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Abstract

This paper presents a comprehensive mathematical model for trans-
mission dynamics of measles, incorporating the SEIRV model. Measles,
a highly contagious disease, remains a significant public health challenge
despite the availability of effective vaccines. The SEIRV model extends
the classical SEIR model by including vaccination subgroup, allowing for
more accurate representation of immunization strategies and their im-
pact on disease spread. Simulations using real data for North Macedonia
have been performed. Also, the basic reproduction number is derived to
determine the threshold for disease eradication.
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1. Introduction

Measles is a highly contagious viral disease caused by the genus
Morbillivirus, a member of Paramyxovirdae family (see [1]). Char-
acterized by symptoms such as fever, cough and distinctive red rush,
measles can lead to severe health complications including pneumonia,
encephalitis and even death particularly in young unvaccinated children
and individuals with compromised immune system. The virus is trans-
mitted through respiratory droplets when an infected individual coughs
or sneezes, making it one of the most easily spread infectious diseases
(see [2], [3]).

Despite the availability of an effective vaccine, measles remains a sig-
nificant public health challenge in many parts of the world. Vaccination
programs have drastically reduced the incidence of measles in numerous
countries, but outbreaks still occur, often linked to areas with low vacci-
nation coverage. The persistence of measles in influenced by factor such
as vaccination hesitancy, lack of access to health care and population
movement (see [4]).

Mathematical models of infectious diseases serve as simplified repre-
sentation of complex processes. By incorporating various factors such as
transmission rate, contact rate, recovery rate and population dynamics,
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these models allow researchers to simulate disease outbreaks and eval-
uate potential strategies. The main aim is to predict the course of an
epidemic and identify critical points for intervention and optimize public
health response. The recent COVID-19 pandemic has highlighted the
critical role of mathematical models in guiding global response efforts
(see [5], [6]). Among the various models developed, the Susceptible-
Infectious-Recovered (SIR), (see [7]) and Susceptible-Exposed-Infectious-
Recovered (SEIR) (see [8]) models are foundational frameworks in epi-
demiology. Both SIR and SEIR models have been extensively applied
to study various infectious diseases, offering insights into disease trans-
mission dynamics, potential outbreak sizes, and the impact of public
health interventions. Understanding the dynamics of measles infection
(see [9]), including transmission rates and the impact of vaccination is
crucial for public health effort aimed at controlling and eventually elim-
inating this disease. Research and modeling of measles transmission can
provide valuable insights for developing strategies to enhance vaccina-
tion coverage and prevent outbreaks, ultimately aiming to achieve and
maintain herd immunity.

In this paper, the classical SEIR model is enhanced by vaccination
subgroup which represents the individuals who have been immunized
and are assumed to be protected against measles, thereby significantly
reducing the number of individuals that are suspected to get measles in-
fection. This paper aims to apply the SEIRV model to measles data from
North Macedonia including vaccination coverage and reported cases of
measles with focus on understanding the impact of vaccination on dis-
ease transmission. By providing a detailed analysis of measles dynamics
in North Macedonia, this study seeks to raise awareness of the need to
increase the vaccination rate.

2. SEIRV Model

In this paper measles infectious spread is described with SEIRV
model. This model is based on traditional epidemiology SIR model
developed by Kermack and McKendrick (see [7]). At all times, the total
population is decided into 5 subgroups: susceptible, infected, exposed,
recovered and vaccinated representing different stages of disease in the
population:

N(t) = S(t) + E(T ) + I(t) +R(t) + V (t), (1)

where t is in time units (days, years).
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Figure 1. SEIRV model of measles

The susceptible individuals are those who are susceptible to the in-
fection and have not been vaccinated or infected. Exposed individuals
are those who have been in contact with infected individual but are
not yet infectious. Individuals who are infected and can transmit the
measles to other individuals are part of infected compartment. Recov-
ered individuals are those that have recovered from the measles infection
and have gained immunity. Vaccinated individuals are those that have
been vaccinated and are immune to measles infection. The model used
in this research is represented in Figure 1.

