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1. Introduction

In the words of Michael Atiyah, duality in mathematics is not a theorem but a “princi-
ple” [1]. It appears in many subjects in mathematics and has been adapted and modified in
different situations. We use a duality that comes from the finite geometry and apply it to
the linear codes.

Whenever an object is equivalent to its own dual, then it is said to be self-dual, but, if
it is equal to its dual, it is self-polar. Self-duality and self-polarity can be viewed as different
degrees of symmetry. In this work, we use the duality between points and hyperplanes
in the projective geometry PG(k − 1, q). Usually, the transform is defined constructively
in terms of the projective geometry [2–4] by matrices [2,5] or by a characteristic vector [6].
Any point a = (a1, a2, . . . , ak) defines a hyperplane Ha, which consists of all the points
x = (x1, x2, . . . , xk) such that (a, x) = ∑ aixi = 0. This duality (known as projective duality
or Delsarte duality) is useful in the study of two-weight codes (see [2,7,8]). A generalization
of the projective duality was provided by Dodunekov and Simonis in [3].

Projective self-dual (PSD) and self-polar codes are related to other combinatorial struc-
tures, such as two-weight codes [2], divisible codes, self-dual bent Boolean functions [9],
strongly regular graphs [7], association schemes, etc. [10]. This motivates us to study these
codes. Furthermore, we associate them with square matrices and, especially in the case of
self-polar codes, symmetric matrices.

The main problems related to the equivalence of combinatorial objects refer to an-
swering the question of whether two objects are equivalent, to classifying structures with
given properties, to finding automorphism groups or the canonical form, etc. Checking
whether a given incidence structure is self-polar is related to these problems. We associate
the self-polarity with solving the following problem: can a square matrix be reduced to a
symmetric form with only permutations of rows and columns? If so, what is an efficient
algorithm for this?

This work studies projective self-dual and self-polar linear codes over a finite field.
The family of self-polar codes forms a subclass of the class of PSD codes over Fq for a given
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prime power q. We study two main problems. The first one is to determine the parameters
regarding which the existence of a q-ary PSD code is possible. The second is related to the
question of how to check whether a given projective self-dual code is self-polar. The first
problem is solved with theoretical arguments, and, for some of the obtained families of
codes, it is directly established that they consist of self-polar codes. To answer the question
from the second problem, we use an algorithmic approach. The first step in this direction
is to check whether a square matrix defined in a special way, related to the considered
code, can be reduced to a symmetric form by permutations of rows and columns and, if
so, to find the corresponding symmetric matrix. The second step is to find a characteristic
vector of the code that proves its self-polarity. At the end of the paper, we also present
classification results for PSD and self-polar codes with two and three nonzero weights.

This paper is organized as follows. We provide the main definitions in Section 2.
Section 3 is devoted to the projective self-dual codes. In that section, we present the
possible parameters for which PSD codes may exist and provide many examples. In
Section 4, we associate PSD codes with square binary matrices and present an algorithm
to check whether such a matrix is a permutation equivalent to a symmetric matrix, thus
checking whether the corresponding code is self-polar. Some computational results and
applications are provided in Section 5.

2. Preliminaries

Let q be a prime power and Fq be a finite field with q elements. A linear q-ary code
of length n and dimension k is a subspace of the vector space Fn

q . If q = 2, the code is
called binary, if q = 3, the code is ternary, and, if q = 4, it is quaternary. A k × n matrix G
with elements from Fq, whose rows form a basis of C is called a generator matrix of the
code. If G does not have zero columns, the code has full length, and, if the columns of
G are pairwise nonproportional, the code is called projective. In this work, we consider
only linear codes of full length as later in the paper under linear code we will mean a code
of full length. The columns of the matrix G can be considered as points in the projective
geometry PG(k − 1, q). If we put all points of PG(k − 1, q) in a matrix Sk,q as columns, then

Sk,q generates the simplex code Sk,q of length θ(k, q) = qk−1
q−1 .

The (Hamming) weight of a vector v ∈ Fn
q is the number of its nonzero coordinates. If

the nonzero codewords of the linear code C have exactly t different weights, C is a t-weight
code. The simplex and replicated simplex codes are the only 1-weight linear codes [3]. All
nonzero codewords in Sk,q have weight qk−1. The weight enumerator of a linear code of
length n is the polynomial W(y) = ∑n

i=0 Aiyi, where Ai is the number of codewords of
weight i. The weight enumerator of the simplex code Sk,q is W(y) = 1 + (qk − 1)yqk−1

. The
minimum nonzero weight of a codeword in C is called the minimum weight of the code. If
C has length n, dimension k, and minimum weight d, it is said to be an [n, k, d]q code.

Two linear [n, k, d]q codes C1 and C2 are equivalent if there is a monomial n × n matrix
M and an automorphism of the field γ such that vMγ ∈ C2 for each codeword v ∈ C1.
The pair (M, γ) is called an automorphism of the code C if vMγ ∈ C for all v ∈ C. All
automorphisms of C form its automorphism group denoted by Aut(C). The permutation
automorphism group PAut(C) consists of all permutations of the coordinates that preserve
the code. Obviously, PAut(C) is a subgroup of the symmetric group Sn. We also require
a definition for an automorphism of a square matrix. We say that the permutation of the
rows of the square matrix A is an automorphism of A if it maps its columns into columns
of the same matrix.

Using the matrix Sk,q and a generator matrix G of the linear code C, we define a
characteristic vector of C.

Definition 1. The characteristic vector of [n, k]q code C with respect to matrix G is

χ(C, G) = (χ1, χ2, . . . , χθ(k,q)) ∈ Zθ(k,q) (1)
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where χi is the number of columns of G that are equal or proportional (with nonzero coefficients) to
the i-th column of matrix Sk,q.

A code C can have different characteristic vectors depending on the matrix G and the
considered generator matrix Sk,q of the simplex code Sk,q. We fix the matrix Sk,q to consist
of all vectors in Fk

q whose first nonzero coordinate is 1, ordered lexicographically. If we
permute the columns of the matrix G, we obtain a permutation equivalent code to C having
the same characteristic vector. Moreover, from a characteristic vector, one can restore the
columns of the generator matrix G, possibly in a different order and/or multiplied by
nonzero elements of the field. Therefore, without loss of generality, we can suppose that
the columns in G are ordered lexicographically and belong to the set of columns of the
matrix Sk,q. When the code C and the matrix G are clear from the context, we will write
briefly χ. Note that the sum of the coordinates of a characteristic vector of C is equal to the
length of the code.

Further, we consider the matrix Mk = ST
k,q · Sk,q, where the multiplication is over

Fq. The rows of Mk are nonproportional codewords in the simplex code Sk,q. Since
MT

k = (ST
k,q · Sk,q)

T = ST
k,q · Sk,q = Mk, Mk is a symmetric q-ary θ(k, q) × θ(k, q) ma-

trix. By N (Mk), we denote the matrix obtained from Mk by replacing all nonzero el-
ements by 1. Calculating the square and the determinant of this matrix, we obtain
N (Mk)

2 = qk−2(qJθ(k,q) − Iθ(k,q)), where Iθ(k,q) and Jθ(k,q) are the identity and the all-ones
matrix of order θ(k, q), respectively, and det(N (Mk)

2) = qk+θ(k,q)(k−2). Hence N (Mk) is
an invertible matrix.

