COMPUTER SCIENCE AND MATHEMATICS MAY 21-23, 2024

OHRID, R. MACEDONIA

APPLICATION OF ALGEBRAS IN EVALUATING PRODUCTS OF DISTRIBUTIONS

Marija Miteva and Limonka Koceva Lazarova

Goce Delcev University - Stip, Macedonia

- Theory of distributions 1950s
 - Mathematical meaning of many concepts in the science that were described heuristically
 - \triangleright Dirac δ function and its derivatives
 - Concepts and their properties were defined heuristically, to be appropriate to the experimental results and to be adequate for analysis and solving the problems that they characterize
 - The operations with those concepts remained mathematically unsupported

$$\delta(x) = \begin{cases} 0, & x \neq 0 \\ \infty & x = 0 \end{cases} \qquad \int_{-\infty}^{\infty} \delta(x) dx = 1$$
 (1)

- Necessity for generalizing the concept of function
- Distribution (generalized function)
- Laurent Schwartz, 'Theory of Distributions' (1950)
 - Many concepts that can not be described with functions can be described applying distributions
 - Concepts that can be described with functions can also be described using distributions

- $\mathcal{D} = \mathcal{D}(\mathbf{R}^n)$ space of smooth functions with compact support (test functions)
- * Generalized function (distribution) is continuous linear mapping $f:\mathcal{D}\to \mathbf{C}$

$$f(\varphi) = \langle f, \varphi \rangle \tag{2}$$

 $\mathcal{D}' = \mathcal{D}'(\mathbf{R}^n)$ - the space of distributions with domain \mathcal{D}

 ${m f}$ - locally integrable function

$$f(\varphi) = \langle f, \varphi \rangle = \int_{\mathbf{R}^n} f(x) \varphi(x) dx \tag{3}$$

- \succ f regular distribution
- Singular distributions
 - \triangleright Dirac δ distribution:

$$\langle \delta, \varphi \rangle = \varphi(0) \tag{4}$$

Differentiation of distributions

$$f \in \mathcal{D}'(\mathbf{R}) \qquad \varphi \in \mathcal{D}(\mathbf{R})$$

$$\left\langle f^{(n)}(x), \varphi(x) \right\rangle = \left(-1\right)^n \left\langle f(x), \varphi^{(n)}(x) \right\rangle \tag{5}$$

$$f \in \mathcal{D}'(\mathbf{R}^n)$$
 $\varphi \in \mathcal{D}(\mathbf{R}^n)$

$$D^{k} = \prod_{i=1}^{n} \left(\frac{\partial}{\partial x_{i}}\right)^{k_{i}} \qquad k_{i} \in \mathbf{N}_{0} \qquad k = \sum_{i=1}^{n} k_{i}$$

$$\langle D^k f, \varphi \rangle = (-1)^k \langle f, D^k \varphi \rangle$$
 (6)

- A derivative of function, with arbitrary order, will always exist if we consider that function as generalized function (distribution)
- Two main problems for the theory of distributions:
- Product of distributions: two arbitrary distributions can not always be multiplied
 - the product of distributions is not an associative operation
- Differentiation of the product of distributions (the product of distributions not always satisfy the Leibniz rule)

- The application of distributions in non-linear systems needs products of singular distributions
- Attempts for defining product of distributions that will be generalization of the existing products
- Regularization method

$$\varphi_n \to \delta(x)$$
 - delta sequence; f - distribution

$$f_n(x) = (f * \varphi_n)(x) = \langle f(y), \varphi_n(x - y) \rangle$$
 (7)

- > Sequence of smooth functions (f_n) ; $f_n \to f$
- $\triangleright(f_n)$ regularization of the distribution f

$$fg = \lim_{n \to \infty} (f * \varphi_n) \cdot (g * \varphi_n)$$
 (8)

with regularization method:

$$\sum_{x} \frac{1}{x} \delta = -\frac{1}{2} \delta'$$
 (9)

but, $\delta \cdot \delta = \delta^2$ is not defined neither with the regularization method

- Overcoming the problem with product of distributions
- Construction of algebra A with properties:
- 1) Contains the space of distributions $\mathcal{D}'(\mathbf{R}^n)$ and $f(x) \equiv 1$ is neutral element in A
- 2) There exist linear differential operators $\partial_i: A \to A$ which satisfy the Leibnitz's rule
- 3) ∂_i generalizes the derivation on the space of distributions
- 4) The product in A generalizes the product of continuous functions

