

APPLICATION OF ALGEBRAS IN EVALUATING PRODUCTS OF DISTRIBUTIONS

Marija Miteva and Limonka Koceva Lazarova

Goce Delcev University – Stip, Macedonia

CTION TO THE THEORY OF DISTRIBU

➢ Theory of distributions1950s

- ➢ Mathematical meaning of many concepts in the science that were described heuristically
- \triangleright Dirac δ function and its derivatives

- Concepts and their properties were defined heuristically, to be appropriate to the experimental results and to be adequate for analysis and solving the problems that they characterize

➢ The operations with those concepts remained mathematically unsupported

$$
\delta(x) = \begin{cases} 0, & x \neq 0 \\ \infty & x = 0 \end{cases} \qquad \qquad \int_{-\infty}^{\infty} \delta(x) dx = 1 \qquad (1)
$$

ICTION TO THE THEORY OF DISTRIBUTI

- Necessity for generalizing the concept of function
- Distribution (generalized function)
- ➢ Laurent Schwartz, '*Theory of Distributions'* (1950)
	- Many concepts that can not be described with functions can be described applying distributions
	- ➢ Concepts that can be described with functions can also be described using distributions

IDUCTION TO THE THEORY OF DISTRIBUTIO

- $\mathbf{v} \times \mathcal{D} = \mathcal{D}(\mathbf{R}^n)$ space of smooth functions with compact support (test functions) $= \mathcal{D}(\mathbf{R})$
- *Generalized function (distribution) is continuous linear mapping* $f : D \to \mathbf{C}$ (2) $f\left(\pmb{\varphi}\right) \!=\! \left\langle f,\pmb{\varphi}\right\rangle$

 $\mathbf{F} = \mathcal{D}'(\mathbf{R}^n)$ - the space of distributions with domain $= \mathcal{D}'(\mathbf{R})$

CTION TO THE THEORY OF DISTRIBUTIONS

$$
\Rightarrow f \quad \text{locally integrable function}
$$
\n
$$
f(\varphi) = \langle f, \varphi \rangle = \int_{\mathbf{R}^n} f(x) \varphi(x) dx
$$

$$
(3)
$$

➢ - *regular distribution f*

➢ *Singular distributions* \triangleright Dirac δ distribution: $\langle \delta, \varphi \rangle = \varphi(0)$

(4)

CTION TO THE THEORY OF DISTRIBUTI

➢ Differentiation of distributions

 $\rangle \left\langle f^{(n)}(x), \varphi(x) \right\rangle = (-1)^n \left\langle f(x), \varphi^{(n)}(x) \right\rangle$ (5) $\langle D^k f, \varphi \rangle = (-1)^k \langle f, D^k \varphi \rangle$ (6) 1 *i k n k* $i=1$ \vee \mathcal{M}_i *D* $\overline{z_1} \cup \overline{C} \overline{X}$ $\left(\begin{array}{c} 0 \end{array} \right)$ = $=\prod_{i=1}^{\infty}\left(\frac{c}{\partial x_i}\right)$ k_i $k_i \in \mathbf{N_0}$ 1 *n i i* $k = \sum k$ = = $=\sum$ $f \in \mathcal{D}'(\mathbf{R}) \qquad \varphi \in \mathcal{D}(\mathbf{R})$ $\langle P(X) \rangle = (-1)^n \langle f(x), \varphi^{(n)}(x) \rangle$ *n*) (x) $\omega(x)$ - $(-1)^n / f(x) \omega^n$ $f^{(n)}(x), \varphi(x)$ $\equiv (-1)^n \langle f(x), \varphi^{(n)}(x) \rangle$ $f \in \mathcal{D}(\mathbf{R}^n)$ $\varphi \in \mathcal{D}(\mathbf{R}^n)$

CTION TO THE THEORY OF DISTRIBUTI

- ❖ **A derivative of function, with arbitrary order, will always exist if we consider that function as generalized function (distribution)**
- Two main problems for the theory of distributions:
- ^o **Product of distributions: two arbitrary distributions can not always be multiplied**
	- the product of distributions is not an associative operation
- **Differentiation of the product of distributions** (the product of distributions not always satisfy the Leibniz rule)

