or component state contribution to unsatisfied demand
and the second onc elaborates on an approach that quantifies the contribution of

Mt M .1&_!.;\.}
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a particular component or component state to system failure. MRI lde
where to allocate component redundancy as to improve system reliability.
In this paper we do not introduce new measure, but we dmlyzc W r,
the components of the multi-state system is better to be improved in-orde
obtain system with greater reliability. The networks we considered are w
added constraint that the cqpacny of the arcs is an integer-valued variable
values from the set {0, 1, 2,..., M}. In this case, the capacity of th
network is an integer valuu hom the set {0, 1, 2, ...., M}. In [4] and [
are described algorithms for obtaining minimal path vectors for each
such network. If we want to improve the network in order to get a netwo
greater capacity, we can change some of the components with better ones.!
paper we are focusing on two problems:
- How to use the minimal path vectors for the old network
minimal path vectors for the improved one.
- We analyze how to decide which component to be changed, in
to obtain best performance with minimal cost. We suppose tha
of the changing of each link is the same.

2. Minimal path vectors of multi-state network

Let us regard a stochastic capacitated two-terminal network
specified source node s to a specified sink node ¢. By N we will denot
of nodes and by A = {a, | 1<i < n} the set of arcs (links). The set of ay;
capacities of the arc g, is denoted by §,, §,={0, 1, ..., M}, (0 means no :
M; means full capacity). The set S, is known as cupac:ty space set of th
and the capacity sect space of the whole network is note by §={0,1,...,
we note S={S|1<i< n}. Let x, be the state of the arc a,, then the vector X
¥s, ..., x,) denotes the state of all the arcs of the network and it is call' -
Vectur The vector of maximal states of the system, (M, M,....,M,), ¥
denote by M and E=S;xS;X...xS, will be the set of all state vcctors.The

@. E—S where (o(‘_c') is available capacity from source to sink under

state vector X is called multi-state structure function. _

Multi-state two terminal reliability of level ¢ (M2TRy)
probability that a flow equal to or greater to  can be successfully delive
source node to sink node.

M2TR, = P(p(3) > d).

A vector Y is said to be less than X, y <X, (or dominated by 3
yi<x; and for some &, yy < xy.. A vector X € E is said to be a minimal pathy
to level d (MPV,) if w( )‘—“d and for all other y <X, 40(53)4(! and a vectol




is said to be a minimal cut vector to level d if (17(.?)<d and for all other
y>%,0(y)>d.

In order to specify the structure of the network we will define binary
minimal path vector. Let we have a multi-state network with set of nodes N and
set of links A={a, [1<i <n}. We will regard the network with the same nodes
and links in which all links are binary, i.e. their state sets are {0, 1}. Let v be
minimal path vector for this network. Then we will say that ¥ is a binary

. minimal path vector for the multi-state network. By BPV we will denote the set
b ofall binary minimal path vectors.

Let us denote a network by G=(N; A, BPV, S, VP), where Nis the

set of nodes, A the set of arcs, BPV the set of binary minimal path vectors, S the
set of capacity state sets of the components, and VP the set of probabilitics of
components levels, where p, is the vector of probabilities of the i-th link. i.c.

L p=P(x=d). It is clear that cach network is totally described by these elements.

_ Proposition 1. Let X be a MPV,, for the network G=(N.A.BPV S,VP).
£ Then. in order to be delivered o units from the source to the sink, when the
 system is in state X, each link is used in only one direction.
: Proof: Let X be a MPV, such that the link @ from the node u; to the
b node u, is used once in direction from u) to uy, and once in the opposite
¢ direction. Then, one unit goes through the path i, from the source s to u,, then
: through the link 2,2, and from i1y the sink ¢ through the path w,, and another one
b ocs through the path w’; from the source s to 15, then through the link w1, and
from v the sink ¢ through the path ;. Now, we can choose the way ww’, for
ne unit and the way w’ pw for another one. Therefore, we obtain a smaller path,
0 X is not MPV,,. o
Using the Proposition 1, for each MPV,, X, the links of the networks
graph can be oriented in respect to X . Next we give more rigorous property
sbout the orientation on links on a network.