Schwartz's impossibility result

- the functions f(x) = x и g(x) = |x| are considered
- derivative of their classical product:

$$\partial \left(x |x| \right) = 2|x| \tag{10}$$

$$\partial^2 \left(x |x| \right) = 2\partial \left(|x| \right) \tag{11}$$

Derivative of their product in A

$$\partial \left(x \cdot |x| \right) = |x| + x \cdot \partial \left(|x| \right) \tag{12}$$

$$\partial^{2}(x \cdot |x|) = 2\partial(|x|) + x \cdot \partial^{2}(|x|) \tag{13}$$

$$\partial^2 \left(x \cdot |x| \right) = 2\partial \left(|x| \right) + 2x \cdot \delta \tag{14}$$

Schwartz's impossibility result

- From (11) and (14) it follows: $x \cdot \delta = 0$ (15)
- Theorem: In A, if $x \cdot a = 0$ then a = 0.
- From (15) $\Rightarrow \delta = 0$

- New theory of generalized functions, more general then the theory of distributions
- Jean-Francois Colombeau
 - New generalized function and multiplication of distributions (1984)
 - Elementary introduction to new generalized functions (1985)

Colombeau algebra

The product in the algebra generalizes classical product of

 C^{∞} - functions

- $\mathbf{N_0} = \mathbf{N} \cup \{0\}$ non negative integers
- $\mathcal{D}(\mathbf{R}^n)$ the space of C^{∞} functions $\varphi: \mathbf{R}^n \to \mathbf{C}$ with compact support
- for $j \in \mathbf{N_0}$ and $q \in \mathbf{N_0}$ the next sets are defined: $A_0(\mathbf{R}^n) = \left\{ \varphi(x) \in \mathcal{D}(\mathbf{R}^n) \middle| \int_{\mathbf{R}^n} \varphi(x) dx = 1 \right\}$ $A_q(\mathbf{R}^n) = \left\{ \varphi(x) \in \mathcal{D}(\mathbf{R}^n) \middle| \int_{\mathbf{R}^n} \varphi(x) dx = 1, \int_{\mathbf{R}^n} x^j \varphi(x) dx = 0; 1 \le |j| \le q \right\}$ $q \ge 1 \qquad x = (x_1, x_2, ..., x_n) \in \mathbf{R}^n \qquad j = (j_1, j_2, ..., j_n) \in \mathbf{N}^n$ $|j| = j_1 + j_2 + ... + j_n \qquad x^j = (x_1)^{j_1} (x_2)^{j_2} ... (x_n)^{j_n}$

- $A_0 \supset A_1 \supset A_2 \supset A_3 \dots$
- * Theorem: The sets A_q are non empty sets.

Proof: J.F.Colombeau, *Elementary Introduction to New Generalized Functions* (1985)

• For $\varphi \in A_q(\mathbf{R}^n)$ and $\varepsilon > 0$ we denote:

$$\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^{n}} \varphi\left(\frac{x}{\varepsilon}\right) \tag{16}$$

$$\overset{\vee}{\varphi}(x) = \varphi(-x) \tag{17}$$

- $\mathcal{E}(\mathbf{R}^n)$ an algebra of functions $f(\varphi, x): A_0(\mathbf{R}^n) \times \mathbf{R}^n \to \mathbf{C}$ that are infinitely differentiable regarding the second variable \mathcal{X} (with fixed test function φ)
- * The space $C^{\infty}(\mathbf{R}^n)$ is subalgebra of $\mathcal{E}(\mathbf{R}^n)$ (those functions that don't depend of φ)
- \star Embedding of the distributions in $\mathcal{E}(\mathbf{R}^n)$ is such that embedding of $C^{\infty}(\mathbf{R}^n)$ functions is identity

 $\mathcal{E}_{M}\left[\mathbf{R}^{n}\right]$ - subalgebra of $\mathcal{E}\left(\mathbf{R}^{n}\right)$ with elements such that for every compact subset K from \mathbf{R}^{n} and every $p \in \mathbf{N}_{\mathbf{0}}$ there exists $q \in \mathbf{N}$ such that for arbitrary $\varphi \in A_{q}\left(\mathbf{R}^{n}\right)$ there exist c > 0, $\eta > 0$ and the relation holds:

$$\sup_{x \in K} \left| \partial^{p} f \left(\varphi_{\varepsilon}, x \right) \right| \le c \varepsilon^{-q} \tag{18}$$

for $0 < \varepsilon < \eta$.

> Functions in $\mathcal{E}(\mathbf{R}^n)$ which derivatives on compact sets are bounded with negative powers of \mathcal{E}

$$f \in C(\mathbf{R}^n)$$

With the mapping:

$$F(\varphi, x) = \int_{\mathbf{R}^n} f(y)\varphi(y-x)dy = \int_{\mathbf{R}^n} f(x+t)\varphi(t)dt$$
 (19)
the space $C(\mathbf{R}^n)$ is embedded in $\mathcal{E}_M[\mathbf{R}^n]$.