We use the matrix N (Mk) and a characteristic vector of the linear code C to define its
projective dual code.

Definition 2. Let α and β be rational numbers such that αwi + β is a non-negative integer for
any nonzero weight w of a codeword in C. The projective dual code Dα,β,k(C) of C is the linear
code with characteristic vector χα,β = αχN (Mk) + β1, where 1 is the all-ones vector of the
corresponding length.

As described in [6], the i-th coordinate of χα,β is equal to αwt(vi) + β, where vi ∈ C is
the i-th row of the matrix ST

k,qG.
If two linear codes are equivalent, then their projective dual codes for the given α, β

and k are also equivalent [5]. The length of Dα,β,k(C) is nD = αnqk−1 + βθ(k, q) [5]. If C
is a projective linear code, then its projective dual code has at most two nonzero weights,
namely w1 = αqk−2(q − 1)n + βqk−1 and w2 = αqk−2 + w1. In the general case, the weights
in Dα,β,k(C) are qk−2(αχi + α(q − 1)n + βq, where χi represents the coordinates of the
characteristic vector, i = 1, . . . , θ(k, q).

3. Projective Self-Dual (PSD) and Self-Polar Codes

The projective self-dual codes were studied first by Dodunekov and Simonis in [3], but
they called the codes σ self-dual. We used the term projective self-duality in our work [6],
but here we propose to call these codes PSD codes in order to distinguish them from the
well-known self-dual codes with respect to orthogonality.

Definition 3. The linear code C is projective self-dual (PSD) if it is equivalent to its projective
dual code Dα,β for some α and β. The code is self-polar if it has a characteristic vector χ such that
χα,β = χ for some α and β.

If C is an [n, k]q code with a characteristic vector χ, and tC = (C|C| . . . |C) is the code
C, repeated t times, then the characteristic vector of tC is tχ and therefore its projective
dual for the same α and β′ = tβ is

χ′
α,tβ = αtχN (Mk) + tβ1 = tχα,β.
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It follows that, if C is PSD (resp. self-polar), the same is tC. Consider now the code
C+1 = (C|Sk,q). This code has a characteristic vector χ+1 = χ + 1. Then, its projective dual
code Dα,β′ has a characteristic vector

χ+1,α,β′ = α(χ + 1)N (Mk) + β′1 = χα,β + α1N (Mk) + (β′ − β)1

= χα,β + αqk−11 + (β′ − β)1 = χα,β + (αqk−1 + β′ − β)1.

If we take β′ = 1 + β − αqk−1, then χ+1 = χα,β + 1, so, if C is PSD (resp. self-polar),
the same is C+1. Therefore, we will concentrate on linear codes for which the characteristic
vector has zero coordinates and the greatest common divisor of the coordinates is 1.

Consider one more code, related to C, namely its projective complementary code C.
If C is a projective code, C is the code with characteristic vector χ = 1 − χ. If G is the
corresponding generator matrix of C, the generator matrix of C consists of all columns of
Sk,q that do not belong to G. Then,

χα,β′ = α(1 − χ)N (Mk) + β′1 = α1N (Mk)− αχN (Mk) + β′1

= αqk−11 − αχN (Mk)− β1 + (β + β′)1

= (αqk−1 + β + β′)1 − χα,β.

We can take β′ = 1 − β − αqk−1, and then, if C is PSD (resp. self-polar), the same is C.
Therefore, for the projective codes of length n and dimension k, it is enough to check for

projective self-duality only the codes with n ≤ θk, q/2 = qk−1
2(q−1) .

In the case of non-projective codes, for C, we take the code with a characteristic vector
χ = t1 − χ, where t is the largest integer among the coordinates of χ.

The following theorem provides the possible parameters α and β for which the projec-
tive dual Dα,β(C) could be equivalent to the code C ([3, Proposition 6]).

Theorem 1. Let C be q-ary [n, k, d] projective self-dual code. If C is not a replicated simplex
code, then

α = ±q1− k
2 , β = − q − 1

1 + qk−1α
n. (2)

After converting formula (2), we obtain

α =
ϵ

q
k
2−1

, β = − q − 1
1 + qk−1 ϵ

q
k
2 −1

n = − q − 1

1 + ϵq
k
2

n, (3)

where ϵ = ±1.
It follows that

(i) α =
1

q
k
2−1

, β = − q − 1

1 + q
k
2

n, or (ii) α = − 1

q
k
2−1

, β =
q − 1

q
k
2 − 1

n. (4)

Since α is a rational number, then q
k
2−1 should be integer, so, if k is odd, then q is an

even power of a prime. Moreover,

ϵw

q
k
2−1

− q − 1

1 + ϵq
k
2

n ∈ Z

for any nonzero weight of a codeword in C. Since gcd(q
k
2−1, 1 + ϵq

k
2 ) = 1, the above

number is an integer only if q
k
2−1 | w and (1 + ϵq

k
2 ) | (q − 1)n. Hence, we can write the

nonzero weights of the code in the form w = qk/2−1a, where a is a positive integer.
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If the projective linear code C is projective self-dual, it must be a two-weight code with
two nonzero weights w1 and w2 = w1 + αqk−2. We can calculate the weight distribution of
C using the Pless power moments [11]

1 + A1 + A2 = qk, w1 A1 + w2 A2 = qk−1(q − 1)n.

Solving this system with unknowns A1 and A2, we obtain that A2 = (q − 1)n if ϵ = 1
and A1 = (q − 1)n if ϵ = −1. In both cases, the maximal number of nonproportional
codewords with one of the weights (say w) is equal to the length of the code, and, if we put
these nonproportional codewords as rows in a matrix, this matrix will be an n × n square
matrix. Denote this matrix by M(G). As we mentioned after Definition 2, if vi is the ith
row in ST

k,qG, then χα,β,i = αwt(vi) + β; hence, the coordinates of the characteristic vector
χα,β, which are equal to 1, correspond to codewords of C with weight w, and, furthermore,
all these coordinates correspond to a maximal set of nonproportional codewords with this
weight. As (χα,β)i = 1 shows, the i-th row of the matrix Sk,q appears in the considered
generator matrix Gα,β of the projective dual code, M(G) = GT

α,βG, and it can also be
obtained by intersecting the columns and rows of Mk corresponding to the coordinates
equal to 1 in the characteristic vectors χ and χα,β, respectively.

If the code is self-polar, then Gα,β = G, and therefore the matrix M(G) = GTG is
symmetric. This proves the following theorem.