INTRODUCTION TO THE THEORY OF DISTRIBUTIONS

- **The application of distributions in non-linear systems** needs products of singular distributions
- Attempts for defining product of distributions that will be generalization of the existing products
- ➢ **Regularization method**

 $\varphi_n \to \delta(x)$ - delta sequence; f - distribution

(7) \triangleright Sequence of smooth functions (f_n) ; $f_n \to f$ $P(f_n)$ - regularization of the distribution f $f_n(x) = (f * \varphi_n)(x) = \langle f(y), \varphi_n(x-y) \rangle$

$$
\qquad \qquad \Rightarrow \qquad fg = \lim_{n \to \infty} \left(f^* \varphi_n \right) \left(g^* \varphi_n \right) \tag{8}
$$

IO THE THEORY OF DISTRIBUTIONS

➢ with regularization method: ➢ (9) 1 1 $\frac{x^2}{2}$ $\delta = -\frac{1}{2}\delta'$

but, $\delta \cdot \delta = \delta^2$ is not defined neither with the regularization method

❖ Overcoming the problem with product of distributions

- ❖ Construction of algebra *А* with properties:
- 1) Contains the space of distributions $\mathcal{D}'(\mathbf{R}^n)$ and $f(x)$ \equiv 1 is neutral element in *A*
- 2) There exist linear differential operators $\partial_i : A \rightarrow A$ which satisfy the Leibnitz's rule
- 3) ∂_i generalizes the derivation on the space of distributions
- 4) The product in *А* generalizes the product of continuous functions

❖ **Schwartz's impossibility result**

f the functions $f(x) = x$ *x* $g(x) = |x|$ are considered

▶ derivative of their classical product:

$$
\partial (x|x|) = 2|x|
$$
\n
$$
\partial^2 (x|x|) = 2\partial (|x|)
$$
\n(10)\n(11)

Derivative of their product in *A*

$$
\partial (x \cdot |x|) = |x| + x \cdot \partial (|x|)
$$
\n
$$
\partial^{2} (x \cdot |x|) = 2\partial (|x|) + x \cdot \partial^{2} (|x|)
$$
\n(13)

$$
\partial (x \cdot |x|) = |x| + x \cdot \partial (|x|)
$$

\n
$$
\partial^{2} (x \cdot |x|) = 2\partial (|x|) + x \cdot \partial^{2} (|x|)
$$

\n
$$
\partial^{2} (x \cdot |x|) = 2\partial (|x|) + 2x \cdot \delta
$$
\n(14)

 $\partial^2 (x \cdot |x|) = 2\partial (|x|) + 2x \cdot \delta$

LOMBEAU ALGEBRA

❖ Schwartz's impossibility result

- δ From (11) and (14) it follows: $x \cdot \delta = 0$ (15)
- $x \cdot \delta = 0$
- α *Theorem*: In *A*, if $x \cdot a = 0$ then $a = 0$.
- δ From (15) \Rightarrow δ = 0

❑ New theory of generalized functions, more general then the theory of distributions

- ❑ Jean-Francois Colombeau
	- ❑ *New generalized function and multiplication of distributions* (1984)
	- ❑ *Elementary introduction to new generalized functions* (1985)

❑ **Colombeau algebra**

❑ The product in the algebra generalizes classical product of *C* - functions

CONSTRUCTION OF THE COLOMBEAU ALGEBRA

 $\mathbf{N}_0 = \mathbf{N} \cup \{0\}$ - non negative integers $\mathcal{D}(\mathbf{R}^n)$ - the space of \mathbf{C}^∞ - functions with compact support $\left(\mathbf{R}^n \right)$ - the space of $\textbf{\textit{C}}^\infty$ - functions $\textit{\textbf{p}}: \mathbf{R}^n \rightarrow \textbf{\textit{C}}$