Proposition 2. Let ¥ be a MPV,, for the network G=(N.A.BPV ,S.VP).
en we want to deliver ¢ units from the source 1o the sink when the system is
fistate ¥, cach link is used only in one direction. If the links are oriented as they

used, then the obtained subgraph is acyclic.

Proof: Let X be a MPV,. From the Proposition 1 we can orient the
links. Suppose that there is a cycle v in the obtained oriented subgraph. Since
gich unit goes throw acyclic path, we have that the cycle is used from different

nits. We can suppose that v =1p,...w; such that the pathw, is used from the i-th
t. So, the path of the i-th unit can be written as wpway', =1,k . Now, may be
sen another path for each of those k units. ey for the first one, and w0,

icthe i-th, i = 2,k . Therefore we obtained smaller path, so ¥ is not MPV,. ¢
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Let X,,, isamin

Using the Proposition 2, we can define ordering of the nodes in :
respect to X . _: e . =), X

1l
i g B
tall

Definition. Let X be a MPV, for the network G=(N.A,BPV,S.VP) and will use the performance

the links are oriented in respect to X . For two links a and b we will say that
a<. b ifthere is a path from a to b in the oriented graph. We will call this

from the source to the

Moreover, when the nety

ordering as ordering of the nodes in respect to X S the source node and com
3 ~ units that get into the nos

Note that this ordering is not always a linear ordering. Let us suppose !

i.e. there is a smaller m:
for level r + 1, when t
& from the source node :
~ number of units that get
from it.

Corollary 1. Let ¥ be a MPV, for the network G=(N,A,BPV.S, VP) and
the links are oriented in respect to X . Then there are not cycles in the ‘_:_
corresponding subgraph. 3

i1 3wl o . N =
Definition. We will say that <; ¢ <; i.c. the ordering in respect to X Lk s Eegaiilith

there no units that gets
Also, for other nodes,
qnumber of units that ge

gets in and out. If the

and the ordering in respect to y are equivalent, iff for all nodes a and b, a<; b

= (b<;a)and a<; b = ~(b<; a).
Definition. Let ¥ be a MPV, and y be a MPV, such that <; & <;.

i We define <fﬁj_ by ‘Kl-h_f- hifa<;bora<gb. Then the ordering <;,; isa possible only if exist

s 5 v : E: . ¢ < )
transitive closer of <., ;. assumption that <; <

It is easy to show that <y, ; is a ordering. From the Kirchhoft™s Current Proposition 4.

_ law follows that if the network works in the state ¥, where X is a MPV, then
exactly d units get out from the source node and come into the sink node. Forall -
L other nodes we have that the number of units that get into the node is the same to
the number of units that get out from it.

. then there are vectors .

_ Proof: It is cl
true for all integers d
the Proposition 2, the
Suppose that one of tl
“vector y €BPV. Noy

and y < X . Let us obs

Proposition 3. Let ¥, €BPV, k =1.d for the network G=(N, A, BPY

S, VP) such that <. ¢ <, fori#j. Then X = Z.T‘k is a minimal path vector
I3 I k;" 3
for level d.

: oL 3 we subtract capacity
Proof: It is clear that the proposition is true for d = 1. Suppose that it

st r units will pass o
r ‘ — .

” y . - = . b : Suppose that X — ¥

true for all integers d <r. So, ford=r, y, = Z.\'k is a minimal path vector for: PP ’
k=1 :

level r, and, exactly  units get out from the source node and come into the smk
node 'md for other nodes, the number of units that get into the node is equal to

the number of units that get out from it.