Theorem 2. Let C be a projective linear PSD [n, k, {w1, w2}] code with a characteristic vector
χ with respect to the generator matrix G. If Gα,β is the generator matrix corresponding to the
characteristic vector χα,β, then M(G) = GT

α,βG is a square n × n matrix whose rows have the
same weight w, where w = w1 or w2. Moreover, these rows form a maximal set of nonproportional
codewords with this weight in the code C. If C is a self-polar code, the matrix M(G) is symmetric.

Consider now a non-projective PSD code of length n and dimension k with a character-
istic vector χ with respect to its generator matrix G. Suppose that χ has zero coordinates. If
Gα,β is the generator matrix that corresponds to the characteristic vector χα,β, we consider
the matrix M(G) = GT

α,βG. As the code is PSD, this is a square matrix of order n. The

following theorem generalizes Theorem 2. The PSD codes are divisible by ∆ = qk/2−1.

Theorem 3. Let C be a PSD [n, k, d]q code with a characteristic vector χ with respect to its
generator matrix G, and χα,β defines a code that is equivalent to C. Suppose that χ contains at least
one zero coordinate and W(y) = 1 + A1yw1 + · · ·+ Asyws is the weight enumeration of C, where
Ai ≥ 0 for all i = 1, . . . , s, s > 1, w1 = d, w2 = d + ∆, . . . , ws = d + (s − 1)∆ ≤ n. Then,
A2 + 2A3 + · · ·+ (s − 1)As = (q − 1)n or (s − 1)A1 + (s − 2)A2 + · · ·+ As−1 = (q − 1)n.
Moreover, if χα,β = χ, then M(G) is a symmetric matrix.

Proof. As we mentioned above, if vi is the i-th row in ST
k,qG, then (χα,β)i = αwt(vi) + β. As

χα,β has zero coordinates, then αwt(vi) + β = 0 if wt(vi) = d or ws. Take αwt(vi) + β = 0
for wt(vi) = d, which means that αw1 + β = 0. It follows that αwj + β = j − 1, j = 1, . . . , s.

As (χα,β)i = j shows that the i-th row of the matrix Sk,q appears in the considered
generator matrix Gα,β of the projective dual code repeated j times, the corresponding
vector from ST

k,qG appears as a row in M(G) = GT
α,βG also repeated j times. Moreover,

∑
θ(k,q)
i=1 (χα,β)i = n and therefore A2 + 2A3 + · · ·+ (s − 1)As = (q − 1)n, bearing in mind

that in addition to the rows that belong to ST
k,qG we must also count all their proportional

vectors. Here, we also use the fact that the code C is equivalent to its projective dual, so
they share the same weight enumerator. Similarly, if αws + β = 0, then (s − 1)A1 + (s −
2)A2 + · · ·+ As−1 = (q − 1)n.

Obviously, if χα,β = χ, then the two generator matrices coincide (recall that we take
the columns in G in lexicographic order) and therefore M(G) = GTG is symmetric.
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Next, we provide some restrictions on the parameters of the PSD codes. We separately
consider the two cases presented in (4) for even and odd values of the dimension k.

First, let k = 2k1 be even.

(ie) In this case, α = 1
qk1−1 and β = − q−1

qk1+1
n. Since β is an integer, qk1 + 1 must divide

(q − 1)n. If q is even, gcd(q − 1, qk1 + 1) = 1 and therefore qk1 + 1 will divide the
length n. If q is odd, gcd(q − 1, qk1 + 1) = 2 and it is enough that n is a multiple of
(qk1 + 1)/2. So, we have two subcases:

(i1) Let q be even. Now, β = −(q− 1)t and n = (qk1 + 1)t, where t is a positive integer.
Since αw + β = a − (q − 1)t ≥ 0, we have a ≥ (q − 1)t. Then, the parameters of
the code are [(qk1 + 1)t, 2k1,≥ qk1−1(q − 1)t].
Applying the Griesmer bound to these parameters, we obtain

(qk1 + 1)t ≥
2k1−1

∑
i=0

⌈ qk1−1(q − 1)t
qi ⌉ =

k1−1

∑
i=0

qk1−1−i(q − 1)t +
2k1−1

∑
i=k1

⌈ (q − 1)t
qi−k1+1 ⌉

⇒ (qk1 + 1)t ≥ (qk1 − 1)t +
k1

∑
i=1

⌈ (q − 1)t
qi ⌉

⇒ 2t ≥
k1

∑
i=1

⌈ (q − 1)t
qi ⌉ ≥ k1.

According this inequality, t ≥ ⌈ k1
2 ⌉. We will provide some examples.

Example 1. Let q = 2. We are looking for [(2k1 + 1)t, 2k1,≥ 2k1−1t}] binary PSD
codes for several values of k1.

* k1 = 2) In this case, C is a binary even [5t, 4,≥ 2t] code. The code can be a projec-
tive two-weight PSD code only for t < 3. The parity-check [5, 4, 2] binary code is
a projective self-dual two-weight code. Its projective complement is a two-weight
[10, 4, 4] code with weight enumerator 1+ 5y4 + 10y6. There is at least one self-polar
[15, 4, 6] code with weight enumerator W(y) = 1 + 5y6 + 5y8 + 5y10, as an exam-
ple, which is the code with characteristic vector (0, 1, 0, 1, 2, 0, 1, 0, 2, 2, 2, 0, 2, 1, 1).
This code is interesting also as a code with balanced weight distribution; i.e., it has
the same number of codewords for each nonzero weight. This code is not projective
and therefore is different from the codes with balanced weight distributions presented
in [12].

* k1 = 3) In this case, C is a binary doubly even [9t, 6,≥ 4t] code, t ≥ 2. There
are one [18, 6, 8] and five [27, 6, 12] projective self-dual two-weight codes. Their
weight enumerators are 1 + 45y8 + 18y12 and 1 + 36y8 + 27y12, respectively. The
complement codes have parameters [36, 6, 16] and [45, 6, 20].

* k1 = 4) In this case, C is a binary [17t, 8,≥ 8t] code divisible by 8, t ≥ 2. There
is one two-weight [51, 8, 24] code that is PSD and 41 two-weight [68, 8, {32, 40}]
codes, 29 of which are PSD [13].

* k1 = 5) In this case, C is a binary [33t, 10,≥ 16t] code divisible by 16, t ≥ 3. There
is a two-weight [198, 10, 96] code.

Four families with binary two-weight codes have been studied in [14]. The codes in the
family Φ′

k− have parameters [(2k1 + 1)(2k1−1 − 1), 2k1, {22k1−2 − 2k1−1, 22k1−2}]. The
presented [5, 4, 2]2 and [27, 6, 12]2 two-weight codes belong to this family. The codes in
the family Φk+ are projective complementary to the codes from Φ′

k− and have parameters
[(2k1 + 1)t, 2k1, 2k1−1t}] for t = 2k1−1.

Example 2. Let q = 4. The two-weight codes in this case have parameters
[(4k1 + 1)t, 2k1, {4k1−1t, 4k1 t}].
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* k1 = 2) Now, C is a quaternary [17t, 4,≥ 4t] code. According to [13], there are 1
[17, 4, 12]4 and 38 [34, 4, 24]4 projective two-weight PSD codes.