$$
\begin{aligned}\n\text{for } j \in \mathbf{N}_0 \text{ and } q \in \mathbf{N}_0 \text{ the next sets are defined:} \\
A_0(\mathbf{R}^n) &= \begin{cases}\n\varphi(x) \in \mathcal{D}(\mathbf{R}^n) \\
\varphi(x) \, dx = 1\n\end{cases} \\
A_q(\mathbf{R}^n) &= \begin{cases}\n\varphi(x) \in D(\mathbf{R}^n) \\
\varphi(x) \, dx = 1, \int_{\mathbf{R}^n} x^j \varphi(x) \, dx = 0; 1 \le |j| \le q\n\end{cases} \\
q \ge 1 \quad x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n \quad j = (j_1, j_2, \dots, j_n) \in \mathbf{N}^n \\
|j| &= j_1 + j_2 + \dots + j_n \quad x^j = (x_1)^{j_1}(x_2)^{j_2} \dots (x_n)^{j_n}\n\end{aligned}
$$

CONSTRUCTION OF THE COLOMBEAU ALGEBRA

$$
\bullet A_0 \supset A_1 \supset A_2 \supset A_3...
$$

 \cdot *Theorem:* The sets A_q are non empty sets. Proof: J.F.Colombeau, *Elementary Introduction to New Generalized Functions* (1985) *q*

$$
\ast \text{ For } \varphi \in A_q(\mathbf{R}^n) \text{ and } \varepsilon > 0 \text{ we denote:}
$$
\n
$$
\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varphi\left(\frac{x}{\varepsilon}\right) \tag{16}
$$

$$
\phi(x) = \phi(-x) \tag{17}
$$

 $\mathcal{E}(\mathbf{R}^n)$ - an algebra of functions $f(\varphi, x): A_0(\mathbf{R}^n) \times \mathbf{R}^n \to \mathbf{C}$ that are infinitely differentiable regarding the second variable x (with fixed test function φ)

- $\hat{\mathbf{v}}$ The space $C^{\infty}(\mathbf{R}^n)$ is subalgebra of $\mathcal{E}(\mathbf{R}^n)$ (those functions that don't depend of φ) \mathbf{R}^n) is subalgebra of $\mathcal{E}(\mathbf{R}^n)$
- \triangleleft Embedding of the distributions in $\mathcal{E}(\mathbf{R}^n)$ is such that embedding of $C^{\infty}(\mathbf{R}^n)$ - functions is identity $\left(\mathbf{R}^n\right)$

 $\triangleright \mathcal{E}_{M} \left[\mathbf{R}^{n} \right]$ - subalgebra of $\mathcal{E}(\mathbf{R}^{n})$ with elements such that for every compact subset K from \mathbf{R}^n and every $p \in \mathbf{N}_0$ there exists $q \in \mathbb{N}$ such that for arbitrary $\varphi \in A_q(\mathbf{R}^n)$ there exist $c > 0$, $\eta > 0$ and the relation holds: \mathcal{E}_{M} $\left[\mathbf{R}^{n}\right]$ - subalgebra of $\mathcal{E}\left(\mathbf{R}^{n}\right)$ **R**

$$
\sup_{x \in K} \left| \partial^p f \left(\varphi_{\varepsilon}, x \right) \right| \leq c \varepsilon^{-q} \tag{18}
$$

for $0 < \varepsilon < \eta$.

 \rangle Functions in $\mathcal{E}(\mathbf{R}^n)$ which derivatives on compact sets are bounded with negative powers of ϵ

TRUCTION OF THE COLOMBEAU ALGEBR

 $f \in C(\mathbf{R}^n)$

With the mapping: (19) the space $C(\mathbf{R}^n)$ is embedded in $\mathcal{E}_M\left[\mathbf{R}^n\right]$. x With the mapping:
 $F(\varphi, x) = \int_{\mathbf{R}^n} f(y) \varphi(y-x) dy = \int_{\mathbf{R}^n} f(x+t) \varphi(t)$

the space $C(\mathbf{R}^n)$ is embedded in $\mathcal{E}_M[\mathbf{R}^n]$.
 $C^{\infty}(\mathbf{R}^n)$ is contained in $\mathcal{E}_M[\mathbf{R}^n]$ in a way that functions $f(\varphi, x$ $F(\varphi, x) = \int f(y) \varphi(y-x) dy = \int f(x+t) \varphi(t) dt$ *n n* **R R** $\boldsymbol{C}_M \left[\begin{bmatrix} \mathbf{R}^n \end{bmatrix} \right]$