smaller path vector
X!+ p<X-y+y=X

inimal path vector |

el b e vy M5 B N BN e



Let X,,, is a minimal path vector for level 1 and <; <> <; .The vector

r+l

E V=Y, HX. 4= z.tk is a path vector for level » + 1, since the first » units
k=1

L will use the performance of the vector y, and the r + 1-th unit will pass over

" from the source to the sink using the links corresponding to the vectorX,,,.
L Morcover, when the network works in state y,,,, exactly » + 1 units get out from
L (e source node and come into the sink node and for other nodes, the number of
L units that get into the node is equal to the number of units that get out from it.
: Let us suppose that it y ., is not a minimal path vector for level r + 1
L i, there is a smaller minimal path vrector Z . Since Z is a minimal path vector
L for level » + 1, when the network works in state Z, exactly » + 1 units get out
| from the source node and come into the sink node and for other nodes, the
E number of units that get into the node is equal to the number of units that get out
b from it.
: Let us regard the vector y,,, —z > 0. If the network is in this state, then
i there no units that gets out from the source node and comes into the sink node.
Also, for other nodes, the number of units that get into the node is equal to the
umber of units that gets out from it and there are nodes in which at last one unit
 gets in and out. If the links are oriented in respect to y Z, this will be
Lpossible only if exist at last one cycle, which is in contradiction with our
Lassumption that <; & < 0

r+l

Proposition 4. [f X is a MPV, for the network G=(N, A, BPV, S, VP),

: of
| then there are vectors X, e BPV, k=1,..., d, such that x = z,ﬂ_ .
: k=1
Proof: It is clear that the proposition is true for d=1. Suppose that it is

Il_rue for all integers d < r. Let X be a minimal path vector for level r+1. From
the Proposition 2, the vertexes of the graph can be oriented in respect to X .
{Suppose that one of those units uses the sequence of links corresponding to the
Fvector ¥ € BPV. Now, this vector has the same orientation as the vectorX

"éndﬁ < X . Let us observe the vector ¥ — ¥ . It is a path vector for level r, since
\;'c subtract capacity only from the links that are used by one of the units, so the
irest r units will pass over from the source to the sink if the system is in this state.
uppose that X —y is not a minimal path vector for level r, i.e. there.is a
Esmaller path vector X'. Then, X'+) is a path vector for level r+1 and
b+ <X—p+p=X¥, which is in contradiction with our assumption that ¥ is a
Eminimal path vector for level #+1, So X =y is a minimal path vector for level r,




Proposition 6. L
imal states M, and le
aximal states M’ > M.
1y e BPV, such that )

MPV,H for the netwc

k=1..r. such that X-y=) ¥ . Taking y=x,,, We

r r+
— _\‘k - y = ‘.k . O
k=1 =]

=
tal!

- Proposition 7. L

for all are known,
for of maximal states

is MPV . for G}u

Now. we will show how the system reliability can be computed,
the minimal path vectors are known. For binary systems, using minimal
sets, the reliability can be computed through the inclusion/exclusion formt
This formula has to be extended to account for the new vector structure of
minimal sets. For the multi-state case, M2TR,can be obtained with the
following modification of the inclusion/exclusion formula:

I T
M2TR =Y P(¥23, )Y P(¥25,A%27, )+ (=D)"P(F=F,A..AX2]
h=1 hek
where 7'is the number of MPV, and y,& MPV .. Using the following nota

Using Propositios

Corollary 1. Lel
mal states M, and le
al states M’ > M.
PV,, such that y;=
max(zy,...,z;)=(max(z'",....z"),.. Lmax(z,....z"), o

where 2, is the v-th coordinate of z,, the equation (2) can be write as:

1 I )

M2TR =Y P(%25, - P(¥2max(y,, 7 ... (- 1) P(RZmax(P, ... Vy
=l fr<k

We use the formula (4) for calculation of the reliability of level d.