* k1 = 3) In this case, C is a binary doubly even [65t, 6,≥ 16t] code, t ≥ 2.

(i2) Let q be odd. Now, β = − q−1
2 t and n = qk1+1

2 t, where t is a positive integer. Since
αw + β = a − q−1

2 t ≥ 0, we have a ≥ q−1
2 t. The parameters of the codes in this

case are [ qk1+1
2 t, 2k1,≥ qk1−1 q−1

2 t]. According to the Griesmer bound,

qk1 + 1
2

t ≥
2k1−1

∑
i=0

⌈ qk1−1(q − 1)t
2qi ⌉ =

k1−1

∑
i=0

qk1−1−i q − 1
2

t +
2k1−1

∑
i=k1

⌈ (q − 1)t
2qi−k1+1 ⌉

⇒ qk1 + 1
2

t ≥ qk1 − 1
2

t +
k1

∑
i=1

⌈ (q − 1)t
2qi ⌉

⇒ t ≥
k1

∑
i=1

⌈ (q − 1)t
2qi ⌉ ≥ k1.

Example 3. Let q = 3. The ternary two-weight codes in this family have parameters
[ 3k1+1

2 t, 2k1, {3k1−1t, 3k1 t}]. If k1 = 2, C is a ternary self-orthogonal [5t, 4,≥ 3t] code,
t ≥ 2. There are one [10, 4, 6]3, two [15, 4, 9]3, and four [20, 4, 12]3 projective two-weight
codes, and all of them are PSD [13]. If k1 = 3, C is a ternary [28t, 6,≥ 18t] code, t ≥ 2.
The only projective two-weight [56, 6, 36]3 code is PSD.

(iie) In this case, n = q
k
2 −1
q−1 β = qk1−1

q−1 β = θ(k1, q)β = (qk1−1 + · · ·+ q + 1)β, β ∈ N. Since
αw + β = −a + β ≥ 0, we have a ≤ β. It follows that the nonzero weights of the code
belong to the following set of positive integers {qk1−1, 2qk1−1, . . . , βqk1−1}. This means
that, if C is not the replicated simplex code, then β ≥ 2.
If C is a projective PSD two-weight code of length n = θ(k1, q)β and dimension 2k1, its
nonzero weights are qk1−1(β − 1) and qk1−1β. For the binary field, the codes have pa-
rameters [(2k1 − 1)β, 2k1, {2k1−1(β − 1), 2k1−1β}]; for example, for β = 2, the parame-
ters are [6, 4, {2, 4}], [14, 6, {4, 8}], [30, 8, {8, 16}], [62, 10, {16, 32}], [126, 12, {32, 64}], etc.

Example 4. There are two even [6, 4, 2]2 codes of full length, namely codes C1 and C2, with
characteristic vectors χ1, χ2, and weight enumerators W1 and W2, respectively, where

χ1 = (2, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0), W1(y) = 1 + 7y2 + 7y4 + y6,

χ2 = (1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0), W2(y) = 1 + 6y2 + 9y4.

For this length, we take α = −1/2, β = 2. Since − 1
2 · 6 + 2 < 0, we cannot consider a

projective dual code of C1, which means that C1 is not projective self-dual. But, for C2, we have

−1
2

χ2N (M4) + (2, 2, . . . , 2) = (1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) = χ2.

Hence, this code is not only PSD but self-polar.

Example 5. The codes in the family Φk− from [14] have parameters [(2k1 − 1)2k1−1, 2k1,
{22k1−2 − 2k1−1, 22k1−2}] and can be obtained in this case for β = 2k1−1. The two-weight
code from the previous example belongs to this family. There are exactly seven inequivalent
[28, 6, {12, 16}]2 codes in Φ6− .
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Example 6. For a positive integer k1 and a prime power q, Sk1,q ⊕Sk1,q is a projective

two-weight code with parameters [2 qk1−1
q−1 , 2k1, qk1−1] and weight enumerator W(y) = 1 +

2(qk1 − 1)yqk1−1
+ (q2k1 − 2qk1 + 1)y2qk1−1

. Its characteristic vector is

χ = (11 . . . 1︸ ︷︷ ︸
θ(k1,q)

10 . . . 0︸ ︷︷ ︸
qk1

10 . . . 0︸ ︷︷ ︸
qk1

. . . 10 . . . 0︸ ︷︷ ︸
qk1

).

Computing χα,β = − 1
2k1−1 χ + 2 = χ, we see that this code is self-polar. Thus, we obtain

an infinite family of q-ary projective self-polar codes. If we take the code C ∼= tSk1,q ⊕ (β −
t)Sk1,q, 1 ≤ t < β, where tSk1,q = (Sk1,q|Sk1,q| . . . |Sk1,q) is the concatenation of t copies
of Sk1,q, then C is a 3-weight self-polar code.

We will also provide an example for a projective self-dual 4-weight binary code.

Example 7. Let C be the binary [12, 4, 2] code with a generator matrix

G =


100000001000
111111100100
111111100010
111100010001

.

This code has a weight enumerator W(y) = 1 + 2y2 + y4 + 4y6 + 8y8 and characteristic
vector (with respect to the given generator matrix)

χ = (2, 1, 0, 1, 0, 3, 3, 1, 0, 0, 0, 0, 0, 0, 1).

For the projective dual code, we obtain χ′ = (1, 0, 1, 0, 1, 3, 0, 3, 1, 0, 0, 0, 0, 2, 0) and

G′ =


000000111111
001111000011
010111000011
111000000100

.

It is easy to verify that these two codes are equivalent, and therefore C is a 4-weight projective
self-dual code.

If k is odd (k ≥ 3), then q must be an even power of a prime, or q = p2s, where p is
prime and s is a positive integer. Then, qk/2 = psk. Now,

α =
ϵ

ps(k−2)
, β = − p2s − 1

1 + ϵpsk n,

and the weights have the form w = ps(k−2)a.
Now, we again consider two cases according to (4).

(io) Now, α = 1
ps(k−2) and β = − (ps−1)(ps+1)

1+psk n. Since psk+1
ps+1 = θ(k,−ps) is a positive integer,

we have β = − (ps−1)n
θ(k,−ps)

∈ Z, and thus n = θ(k,−ps)t, β = −(ps − 1)t, a ≥ (ps − 1)t.

In this case, the codes have parameters [ psk+1
ps+1 t, k,≥ ps(k−2)(ps − 1)t].

Example 8. Let q = 4 and C be a [ 2k+1
3 t, k,≥ 2(k−2)t]4 code. One [6, 3, 4]4 and one [9, 3, 6]4

two-weight PSD codes are presented in [13].
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(iio) If α = − 1
ps(k−2) and β = (ps−1)(ps+1)

psk−1
n = (ps+1)n

θ(k,ps)
, we have psk−1

ps−1 ∈ Z, but gcd( psk−1
ps−1 , ps +

1) = 1. Hence, n = psk−1
ps−1 t = θ(k, ps)t and β = (ps + 1)t for a positive integer t. Since

αw + β = −a + (ps + 1)t ≥ 0, then a ≤ (ps + 1)t.