 $C^{\infty}(\mathbf{R}^n)$ is contained in $\mathcal{E}_M \lfloor \mathbf{R}^n \rfloor$ in a way that $f(x)$ are those functions $f\left(\mathbf{\varphi },x\right) \text{ \ \ \ }$ that don't depend of $\boldsymbol{\varphi }$. *n* $\int_M \left[\mathbf{R}^n \right]$ in a way that $f(x)$

$$
C^{\infty}(\mathbf{R}^{n}) \subset C(\mathbf{R}^{n}) \text{ are embedded in } \mathcal{E}_{M}[\mathbf{R}^{n}] \text{ with (19).}
$$

$$
f(x) \neq \int_{\mathbf{R}^{n}} f(x + \varepsilon t) \varphi(t) dt \qquad (20)
$$

INSTRUCTION OF THE COLOMBEAU ALGEBRA

 \triangleright $\mathcal{I}[\mathbf{R}^n]$ is an ideal in $\mathcal{E}_M[\mathbf{R}^n]$ consisting of functions such that for every compact subset K of and each $p \in \mathbb{N}_0$ there exist $q \in \mathbb{N}$ such that for any $r \geq q$ and each $\varphi \in A_r(\mathbf{R}^n)$ there exist $c > 0, \, \eta > 0$ and it holds: $f(\varphi, x)$ such that for every compact subset K \mathbf{R}^n and each $p \in \mathbf{N}_0$ there exist $q \in \mathbf{N}$ $\int_M \left[\mathbf{R}^n \right]$

$$
\sup_{x \in K} \left| \partial^p f \left(\varphi_{\varepsilon}, x \right) \right| \leq c \varepsilon^{r-q}
$$
\n(21)

For $0<\varepsilon<\eta$.

 \triangleright The elements of $\mathcal{I}\left[\mathbf{R}^n\right]$ are called *null functions*

CONSTRUCTION OF THE COLOMBEAU ALGEBRA

❖*Generalized functions in Colombeau theory are elements of quotient algebra*

$$
\mathcal{G} \equiv \mathcal{G}(\mathbf{R}^n) = \frac{\mathcal{E}_M[\mathbf{R}^n]}{\mathcal{I}[\mathbf{R}^n]}
$$
(22)

 $\mathcal{E}_{\mathcal{M}}$ \mathbb{R}^n the equivalence relation is defined ' \sim ': $\mathbf{F}_{\scriptscriptstyle{M}}\left[\mathbf{R}^n\right]$ the equivalence relation is defined ' \sim

$$
F_1 \sim F_2 \Leftrightarrow F_1 - F_2 \in \mathcal{I} \left[\mathbf{R}^n \right] \tag{23}
$$

❖ *The generalized functions in Colombeau theory are an equivalence classes of smooth functions*

❖ New generalized functions (Colombeau generalized functions)

EMBEDDING OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

❑ (24) $f \in C^{\infty}(\mathbf{R}^{n})$ $f \to f(\varphi, x) \in \mathcal{G}(\mathbf{R}^{n})$ $f(\varphi, x) = f(x)$

$$
f \in C(\mathbf{R}^{n}) \qquad f \to f(\varphi, x) \in \mathcal{G}(\mathbf{R}^{n})
$$

$$
f(\varphi, x) = \int_{\mathbf{R}^{n}} f(y) \varphi(y - x) dy = \int_{\mathbf{R}^{n}} f(x + y) \varphi(y) dy
$$
(25)

❑ (26) $f \in \mathcal{D}^{\, \cdot} \big(\mathbf{R}^{\mathbf{n}} \big)$ \mathbf{R}^n $f \to f(\varphi, x) \in \mathcal{G}(\mathbf{R}^n)$ $\big(\varphi , x \big) \; = \big| \; f \ast \varphi \; \big| \big(x \big) \!=\! \big\langle f \big(\, y \big) , \varphi \big(\, y \! - \! x \big) \big\rangle \; = \; \big| \; f \big(\, y \big) \varphi \big(\, y \! - \! x \big)$ *n* $f(\varphi, x) = f^* \varphi(x) = \langle f(y), \varphi(y-x) \rangle = f(y) \varphi(y-x) dy$ $\left(\begin{array}{c} \vee \\ \downarrow \end{array} \right)$ $=\left(f^*\varphi\right)(x)=\left\langle f(y),\varphi(y-x)\right\rangle =\int\limits_{\mathbf{R}^n}f(y)\varphi(y-x)dy$ **R**