Definition 1: L
A, BPV, S, VP), v

E(X,7)=(

3. Improvement of the network and calculation of the new reliabilify A
Next Propositior

Suppose that we have a two-terminal network G=(N, A, BPV, §;

with S={0, 1,... M}. We want to improve that network for one level. In ord
achieve this we are lead from two criteria: changing a minimal numk
components and obtaining a network with greater reliability. 5
We improve the network by changing some of the links with bett

that working in higher level. From that reason we look at the relation bef
MPV, on two networks that differs just in maximal levels of the links.
Proposition 5. Let G = (N, A, BPV, S, VP) be a network with vecios
maximal states M and let G* = (N, A, BPV, S°, VP’) be a network with vecig
maximal state M* = M. Then, if X is a MPV, for the network G, it is alig
MPV, for the network G’. ' '

. Proposition 8: -
city M. The minime
hat work with gre:

min{ Y £(5.)

Suppose that for
‘a new one that wc

ced with a link wi

Next two propositions follows directly from Proposition
Proposition 3.




Proposition 6. Let G=(N, A, BPV, S, VP) be a network with vector of
maximal states M, and let G’=(N, A, BPV, S’, VP’) be a network with vector of
maximal states M’ > M. Let X be a MPV, for a network G, such that x, = M,
and y € BPV, such that y,= 1. Also let <, <; and X+y <M’. Then X +y

is a MPV ., for the network G’.

3PV,

btain

Proposition 7. Let MPV,, d =1, M , of the network G=(N, A, BPV, S,

VP) for all are known, and let G’=(N, A, BPV, S’, VP') be a network with
vector of maximal states M’ > M. Then, the set of MPV ., of the network G’ is
{X|X is MPVy, for Glu{X+y|X is MPV,for G, y e BPV,<. & <; }-

Using Proposition 6 & times we have following Corollary:

:), 2 Corollary 1. Let G = (N, A, BPV, S, VP) be a nctwork with vector of
: maximal states M, and let G'=(N, A, BPV, §°, VP*) be a network with vector of
n, maximal states M* > M. Suppose that x is a MPV, for G, such that x, = M, and

y € MPV,, such that y, =k, <, ¢ <; and X+y<M'. Then, X+y is a MPV 4,
for the network G if and only if X is a MPV,, for the network G.

Definition 1: Let X be a MPVy, and lety be a BPV of a network
G=(N, A, BPV, S, VP), with maximal capacity M. We definc function r:,: by

= = ]-_; x.r+y’>Mr
g(l'g,]f)=(319323--'1:n )‘ i :{ 0 v

otherwise

Next Proposition helps to select best combination of links that should be
changed:
3 Proposition 8: Let G =(N, A, BPV, S, VP) be a network with maximal
i capacity M. The minimal numbers of components that need to be changed with
. ones that work with greater level, in order to get a network that works in level

L M s ming ) (R, ), ¥ eMPV,, FEBPV and <, & <, }.

1=]

Suppose that for each link of the network G=(N., A, BPV, S, VP), we
have a new one that works with one level greater. In fact, the i-th link can be

- replaced with a link with S, ={0,1,.... M+1} and have probability vector p,.

b For cach XeMPV, and JeBPV such that <.& <. and

Zéf(.f,)_/), =min{ Zé"(i’f)), |xeMPV,, yeBPV and <; ¢ <} we definc a

i=] i=]




new network G, =(N, A, BPV, §’, VP’) with S =S and p,=p, when
@(¥,7), =0 and S,={0,1,..., M+1} and, p, = p, when ga(.\"',)"!); =1. When

there is more then one such network, we will choose that one with greater
reliability.

At the end, we give how to choose which links to be improved in order
to obtain a most reliable network that works with one level greater.

Step 1 We will find all X eMPV,,and y € BPV such that <; < <; and

if(i',)?)' =min{ if(f,ﬁ]; |XeMPV,, yeBPVand <, &
i=1

i=l
<}
Step 2 Using Proposition 5, we will find the MPV,,, d =1, M +1 for all
candidates.
Step 3 Using (4) we will calculate the reliability of level d, d =1,M +1

for all candidates, and we will select that one that has greatest
reliability.