Example 9. Let C again be a quaternary code, p = 2, s = 1. In this case, C is a code of
dimension k and length (2k − 1)t. There is one two-weight quaternary [7, 3, 4]4 code, and it is
projective self-dual [13].

4. Self-Polar Codes—Computational Aspects

Let C be a linear PSD [n, k]q code with a characteristic vector χ. First, we consider only
projective codes, and in such a case the vector χ is binary. To check whether the code C is self-

polar, we use the following matrices: Nχ =

(
χ

N (Mk)

)
and Nχ,α,β =

(
0 χ

χT
α,β N (Mk)

)
.

Obviously, if χα,β = χ, this matrix is symmetric, as well as the matrix M(G) defined in
Theorem 2.

We take a PSD code, which means that for some parameters α and β the codes with
characteristic vectors χ and χα,β are equivalent. From the previous section, we know that α
and β depend on the code parameters and are fixed for a given PSD [n, k]q code. Therefore,
to verify that the code is self-polar, we need to prove that there are characteristic vectors of
C and its projective dual code Cα,β such that the corresponding matrix Nχ,α,β is symmetric.

If we consider Nχ,α,β as an incidence matrix of an incidence structure, this structure
is self-polar if there exists a permutation matrix P such that PNχ,α,β = NT

χ,α,βPT [15]. The

matrix P permutes the rows of Nχ,α,β, and PT permutes the columns of the transpose
matrix. According to [16], two projective linear [n, k]q codes are equivalent if and only if
their characteristic vectors belong to one orbit under the action of Autk on the set of all
characteristic vectors of the projective linear [n, k]q codes, where Autk is the subgroup of
the symmetric group Sθ(k,q), which consists of all permutation automorphisms of the rows
of the matrix N (Mk). This means that, if σ ∈ Autk, applying σ to the rows of N (Mk), we
obtain a matrix whose columns are the same but possibly in a different order. If P is the
permutation matrix corresponding to σ, then there is another θ(k, q)× θ(k, q) permutation
matrix Q such that PN (Mk) = N (Mk)Q.

Consider the characteristic vector χP for P ∈ Autk. Then,

αχPN (Mk) + β1 = αχN (Mk)Q + β1 = (αχN (Mk) + β1)Q = χα,βQ,

which proves that (χP)α,β = χα,βQ.

Let P =

(
1 0

0T P

)
and Q =

(
1 0

0T Q

)
. Then,

QT Nχ,α,βP =

(
0 χP

QTχT
α,β QTN (Mk)P

)
=

(
0 χP

(χP)T
α,β N (Mk)

)
= NχP,α,β.

Hence, if the code C is self-polar, the matrix Nχ,α,β is equivalent to a symmetric matrix.
The above reasoning shows that we need an algorithm to check whether a given

square matrix is equivalent to a symmetric matrix.

4.1. An Algorithm for Checking Whether a Given Square Matrix Is Equivalent to a
Symmetric Matrix

We only consider binary matrices that are equivalent to their transpose matrices. Let A
be a square n× n binary matrix of this type. Since we use canonical forms in the equivalence
test, without loss of generality, we can assume that A is in canonical form. Let Pn be the
group of all n × n permutation matrices. As already mentioned in this paper, we consider
the following equivalence in the set Mn(F2) of all n × n binary matrices: two matrices
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A, B ∈ Mn(F2) are equivalent if the matrix B can be obtained after permuting the rows
and columns of A. This means that B = PAQ for two permutation matrices P, Q ∈ Pn.
This equivalence corresponds to an action of the group Pn ×Pn on the set Mn(F2), and
the equivalence classes are the orbits under this action. The canonical representative of an
orbit is a unique matrix from the orbit, and the canonical form of a matrix is the canonical
representative of its equivalence class (orbit). So, all matrices in one equivalence class have
the same canonical form. Description and references regarding the canonical form are
provided in [16].

Consider the following automorphism group of A:

PAut(A) = {(P1, P2) ∈ Pn ×Pn : P1 AP2 = A}.

If PAut(A) is trivial, there is only one pair (T1, T2) ∈ Pn ×Pn such that T1 AT2 = AT .
If A is equivalent to a symmetric matrix, then P3 A = AT PT

3 for a permutation matrix P3.
Hence, P3 AP3 = AT and T1 = P3 = T2. It follows that A is equivalent to a symmetric matrix
if and only if T1 = T2 and this symmetric matrix is T1 A. If the group PAut(A) is not trivial,
PAut(AT) = {(PT

2 , PT
1 ) ∀(P1, P2) ∈ PAut(A)}. If P3 A = AT PT

3 , then P3P1 AP2PT
3 = AT

for any (P1, P2) ∈ PAut(A). These considerations prove the correctness of the algorithm
presented below.

We present the transformation of a matrix to a symmetric form in the following
Algorithm 1.

Algorithm 1. Checking for equivalence to a symmetric matrix

Input: A square binary matrix B.
Output: If B is equivalent to a symmetric matrix, the output is Ba ∼= B; otherwise, the answer is
negative.

1. Compute the canonical form of B, and let this be matrix A.
2. We find the canonical map (T1, T2) and the automorphism group PAut(AT). The canonical

map sends the matrix into its canonical form, which is T1 ATT2. If this canonical form is not
the matrix A, the given matrix cannot be equivalent to a symmetric matrix. Only if
T1 ATT2 = A, we continue the algorithm.

3. For all matrices Q for which (P, Q) ∈ PAut(AT) for a matrix P ∈ Pn, do the following:
Check whether the matrix Bs = (QT2)

T A is symmetric. If yes, B is equivalent to the
symmetric matrix Bs and the algorithm terminates with a positive answer.

4. If (QT2)
T A is not symmetric for all matrices Q, then B is not equivalent to a symmetric

matrix and the algorithm terminates with a negative answer.

The complexity of this algorithm depends on the order of the automorphism group
PAut(AT). If the group is not trivial and the matrix B is equivalent to a symmetric matrix,
there are actually more symmetric matrices equivalent to B.

4.2. Algorithm for Checking the Self-Polarity

For the following algorithm, we require an equivalence relation in the set of all
symmetric binary matrices that is similar to the graph isomorphism. If we consider the
symmetric matrices A1 and A2 as adjacency matrices of the undirected graphs G1 and G2,
respectively, the two graphs are isomorphic if and only if there is a permutation matrix
P such that A2 = PT A1P [17]. In this case, we will say that the matrices A1 and A2 are
graph-equivalent.