The recruitment rate of susceptible individuals in the population is
Λ . The susceptible subgroup is increased by recruitment rate Λ and
rate of ineffective vaccination σ and decreased by transmission rate β
and vaccination rate q. The exposed subgroup is formed by interaction
of susceptible individual with infectious individual. This subgroup is
increased by transmission rate β and decreased by incubation rate α.
Exposed individuals who develop the disease move to infected subgroup
and can spread the disease. The exposed subgroup is increased by in-
cubation rate α and is decreased by recovery rate γ and mortality rate
due measles µ1. The recovery subgroup includes the recovered individu-
als and is increased by successful vaccination rate ν and recovery rate γ.
The vaccination subgroup includes fully vaccinated individuals who after
gaining immunity transfer to recovered subgroup. This group increases
with vaccination rate q and decreases by unsuccessful vaccination rate
σ and successful vaccination rate ν. All the subgroups except infected
are decreased by natural mortality rate µ. In this model it is assumed
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that gained immunity to the measles is permanent which means that
individual can be infected only once with measles. The SEIRV model is
represented with system of first order differential equations as:

dS (t)

dt
= Λ− βS(t)I(t)

N
− qS(t) + σV (t)− µS (t)

dE (t)

dt
=

βS (t) I (t)

N
− αE (t)− µE (t)

dI (t)

dt
= αE (t)− γI (t)− µ1I (t) (2)

dR (t)

dt
= γI (t) + νV (t)− µR (t)

dV (t)

dt
= qS (t)− σV (t)− νV (t)− µV (t)

with initial conditions

S (0) = S0 ≥ 0, E (0) = E0 ≥ 0, I (0) = I0 ≥ 0,

R (0) = R0 ≥ 0, V (0) = V0 ≥ 0. (3)

Theorem 2.1. The feasible solution set for the initial conditions
given with Equation (3)

Ω =

{
x = (S,E, I,R, V ) ∈ R5 : 0 ≤ N ≤ Λ

µ

}
is bounded region.

P r o o f. The total population in any given time is:

N (t) = S (t) + E (t) + I (t) +R (t) + V (t) ,

and thus:
dN

dt
=

dS

dt
+

dE

dt
+

dI

dt
+

dR

dt
+

dV

dt
= Λ− µ (S + E + I +R+ V )

= Λ− µ (N − I)− µ1I, (4)

dN

dt
= Λ− (N − I)− µ1I ≤ Λ− µN. (5)

Then it can be deducted that:
dN

dt
≤ Λ− µN. (6)
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Solving the following ordinary differential equation:

dN

dt
+ µN = Λ,

it is obtained the general solution:

N =
Λ

µ
+ C0e

−µt.

For initial condition t =0 it is following:

N0 =
Λ

µ
+ C0 ⇒ C0 = N0 −

Λ

µ
,

So, for the particular solution it is obtained:

N =
Λ

µ
+

(
N0 −

Λ

µ

)
e−µt = N0e

−µt +
Λ

µ

(
1− e−µt

)
.

Because of (6), it follows that:

N ≤ N0e
−µt +

Λ

µ

(
1− e−µt

)
.

Taking that
t → ∞,

it is obtained that:

N ≤ Λ

µ
. (7)

Since, it is proven that

Ω =

{
x = (S,E, I,R, V ) ∈ R5 : 0 ≤ N ≤ Λ

µ

}
is a bounded region. 2

Corollary 2.1. The total population at any given time is nonneg-
ative where the initial condition of the model (2) is nonnegative since
the total population is

N(t) = S(t) + E(t) + I(t) +R(t) + V (t),

and from Theorem 1, S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, V (t) ≥ 0.

The basic reproduction number (see [10]), denoted as ℜ0, is defined
as expected number of secondary cases produced by one infected indi-
vidual over the infectious period. The reproduction number is crucial
in understanding the potential for spreading measles infection. In this
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paper, the reproduction number ℜ0 for disease-free equilibrium will be
found.

One solution for model (2), where E=0, I=0 is a disease-free equi-
librium point:

X∗ = (S∗, E∗, I∗, R∗, V ∗) =

Λ (σ + ν + µ)

(σµ+ (q + µ)(µ+ v))
, 0, 0,

vqΛ

µ (σµ+ (q + µ)(µ+ v))
,

qΛ

(σµ+ (q + µ)(µ+ v))
,

(8)

The basic reproduction number for model (2) in disease-free equilibrium
point is:

ℜ0 =
βµ(σ + ν + µ)

(q + µ)(ν + µ) + σµ
· α

(α+ µ)(γ + µ1)
.

The next generation matrix is derived from two matrices ℑ and Υ,
The matrix ℑ (x) represents the rate of appearance of new infection,
while the matrix Υ represents the rate of transfer of individuals into
and out of compartments.

Let X = (S ,E , I ,R,V )T then model (2) can be written as:

dX

dt
= ℑ (x)−Υ(x) ,

where:

ℑ (X) =


0

βSI
N
0
0
0

 ,

and

Υ (X) =


βSI
N + qS ++µS − σV − Λ
(α+ µ)E
(γ + µ1) I − αE
µR− γI − νV
(σ + ν + µ)V − qS

 .