- $\subset^{\infty}\left(\mathbf{R}^{n}\right)$ is contained in $\mathcal{E}_{M}\left[\mathbf{R}^{n}\right]$ in a way that f(x) are those functions $f\left(\varphi,x\right)$ that don't depend of φ .
- $C^{\infty}(\mathbf{R}^{n}) \subset C(\mathbf{R}^{n}) \text{ are embedded in } \mathcal{E}_{M}[\mathbf{R}^{n}] \text{ with (19)}.$ $f(x) \neq \int_{\mathbb{R}^{n}} f(x + \varepsilon t) \varphi(t) dt$ (20)
- Ideal such that the difference in (20) will vanish

 $\mathcal{I}[\mathbf{R}^n]$ is an ideal in $\mathcal{E}_M[\mathbf{R}^n]$ consisting of functions $f(\varphi,x)$ such that for every compact subset K of \mathbf{R}^n and each $p \in \mathbf{N_0}$ there exist $q \in \mathbf{N}$ such that for any $r \geq q$ and each $\varphi \in A_r(\mathbf{R}^n)$ there exist c > 0, q > 0 and it holds:

$$\sup_{x \in K} \left| \partial^{p} f \left(\varphi_{\varepsilon}, x \right) \right| \le c \varepsilon^{r - q} \tag{21}$$

For $0 < \varepsilon < \eta$.

> The elements of $\mathcal{I}[\mathbf{R}^n]$ are called *null functions*

Generalized functions in Colombeau theory are elements of quotient algebra

$$\mathcal{G} \equiv \mathcal{G}(\mathbf{R}^n) = \frac{\mathcal{E}_M \left[\mathbf{R}^n\right]}{\mathcal{I}\left[\mathbf{R}^n\right]} \tag{22}$$

 \bullet In $\mathcal{E}_{M} \lceil \mathbf{R}^{n} \rceil$ the equivalence relation is defined ' \sim ':

$$F_1 \sim F_2 \Leftrightarrow F_1 - F_2 \in \mathcal{I} \left[\mathbf{R}^n \right] \tag{23}$$

- The generalized functions in Colombeau theory are an equivalence classes of smooth functions
- New generalized functions (Colombeau generalized functions)

EMBEDDING OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

$$f(\varphi, x) = f(x) \tag{24}$$

$$f \in C(\mathbf{R}^n) \qquad f \to f(\varphi, x) \in \mathcal{G}(\mathbf{R}^n)$$

$$f(\varphi, x) = \int_{\mathbf{R}^n} f(y)\varphi(y - x)dy = \int_{\mathbf{R}^n} f(x + y)\varphi(y)dy$$
(25)

$$f \in \mathcal{D}'(\mathbf{R}^n) \qquad f \to f(\varphi, x) \in \mathcal{G}(\mathbf{R}^n)$$

$$f(\varphi,x) = \left(f * \varphi\right)(x) = \left\langle f(y), \varphi(y-x) \right\rangle = \int_{\mathbb{R}^n} f(y) \varphi(y-x) dy \qquad (26)$$

- The space of smooth functions $C^{\infty}(\mathbf{R}^n)$ is subalgebra of the Colombeau algebra $\mathcal{G}(\mathbf{R}^n)$
- The space of continuous functions $C(\mathbf{R}^n)$ and the space of distributions $\mathcal{D}'(\mathbf{R}^n)$ are not subalgebras of Colombeau algebra $\mathcal{G}(\mathbf{R}^n)$
 - If f,g are two continuous functions (or distributions which classical product exists), the embedding of their classical product, fg, and the product of their embeddings $f \cdot g$ in \mathcal{G} may not coincide
 - \checkmark This difference of the products has been overcome introducing the concept of "association" in $\mathcal G$

* Generalized functions $F,G\in\mathcal{G}\left(\mathbf{R}^n\right)$ are said to be **associated** $(F\approx G)$ if for each representatives $f\left(\varphi_{\varepsilon},x\right)$ and $g\left(\varphi_{\varepsilon},x\right)$ and each $\psi(x)\in\mathcal{D}\left(\mathbf{R}^n\right)$, there exists $q\in\mathbf{N_0}$ such that for any $\varphi(x)\in A_q\left(\mathbf{R}^n\right)$ holds:

$$\lim_{\varepsilon \to 0_{+}} \int_{\mathbf{R}^{n}} \left| f\left(\varphi_{\varepsilon}, x\right) - g\left(\varphi_{\varepsilon}, x\right) \right| \psi\left(x\right) dx = 0$$
 (27)