It is important to check when the characteristic vector χ has the same weight as some
of the rows of the matrix Nχ,α,β. The weights of the vector rows in Nχ,α,β are

wt(0, χ) = n, wt(0, u) = qk−1, wt(1, u) = qk−1 + 1,
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where u is a vector row in N (Mk). The possible values of the length n are provided in
Section 3. In each of these cases, n cannot be equal to a power of q. But, there are a few
possibilities when n = qk−1 + 1.

1. Let k = 2k1. It is easy to see that, if d is the greatest common divisor of qk1 + 1 or
qk1 − 1 with qk−1 + 1 = q2k1−1 + 1, then d divides q + 1. If k1 = 1, then n = q + 1, and
thus C must be a projective [q+ 1, 2] code. The only such code is the simplex code S2,q.
Let k1 ≥ 2. In the case (i1), if n = (qk1 + 1)t = n = qk−1 + 1, then d = qk1 + 1 | q + 1,

which is not possible. If q and t are odd and n = qk1+1
2 t for an odd positive integer t

(case (i2)), d = qk1+1
2 or qk1 + 1, but, in both cases, n ̸= qk−1 + 1.

If n = qk1−1
q−1 β, k1 ≥ 2, the needed equality holds only for k1 = 2, t = q2 − q + 1, and

n = q3 + 1. These codes have parameters [q3 + 1, 4, {q(q2 − q), q(q2 − q + 1)}], and
they are complements of the [q2 + q, 4, {q2 − q, q2}] codes (the codes denoted by SU2
in [10] for l = 2 and i = q have these parameters). Since q2 + q < q3 + 1, we can study
only the code SU2, for which the first row of the matrix Nχ,α,β has a different weight
compared to the other rows of the same matrix.

2. Let k be odd, k ≥ 3, q = p2s, and n = psk±1
ps±1 t. As in the previous case, if

d = gcd( psk±1
ps±1 , p2s(k−1) + 1), then d | q + 1. But, when n = psk±1

ps±1 t = p2s(k−1) + 1,

d = psk±1
ps±1 | p2s + 1, which is impossible for k ≥ 3.

Hence, without loss of generality, we can suppose that wt(χ) ̸∈ {qk−1, qk−1 + 1}.
Next, we are looking for a characteristic vector χ(s) of the self-polar code C such that

χ
(s)
α,β = χ(s). Let Nχ,α,β be equivalent to the symmetric matrix A. Without loss of generality,

we can consider wt(χ) = n ̸= qk−1 + 1 (as described above) and can take A =

(
0 a
aT A

)
,

where wt(a) = wt(χ). The matrix A is also symmetric and is equivalent to the symmetric
matrix N (Mk), but we need to check if these two matrices are graph-equivalent. If yes,

there is a permutation matrix P such that PT AP = N (Mk). Let P =

(
1 0

0T P

)
. For the

symmetric matrix PT AP, the following holds:

PT AP =

(
1 0

0T PT

)(
0 a
aT A

)(
1 0

0T P

)
=

(
0 aP

PTaT PT AP

)
=

(
0 aP

PTaT N (Mk)

)
.

Hence, aP is the required characteristic vector.
However, if A and N (Mk) are not graph-equivalent, we repeat the algorithm with

another symmetric matrix B that is equivalent to Nχ,α,β but not graph-equivalent to A.
The described algorithm proceeds in the following steps:

1. Checking whether the matrix Nχ,α,β is equivalent to a symmetric matrix, say A. If no,
the algorithm terminates with the answer that the code is not self-polar. If yes, then
we need all symmetric matrices, equivalent to A, that are representatives of different
equivalent classes according to the graph-equivalence.

2. If the matrices A and N (Mk) are not graph-equivalent, then we take another matrix
from the representatives of equivalent classes from the previous step. If neither of
these representatives is graph-equivalent to N (Mk), the algorithm terminates with
negative answer.

3. Let A be graph-equivalent to N (Mk), finding a permutation matrix P such that
PT AP = N (Mk) (described in the above paragraph).

4. The vector aP is the needed characteristic vector.
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In this algorithm, we need to prove that the codes with characteristic vectors χ and
aP are equivalent. Since the first row and column have specific weights, different from the
other rows and columns, we have

A = Q1Nχ,α,βQ2 =

(
1 0

0T Q1

)(
0 χ

χT
α,β N (Mk)

)(
1 0

0T Q2

)

=

(
0 χQ2

Q1χT
α,β Q1N (Mk)Q2

)
.

Hence, a = χQ2 and PTQ1N (Mk)Q2P = N (Mk). It follows that Q2P ∈ Autk, and
therefore a code with characteristic vector χQ2P is equivalent to the considered code C [16].

If the code is not projective, we construct matrices Nχ and Nχ,α,β in the following way.
To obtain matrix Nχ, we append N (Mk) with s more rows, where s is the maximal value of
a coordinate in χ. The j-th coordinate of the i-th added row is 1 if χj ≥ i and 0 otherwise.
Similarly, we construct Nχ,α,β, by expanding Nχ by the corresponding number of columns.

5. Applications

The most natural study of code self-polarity is related to projective two-weight codes.
The reasons for this are as follows. These codes are related to many other interesting
combinatorial structures, such as strongly regular graphs, bent functions, etc., and the
self-polarity property has a direct relation to some properties of these objects. For example,
some self-polar two-weight codes correspond to self-dual bent functions [6].

Information about SRGs, their properties, and their connection to linear codes can be
found in [18]. The parameters of the SRGs associated with the listed projective two-weight
binary and ternary codes are also provided in [13]. A strongly regular graph (SRG) is
a regular graph G = (V, E) with v vertices and degree k such that, for some given non-
negative integers λ and µ, every two adjacent vertices have λ common neighbors and every
two non-adjacent vertices have µ common neighbors. Such a strongly regular graph is
denoted by srg(v, k, λ, µ).

A survey on two-weight codes was provided by Calderbank and Kantor [10]. An
overview with additional families and examples was presented in [18].

When studying projective two-weight codes with small parameters, it is found that a
large number of them are PSD. It is natural to ask how many of these PSD codes are also
self-polar. Therefore, in this section, we examine for self-polarity all the two-weight codes
classified in [13]. Along with this, we extend these results with new classification results,
such as finding all [36, 4, 25]5 codes.

It is known that to every two-weight code there corresponds a strongly regular graph
with qk vertices. By examining the self-polarity, it was found that some of the codes also
correspond to strongly regular graphs with n vertices, where n is the length of the code, and
degree equal to one of the weights. The question remains, is there a relationship between
the two graphs corresponding to the given code, and what is it?

From the study, it became clear that many non-projective codes are also self-polar. In
Section 3, we presented some three- and even four-weight self-polar codes. In this section,
we investigate binary and ternary three-weight codes, which are related to the presented
projective two-weight codes. More precisely, for a given two-weight [n, k, {w1, w2}]q code,
we consider the three-weight codes of the same length and dimension and three weights,
w1, w2, and w3.