4. Case study

In this section we will explain the proposed procedure on an example.
Regard the network G given in Figure 1 with §,={0,1,2}, $,={0,1,2,3},
S;={0,1}, S4={0,1,2} and Ss={0,1,2,3}. The probability vectors arc

P, =(0.1,0.1,0.8), p,=(0.1,0.1,0.2,0.6), p;=(0.1,0.9), p,=(0.1,0.1,0.8) and
P5=(0.1,0.1,0.1,0.7). They can be replaced by links with f), =(0.1,0.1,0.1,0.7),
P,=(0.1,0.1,0.2,0.6), 7, =(0.1,0.9), p;=(0.1,0.1,0.8) and p;=(0.1,0.1,0.1,0.7).

[t is clear that the vector of maximal state M=(2,3,1,2.3) and BPV={(1.1.0,0,0),
(0,0,0,1,1), (1,0,1,0,1), (0,1,1,1,0)}.

Figure 1
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The minimal path vectors of all levels, obtained using algorithm given in
(4], are given in Table 1.

T SMP VL TPV i SMPV i d [ oMPY,
- 1111000 |2 21101 3 22011 4123121
or 00011 11011 21112 221022
s 10101 10112 L2220 ) 21123
and 01110 22000 11022
| 12110 10123
s 01121 23110
| 00022
? Table 1. MPV,, of network G.

Now, in order to obtain a network that works with level 5, to each

i MPV,, we will add a binary vector. Links that should be changed are given in
- Table 2.

e N L B Y o R
P 23121 34121 1,2
33022 ]
‘ 23132 4
24231 2,3,4
22022 33022 I
32123 1
22033 4
23132 4
280 ]=03 32123 1
31224 13,5
211 34 4,5
: 22033 4
Table 2:. MPV5 of the new networks and components that should be changed

- The minimal number of component that should be improved is 1, and we
| have two candidates for the new network: to change the first component and to
b change the fourth component.

: Let G; be the network obtained from G, such that the first is replaced
L with a component that have capacity set S1={0, 1, 2, 3} and probability
E vector P, =(0.1, 0.1, 0.1, 0.7). The reliability of this network is given in the first
b part of Table 3. Let G, be the network obtained from G, such that the fourth
'__-componeni is replaced with a component that have capacity set S;={0,1,2, 3}
L and probability vector p,=(0.1.0.1,0.1,0.7). The reliability of this network is
E given in the second part of Table 3. It is obvious that we nced to improve the
- fourth component, because in this case we have greater reliability.




NEWork G D Wl P S o Daaoe & & o S
FRE !.-MP-V,;ZJ 7 [WREN2TRY . | o] ot 5 MP Vi | M2TR;
1 11000 097848 |3 2201 1 0,78008
00011 21412
10101 127121
: 01110 11022
| 10123
| 23110
32101
33000
2 21101 092522 | 4 23121 0,53572
{ 11011 220272
10112 21123
22000 32112
) 0 33011
' {]}?iél 5 33 022 0.33936
00022 32123 |
etwork Gs T T o M P
T:qd-- ' 2 NPV - ] MRy | s EMPV TM2TR,
1 11000 097848 |3 22011 0.78204
00011 211 12
10101 12131
01110 11022
10123
99 10
01132
00033
: 2 21101 092522 |4 23121 0.53754
1 i YT ] 3. 202 2
i 10112 21123
22000 ) (; |2
j‘ : 11033 g
{]}2111“) 5 22033 0.34384
00022 2 %1 52
Table 3. Reliability of level d=1,2,3,4,5 for networks G, and G,.

5. Conclusion

This paper deals with the problem of t\\fo-tcrmina] network rcllftblllty
Here. we are concentrating on the problem of improvement of such systems
More concretely, it is analysed how to improve the network to get as greale
reliability as possible with minimal cost. In that purpos

e, we propose some of -
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ks to be changed with new links that work with greater level. A method for
lection of those components is given.

On the other side, we want to use the knowledge of the minimal path
tectors of the old network to find the minimal path vectors of the improved one.
ifor that reason, some relations between minimal path vectors of those two
ktworks are analysed and some useful properties are found. Using these
ipoperties, the minimal path vectors for the improved network can be found
more quickly.
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