The infected subgroups are exposed E and infected I. The matrix F
represents infection transmission in exposed, while the matrix presents
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the infected compartments. The matrices are 2 × 2 Jacobian matrices
at the disease-free equilibrium point (8):

F (X∗) =

(
0 βS∗

N∗

0 0

)
,

and

V (X∗) =

(
(α+ µ) 0
−α (γ + µ1)

)
.

In the equilibrium point, the total population is N∗ = S∗ + E∗ + I∗ +
R∗ + V ∗ = Λ

µ therefore it follows:

F (X∗) =

(
0 µβS

Λ
0 0

)
.

The next generation matrix is:

FV −1 =

(
0 βµ(σ+ν+µ)

(q+µ)(ν+µ)+σµ

0 0

)
·

(
1

α+µ 0
α

(α+µ)(γ+µ1)
1

γ+µ1

)
. (9)

Hence, the reproduction number is:

ℜ0 =
βµ(σ + ν + µ)

(q + µ)(ν + µ) + σµ
· α

(α+ µ)(γ + µ1)
. (10)

3. Simulation and results

In 2023, only one case of measles has been reported in North Macedo-
nia. In the period from 2014 to 2023 a total of 2020 infected individuals
have been registered, as shown in Table 1. Epidemics were registered in
2014, 2017, 2018 and 2019 (see [11]). The last epidemic in North Mace-
donia began in late 2018 and ended in 2019 with total of 1901 infected
individuals in 24 cities.

WHO recommends vaccination coverage of rate of 95% to achieve
herd immunity (see [12]). The total coverage of MRP vaccine in North
Macedonia in 2022 is 70.7% (see [13]) which led to epidemic in the period
2018-2019. The recovery time from measles is 2 to 3 weeks, so that if
the recovery time is 2 weeks, the recovery rate is 0.071.

The incubation period for measles can vary from 7-21 days, (see [14]),
so that if the incubation period is set to 8 days, the incubation rate is
0.125. Mortality rate of measles is 1 to 2 per 1000 infected individuals
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Year Number of infected

2014 116
2015 1
2016 0
2017 19
2018 64
2019 1819
2020 0
2020 0
2021 0
2022 0
2023 1

Table 1. Number of measles infection cases in North Macedonia.

Parameter Value

Λ 21960
β 0.9
α 0.125
γ 0.1428
σ 0.007
ν 0.993
q 0.744
µ 0.00214
µ1 0.001

Table 2. Parameter values for North Macedonia.

(see [14]). The rate of unsuccessful vaccination is approximately 5%
among all vaccinated individuals (see [15]).

In order to illustrate the impact of vaccination, the represented
model was developed in AnyLogic (visit [16]). For simplicity it was
estimated that the infants and the newborns are fully immunized for
measles. Parameter’s values are given in Table 2. The first simulations
were performed for vaccination rate of 0.95. The results in Figure 2
show that as the transmission rate decreases, the number of infected
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Figure 2. Number of infected individuals for transmis-
sion rate 0.9 and 0.6 for vaccination rate 0.95

Figure 3. Number of infected individuals for transmis-
sion rate 0.9 and 0.6 for vaccination rate 0.744

individuals decreases. When the transmission rate is set to 0.9 the num-
ber of infected individuals is under 1000. When the transmission rate
decreased to a value of 0.6 the number of infected individuals decreased
to around 600.

In 2018, the vaccination coverage against measles in N. Macedonia
is only 74.4%, therefore, the next set of simulations are performed for
vaccination rate 0.744 and transmission rate 0.6 and 0.9. The results
are shown in Figure 3.

From Figure 3 can be concluded that the number of infected individ-
uals is higher for higher transmission rate, i.e. the number of infected
individuals increases as the transmission rate increases. When the trans-
mission rate is 0.6 the number of infected individuals is around 1600,
and when the transmission rate increases to 0.9, the number of infected
individuals is increased at almost 2000 infected individuals.
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4. Conclusion

In this paper SEIRV model of measles is represented. The SEIRV
model serves as a valuable tool for public health authorities in designing
and evaluating vaccination policies ultimately contributing to the global
effort to control and eliminate measles. The SEIRV model successfully
predicts the transmission dynamic of measles disease. This model indi-
cates that the spread of disease depends on the transmission rate and
the contact between susceptible individuals with infected individuals in
the population. Simulation results show that the number of infected
individuals increases as the transmission rate increases.

Also, in this paper the need of higher vaccination coverage is em-
phasized. The results of the simulation show that by increasing the
vaccination rate to 0.95, as per WHO recommendation for immuniza-
tion, the number of infected individuals decreases significantly.
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