The classification results were obtained using the program GENERATION, and the
algorithms described in the previous section were implemented on the base of functions
from the software package LCEQUIVALENCE, v. 1.1 . These programs are freely available
and can be downloaded from http://www.moi.math.bas.bg/moiuser/~data/Software/Q
extNewEdition.html (accessed on 1 September 2024).

http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition.html
http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition.html
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Most of the binary two-weight codes, provided in Tables 1–3, are known, as well
as their self-duality. These codes are fully classified in [13], but some examples were
previously provided in [10,19,20].

The first columns of the tables contain the parameters of the code, and the second
ones contain the numbers of all the inequivalent codes of the corresponding length and
dimension. In the third columns, we put the weight enumerators of the codes, but if there
are no PSD codes they are omitted. PSD codes exist for all parameters of two-weight codes
but not for all studied cases of three-weight codes. After the weight enumerators, the
number of PSD and self-polar codes of the corresponding parameters are provided. The
last columns of the tables contain additional information concerning the particular code. It
is indicated which of the codes correspond to a certain example of q, k1, and t (Section 3).

Table 1. Binary two-weight codes.

Code Number Weight Enumerators PSD Self-Polar Additional Information

[5, 4, 2] 1 1 + 10z2 + 5z4 1 1 Ref. [13], Example 1: k1 = 2, t = 1
[6, 4, 2] 1 1 + 6z2 + 9z4 1 1 [10]
[12, 4, 6] 1 1 + 12z6 + 3z8 1 0

[14, 6, 4] 1 1 + 14z4 + 49z8 1 1 [10]
[18, 6, 8] 1 1 + 45z8 + 18z12 1 1 Example 1: k1 = 3, t = 2
[21, 6, 8] 2 1 + 21z8 + 42z12 2 2 [10]
[27, 6, 12] 5 1 + 36z12 + 27z16 5 4 Refs. [10,20], Example 1: k1 = 3, t = 3
[28, 6, 12] 7 1 + 28z12 + 35z16 7 6 Refs. [10,14,20], Example 6: k1 = 3
[56, 6, 28] 1 1 + 56z28 + 7z32 1 - the code may be self-polar

[30, 8, 8] 1 1 + 30z8 + 225z16 1 1 [10]
[45, 8, 16] 2 1 + 45z16 + 210z24 2 2 [10]
[51, 8, 24] 1 1 + 204z24 + 51z32 1 1 Ref. [13], Example 1: k1 = 4, t = 3
[60, 8, 24] 12 1 + 60z24 + 195z32 12 11 [10]
[68, 8, 32] 41 1 + 187z32 + 68z40 29 27 Ref. [13], Example 1: k1 = 4, t = 4

Table 2. Ternary two-weight codes.

Code Number Weight Enumerators PSD Self-Polar Additional Information

[10, 4, 6] 1 1 + 60z6 + 20z9 1 1 Ref. [13], Example 3: k1 = 2, t = 1
[12, 4, 6] 2 1 + 24z6 + 56z9 2 2
[15, 4, 9] 2 1 + 50z9 + 30z12 2 0 Ref. [13,19], Example 3: k1 = 2, t = 3
[16, 4, 9] 4 1 + 32z9 + 48z12 4 4
[20, 4, 12] 4 1 + 40z12 + 40z15 4 4 Ref. [13], Example 3: k1 = 2, t = 2

[11, 5, 6] 1 1 + 132z6 + 110z9 0 0
[55, 5, 36] 1 1 + 220z36 + 22z45 0 0 [8]
[56, 6, 36] 1 1 + 616z36 + 112z45 1 1 Ref. [8],Example 3: k1 = 3, t = 2

Table 3. Quaternary two-weight codes.

Code Number Weight Enumerators PSD Self-Polar Additional Information

[6, 3, 4] 1 1 + 45z4 + 18z6 1 1 Ref. [13], Example 8: k = 3, t = 2
[7, 3, 4] 1 1 + 21z4 + 42z6 1 1 Ref. [13], Example 9: k = 3, t = 1
[9, 3, 6] 1 1 + 36z6 + 27z8 1 1 Ref. [13], Example 8: k = 3, t = 3

[10, 4, 4] 1 1 + 30z4 + 225z8 1 1
[15, 4, 8] 2 1 + 45z8 + 210z12 2 2
[17, 4, 12] 1 1 + 204z12 + 51z16 1 1 Ref. [13], Example 2: k1 = 2, t = 1
[20, 4, 12] 7 1 + 60z12 + 195z16 7 6
[25, 4, 16] 19 1 + 75z16 + 180z20 19 13
[30, 4, 20] 68 1 + 90z20 + 165z24 66 34
[34, 4, 24] 84 1 + 153z24 + 102z28 38 33 Ref. [13], Example 2: k1 = 2, t = 2
[35, 4, 24] 231 1 + 105z24 + 150z28 179 57
[40, 4, 28] 481 1 + 120z28 + 135z32 315 93
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In the following example, we provide more details about one of the two-weight
self-polar codes.

Example 10. Let C be the binary [18, 6, 8] code. There exists one code with these parameters and
it is a self-polar code. The weight enumerator of C is W(y) = 1 + 45y8 + 18y12. The generator
matrix for which C and its dual code have the same characteristic vector is

G =



000000111111111111
001111000000001111
000011000011110011
010100000100110111
111111001101010011
011101010010010001

.

The complementary code C is a binary [45, 6, 20] code with weight enumerator
W(y) = 1 + 18y20 + 45y24, and it has a generator matrix

G =



000000000000000000000000011111111111111111111
000000000000011111111111100000000111111111111
000001111111100000011111100001111000000111111
001110000111100011100111101110011000111000011
010010011001100100100001110010101011011001100
110100101010101001001010110110110101101010101

.

Recall that the columns of G are all columns of S6,2, which does not belong to the matrix G.
As we proved in the previous section, C is also a self-polar code.

Using G, we obtain the following symmetric matrix:

M(G) = GTG =



111111001101010011
110110011011110101
101101011111001101
111001011011111010
110011001110101111
101110011100111110
000000111111111111
011101101101101110
111111110010101100
101011110110011011
011110101110011101
111100110001011111
010111111000111011
110101100111111001
001111111111110000
011011111011000111
100111110101100111
111010100111110110



.

Each row and column of GTG has weight 12. What is more, in this case, the main diagonal
also has 12.

The studied three-weight codes are listed in Tables 4 and 5. In the binary case,
we are looking for codes with weights d, d + t, d + 2t, when the codes are divisible
by t. The PSD and self-polar codes with these parameters have weight enumerators
W(y) = 1 + A1yd + A2yd+t + A3yd+2t, such that either A2 + 2A3 = n or 2A1 + A2 = n.
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Example 11. We consider one [7, 3, 2] quaternary three-weight code that is self-polar. Its weight
enumerator is 1 + 3z2 + 15z4 + 45z6. The generator matrix G and the matrix GTG have the
following structures:

G =

0111111
1000123
0233222



M(G) = GTG =



1000123
0200222
0033000
0033000
1200301
2200013
3200130


The third and fourth columns of G are equal. This corresponds to two equal rows in GTG.

