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INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

➢ Theory of distributions1950s

➢ Mathematical meaning of many concepts in the science

that were described heuristically

➢ Dirac - function and its derivatives

- Concepts and their properties were defined heuristically, to be

appropriate to the experimental results and to be adequate for

analysis and solving the problems that they characterize

➢ The operations with those concepts remained

mathematically unsupported
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INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

➢ Necessity for generalizing the concept of function

➢ Distribution (generalized function)

➢ Laurent Schwartz, ‘Theory of Distributions‘ (1950)

➢ Many concepts that can not be described with functions can be

described applying distributions

➢ Concepts that can be described with functions can also be

described using distributions



INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

 - space of smooth functions with compact

support (test functions)

 Generalized function (distribution) is continuous linear

mapping

(2)

- the space of distributions with domain

:f →C
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INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

➢ - locally integrable function

(3)

➢ - regular distribution

➢ Singular distributions

➢ Dirac distribution:
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INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

➢ Differentiation of distributions

➢ (5)

➢ (6)
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INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

❖ A derivative of function, with arbitrary order, will always exist
if we consider that function as generalized function
(distribution)

❖ Two main problems for the theory of distributions:

o Product of distributions: two arbitrary distributions can not
always be multiplied

- the product of distributions is not an associative operation

o Differentiation of the product of distributions (the product of
distributions not always satisfy the Leibniz rule)



INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

 The application of distributions in non-linear systems

needs products of singular distributions

 Attempts for defining product of distributions that will be

generalization of the existing products

➢ Regularization method

- delta sequence; - distribution

(7)

➢ Sequence of smooth functions ;

➢ - regularization of the distribution

➢ (8)
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INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

➢ with regularization method: 

➢ (9)

➢ but, is not defined neither with the regularization

method
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COLOMBEAU ALGEBRA

❖ Overcoming the problem with product of distributions

❖ Construction of algebra А with properties:

1) Contains the space of distributions and

is neutral element in А

2) There exist linear differential operators which
satisfy the Leibnitz's rule

3) generalizes the derivation on the space of
distributions

4) The product in А generalizes the product of continuous
functions
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COLOMBEAU ALGEBRA

❖ Schwartz's impossibility result

 the functions       и are considered

 derivative of their classical product: 

(10)

(11)

Derivative of their product in A

(12)
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COLOMBEAU ALGEBRA

❖ Schwartz's impossibility result

o From (11) and (14) it follows: (15)

o Theorem:  In А, if  then .      

o From (15) .
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COLOMBEAU ALGEBRA

❑ New theory of generalized functions, more general then the

theory of distributions

❑ Jean-Francois Colombeau

❑ New generalized function and multiplication of distributions (1984)

❑ Elementary introduction to new generalized functions (1985)

❑ Colombeau algebra

❑ The product in the algebra generalizes classical product of

- functionsC



CONSTRUCTION OF THE COLOMBEAU ALGEBRA

• - non negative integers

• - the space of - functions

with compact support

• for     and the next sets are defined:
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CONSTRUCTION OF THE COLOMBEAU ALGEBRA

❖

❖ Theorem: The sets are non empty sets.  
Proof: J.F.Colombeau, Elementary Introduction to New Generalized 

Functions (1985)

❖ For and we denote: 
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CONSTRUCTION OF THE COLOMBEAU ALGEBRA

❖ - an algebra of functions

that are infinitely differentiable regarding the second

variable (with fixed test function )

❖ The space is subalgebra of (those

functions that don’t depend of )

❖ Embedding of the distributions in is such that

embedding of - functions is identity
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CONSTRUCTION OF THE COLOMBEAU ALGEBRA

➢ - subalgebra of with elements such that

for every compact subset from and every

there exists such that for arbitrary

there exist and the relation holds:

(18)

for .

➢ Functions in which derivatives on compact sets are

bounded with negative powers of
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CONSTRUCTION OF THE COLOMBEAU ALGEBRA

 With the mapping:

(19)

the space is embedded in     .

❑ is contained in in a way that are those 

functions                   that don’t depend of       . 

❑ are embedded in with (19).

(20)

❑ Ideal such that the difference in (20) will vanish
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CONSTRUCTION OF THE COLOMBEAU ALGEBRA

➢ is an ideal in consisting of functions

such that for every compact subset of

and each there exist such that for

any and each there exist

and it holds:

(21)

For . 

➢ The elements of are called null functions
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CONSTRUCTION OF THE COLOMBEAU ALGEBRA

❖Generalized functions in Colombeau

theory are elements of quotient algebra

(22)

❖ In the equivalence relation is defined ‘ ‘ :

(23)

❖ The generalized functions in Colombeau theory are an

equivalence classes of smooth functions

❖ New generalized functions (Colombeau generalized functions)
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EMBEDDING OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

❑
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ASSOCIATION IN COLOMBEAU ALGEBRA

✓ The space of smooth functions is subalgebra of

the Colombeau algebra

✓ The space of continuous functions and the space
of distributions are not subalgebras of Colombeau
algebra

✓ If are two continuous functions (or distributions
which classical product exists), the embedding of their classical
product, , and the product of their embeddings in may
not coincide

✓ This difference of the products has been overcome introducing
the concept of „association“ in
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ASSOCIATION IN COLOMBEAU ALGEBRA

❖ Generalized functions are said to be associated

( ) if for each representatives and

and each , there exists such that for

any holds:

(27)

❖ Generalized function is associated with the

distribution ( ) if for each representative of

that generalized function and each ,

there exist such that for any holds:
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ASSOCIATION IN COLOMBEAU ALGEBRA

✓ Previous definitions are independent of the representatives

chosen

✓ The distribution associated, if it exists, is unique

✓ To an element of Colombeau algebra, with this process of

association, is associated element in , which allows us to

consider obtained results in the sense of distribution.

✓ Not any element in Colombeau algebra has an associated

distribution!

'



ASSOCIATION IN COLOMBEAU ALGEBRA

❑ Theorem: If are two continuous functions,

their product in is associated with their

classical product in .

❑ Theorem: If and , the product

in is associated with the classical product in

.

❑ Theorem: If        and are two distributions in 

and their classical product         in             exists, then the 

product of these two distributions            in is

associated with their classical product        . 
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ASSOCIATION IN COLOMBEAU ALGEBRA

✓ Two distributions embedded in Colombeau algebra are new
(Colombeau) generalized functions

✓ Product of two distributions in is in general new
(Colombeau) generalized function (for which there may not
exist associated distribution)

✓ If for the product of two distributions in there exists an
associated distribution, we say that there exists the
Colombeau product of those two distributions

✓ If the classical product of two distributions exists, then
their Colombeau product also exists and is the same with
the first one



RESULTS ON PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU

ALGEBRA
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RESULTS ON PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU

ALGEBRA
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NEW RESULTS ON PRODUCTS OF DISTRIBUTIONS IN 

COLOMBEAU ALGEBRA
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