* Generalized function $F \in \mathcal{G}$ is associated with the distribution $u \in \mathcal{D}'$ $(F \approx u)$ if for each representative of that generalized function $f(\varphi_{\varepsilon}, x)$ and each $\psi(x) \in \mathcal{D}(\mathbf{R}^n)$, there exist $q \in \mathbf{N_0}$ such that for any $\varphi(x) \in A_q(\mathbf{R}^n)$ holds:

$$\lim_{\varepsilon \to 0_{+}} \int_{\mathbf{R}^{n}} f(\varphi_{\varepsilon}, x) \psi(x) dx = \langle u, \psi \rangle$$
 (28)

- Previous definitions are independent of the representatives chosen
- The distribution associated, if it exists, is unique
- ✓ To an element of Colombeau algebra, with this process of association, is associated element in D', which allows us to consider obtained results in the sense of distribution.
 - V Not any element in Colombeau algebra has an associated distribution!

- □ *Theorem:* If $f,g \in C(\mathbf{R}^n)$ are two continuous functions, their product $f \cdot g$ in $\mathcal{G}(\mathbf{R})$ is associated with their classical product fg in $C(\mathbf{R}^n)$.
- □ Theorem: If $f \in C^{\infty}(\mathbf{R}^n)$ and $T \in \mathcal{D}'(\mathbf{R}^n)$, the product $f \cdot T$ in $\mathcal{G}(\mathbf{R}^n)$ is associated with the classical product $f \cdot T$ in $\mathcal{D}'(\mathbf{R}^n)$
- Theorem: If S and T are two distributions in $\mathcal{D}'(\mathbf{R}^n)$ and their classical product ST in $\mathcal{D}'(\mathbf{R}^n)$ exists, then the product of these two distributions $S \cdot T$ in $\mathcal{G}(\mathbf{R}^n)$ is associated with their classical product ST.

- Two distributions embedded in Colombeau algebra are new (Colombeau) generalized functions
- \checkmark Product of two distributions in \mathcal{G} is in general new (Colombeau) generalized function (for which there may not exist associated distribution)
- ✓ If for the product of two distributions in G there exists an associated distribution, we say that there exists the Colombeau product of those two distributions
- ✓ If the classical product of two distributions exists, then their Colombeau product also exists and is the same with the first one

RESULTS ON PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

$$\ln |x| \cdot \delta^{(s-1)}(x) \approx \frac{-1}{s} \delta^{(s-1)}(x) \qquad s = 1, 2, \dots$$
 (29)

$$x_{+}^{-k} \cdot \delta^{(p)}(x) \approx \frac{(-1)^{k} k \cdot p!}{(p+k+1)!} \delta^{(k+p)}(x) \qquad k = 1, 2, \dots \quad p = 0, 1, 2, \dots$$

$$x_{+}^{-r-1/2} \cdot x_{-}^{-k-1/2} \approx \frac{\left(-1\right)^{r+k} \pi}{2(r+k)!} \delta^{(r+k)}(x) \qquad r = 0, 1, 2, \dots \qquad k = 0, 1, 2, \dots$$

RESULTS ON PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

$$C_{r,k} = \frac{\left(-1\right)^{r} \left(2k-1\right)!! k! r! \pi}{2\left(4k-1\right)!! \left(2r-1\right)!! \left(r-k\right)! \left(r-k\right)!} \sum_{q=0}^{2k} \left(-1\right)^{q} \binom{2k}{q} \binom{r-k}{k-q} \left(2\left(r+q\right)-1\right)!! \left(2\left(k-q\right)-1\right)!!$$

$$x_{-}^{-k} \cdot \delta^{(p)}(x) \approx \frac{k \cdot p!}{(p+k+1)!} \delta^{(k+p)}(x)$$
 $k = 1, 2, ...$ $p = 0, 1, 2, ...$

NEW RESULTS ON PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

$$\ln^2 |x| \cdot \delta^{(s-1)}(x) \approx \frac{2}{s^2} \delta^{(s-1)}(x) \qquad s = 1, 2, \dots$$
 (30)

$$\ln^3 |x| \cdot \delta^{(s-1)}(x) \approx \frac{-3!}{s^3} \delta^{(s-1)}(x) \qquad s = 1, 2, \dots$$
 (31)

$$\ln^{r} |x| \cdot \delta^{(s-1)}(x) \approx \frac{(-1)^{r} r!}{s^{r}} \delta^{(s-1)}(x) \qquad s = 1, 2, \dots \qquad r = 0, 1, 2, \dots$$

$$f(x) \cdot \delta^{(r)}(x) \approx \sum_{i=0}^{r} {r \choose i} (-1)^{r-i} f^{(r-i)}(0) \delta^{(i)}(x) \qquad r = 0, 1, 2, \dots$$
 (33)

THANK YOU FOR YOUR ATTENTION