Table 4. Binary three-weight codes.

Code Number Weight Enumerators PSD Self-Polar Additional Information

[15, 4, 6]

1 1 + 2z6 + 11z8 + 2z10 1 0

Example 1: k1 = 2, t = 3
2 1 + 3z6 + 9z8 + 3z10 2 0
6 1 + 4z6 + 7z8 + 4z10 4 2
4 1 + 5z6 + 5z8 + 5z10 2 1
4 1 + 6z6 + 3z8 + 6z10 1 1

[20, 4, 8]
2 1 + 1z8 + 8z10 + 6z12 2 0

Example 1: k1 = 2, t = 43 1 + 2z8 + 6z10 + 7z12 1 0
6 1 + 3z8 + 4z10 + 8z12 1 0

[18, 6, 8] 1 1 + 46z8 + 16z12 + 1z16 1 1 Example 1: k1 = 3, t = 2

[27, 6, 12]

3 1 + 37z12 + 25z16 + 1z20 3 3

Example 1: k1 = 3, t = 3

5 1 + 38z12 + 23z16 + 2z20 5 5
5 1 + 39z12 + 21z16 + 3z20 4 3
2 1 + 40z12 + 19z16 + 4z20 2 2
1 1 + 41z12 + 17z16 + 5z20 1 1
1 1 + 42z12 + 15z16 + 6z20 1 1

[36, 6, 16]

11 1 + 28z16 + 34z20 + 1z24 7 7

Example 1: k1 = 3, t = 4

109 1 + 29z16 + 32z20 + 2z24 27 26
479 1 + 30z16 + 30z20 + 3z24 51 48

1627 1 + 31z16 + 28z20 + 4z24 94 88
2888 1 + 32z16 + 26z20 + 5z24 110 104
3715 1 + 33z16 + 24z20 + 6z24 124 118
2764 1 + 34z16 + 22z20 + 7z24 88 82
1628 1 + 35z16 + 20z20 + 8z24 59 53
516 1 + 36z16 + 18z20 + 9z24 21 19
216 1 + 37z16 + 16z20 + 10z24 20 15
24 1 + 38z16 + 14z20 + 11z24 1 1
20 1 + 39z16 + 12z20 + 12z24 3 3
3 1 + 41z16 + 8z20 + 14z24 1 1
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Table 5. Ternary three-weight codes.

Code Number Weight Enumerators PSD Self-Polar Additional Information

[15, 4, 9] 1 1 + 52z9 + 26z12 + 2z15 1 0

[16, 4, 6]

4 1 + 2z6 + 28z9 + 50z12 4 4
5 1 + 4z6 + 24z9 + 52z12 5 5
4 1 + 6z6 + 20z9 + 54z12 3 2
3 1 + 8z6 + 16z9 + 56z12 2 2
1 1 + 10z6 + 12z9 + 58z12 1 1
1 1 + 12z6 + 8z9 + 60z12 0 0

[20, 4, 9]

7 1 + 2z9 + 36z12 + 42z15 7 5
23 1 + 4z9 + 32z12 + 44z15 15 12
26 1 + 6z9 + 28z12 + 46z15 12 6
28 1 + 8z9 + 24z12 + 48z15 20 14
12 1 + 10z9 + 20z12 + 50z15 5 2
6 1 + 12z9 + 16z12 + 52z15 3 3
2 1 + 14z9 + 12z12 + 54z15 0 0
1 1 + 16z9 + 8z12 + 56z15 1 1

[20, 4, 12]

5 1 + 42z12 + 36z15 + 2z18 5 4

Example 2. k1 = 2, t = 2

10 1 + 44z12 + 32z15 + 4z18 8 5
4 1 + 46z12 + 28z15 + 6z18 4 2
5 1 + 48z12 + 24z15 + 8z18 3 1
2 1 + 50z12 + 20z15 + 10z18 2 0
1 1 + 52z12 + 16z15 + 12z18 1 1

We list some new projective two-weight codes over F5. Classification results, as well
as the number of PSD and self-polar codes, are provided in Table 6.

Table 6. Two-weight codes over F5.

Code Number Weight Enumerators PSD Self-Polar

[12, 4, 5] 1 1 + 48z5 + 576z10 1 1
[18, 4, 10] 1 1 + 72z10 + 552z15 1 1
[24, 4, 15] 7 1 + 96z15 + 528z20 7 7
[26, 4, 20] 1 1 + 520z20 + 104z25 1 0
[30, 4, 20] 38 1 + 120z20 + 504z25 38 33
[36, 4, 25] 547 1 + 144z25 + 480z30 441 160
[39, 4, 30] 8 1 + 468z30 + 156z35 8 0

Finally, in Table 7, we list the parameters of some known SRGs that are derived from
two-weight self-polar codes.

Table 7. Strongly regular graphs corresponding to PTW codes.

SRG Parameters (v, k, λ, µ) PTW Parameters Weight Enumerators

(25,16,9,12) [25, 4, 16]4 1 + 75z16 + 180z20

(27,16,10,8) [27, 6, 12]2 1 + 36z12 + 27z16

(28,12,6,4) [28, 6, 12]2 1 + 28z12 + 35z16

(36,25,16,20) [36, 4, 25]5 1 + 144z25 + 480z30

(45,16,8,4) [45, 8, 16]2 1 + 45z16 + 210z24

(56 45 36 36) [56, 6, 36]3 1 + 616z36 + 112z45

6. Conclusions

In this paper, we present an extended study on the projective self-dual (PSD) and
self-polar codes. The self-polar code can be used for constructing other combinatorial
structures, such as strongly regular graphs (SRGs), association schemes, bent Boolean
functions, etc.

Two algorithms, connected to the problem of the self-polarity, are proposed. The first
algorithm checks whether a binary square matrix can be reduced to a symmetric matrix
by row and column permutations. If so, the algorithm provides the symmetric matrix (or
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matrices) itself. The second algorithm concerns checking the self-polarity of a PSD code. If
one code is self-polar, then the algorithm returns such a generator matrix that provides one
and the same characteristic vector of the code and its dual.

Using these two algorithms and the provided theoretical properties, the self-polarity
of some projective two-weight (PTW) codes over fields with two, three, four, and five
elements is investigated. It is shown that some of the known strongly regular graphs can be
constructed using self-polar codes. The research is extended by constructing and testing for
the self-polarity regarding some non-projective linear codes with three different weights.
The parameters for which no PSD codes were found are not listed in the tables above, but
all the studied structures are available online.

Finally, we will pose two open problems:

1. In our examples, if there exists a projective PSD code of length n for which the number
of codewords of the weight w is equal to (q − 1)n and there are also integers λ and µ
according to the parameters (n, w, λ, µ) listed in Chapter 12 in [18], then there exists a
strongly regular (n, w, λ, µ) graph. Does this apply to all projective PSD codes with
these properties?

2. To investigate for self-polarity, other combinatorial structures are applied using the
presented algorithms.
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