CIATION IN COLOMBEAU ALGEBRA

 \checkmark The space of smooth functions $C^{\infty}(\mathbf{R}^n)$ is subalgebra of the Colombeau algebra $\mathcal{G}(\mathbf{R}^n)$

- \checkmark The space of continuous functions $C(\mathbf{R}^n)$ and the space of distributions $\mathcal{D}'(\mathbf{R}^n)$ are not subalgebras of Colombeau algebra $\mathcal{G}(\mathbf{R}^n)$
	- $\sqrt{2}$ If f, g are two continuous functions (or distributions which classical product exists), the embedding of their classical product, fg , and the product of their embeddings $f \cdot g$ in $\mathcal G$ may not coincide
	- This difference of the products has been overcome introducing the concept of "association" in G

CIATION IN COLOMBEAU ALGEBRA

 \triangleleft Generalized functions $F,G \in \mathcal{G}(\mathbf{R}^n)$ are said to be **associated** ($F \approx G$) if for each representatives $f(\varphi_{\varepsilon},x)$ and and each $\psi(x) \in \mathcal{D}(\mathbf{R}^n)$, there exists $q \in \mathbf{N}_0$ such that for any $\varphi(x) \in A_{a}(\mathbf{R}^n)$ holds: $f\left(\pmb{\varphi}_{\varepsilon},x\right)$ and $g\left(\pmb{\varphi}_{\varepsilon},x\right)$ $q \in \mathbf{N}_0$ $F, G \in \mathcal{G}(\mathbf{R}^n)$ $F \approx G$ $\psi(x) \in \mathcal{D}(\mathbf{R}^n)$ $(x) \in A_q(\mathbf{R}^n)$

$$
\varphi(x) \in A_q(\mathbf{R}^n) \text{ holds:}
$$
\n
$$
\lim_{\varepsilon \to 0_+} \int_{\mathbf{R}^n} |f(\varphi_{\varepsilon}, x) - g(\varphi_{\varepsilon}, x)| \psi(x) dx = 0
$$
\n(27)

★ Generalized function $F \in \mathcal{G}$ **is associated with the** distribution $u \in \mathcal{D}'$ ($F \approx u$) if for each representative of that generalized function $f(\varphi_{\varepsilon},x)$ and each $\psi(x) \in \mathcal{D}(\mathbf{R}^n)$, there exist $q \in \mathbb{N}_0$ such that for any $\varphi(x) \in A_q(\mathbf{R}^n)$ holds: $f\left(\pmb{\varphi}_{\pmb{\varepsilon}},x\right)$ $q \in \mathbf{N}_0$ $\nu(x) \in \mathcal{D}(\mathbf{R}^n)$ $(x) \in A_q(\mathbf{R}^n)$ $\varphi(x) \in A_q$ **R**

$$
\lim_{\varepsilon \to 0_+} \int_{\mathbf{R}^n} f(\varphi_{\varepsilon}, x) \psi(x) dx = \langle u, \psi \rangle
$$
 (28)

ASSOCIATION IN COLOMBEAU ALGEBRA

Previous definitions are independent of the representatives chosen

 \checkmark The distribution associated, if it exists, is unique

To an element of Colombeau algebra, with this process of association, is associated element in \mathcal{D}' , which allows us to consider obtained results in the sense of distribution.

Not any element in Colombeau algebra has an associated distribution!

ASSOCIATION IN COLOMBEAU ALGEBRA

 \Box *Theorem:* If $f, g \in C(\mathbb{R}^n)$ are two continuous functions, their product $f \cdot g$ in $\mathcal{G}(R)$ is associated with their classical product fg in $C(\mathbf{R}^n)$.

 \Box *Theorem:* If $f \in C^{\infty}(\mathbf{R}^n)$ and $T \in \mathcal{D}'(\mathbf{R}^n)$, the product in $\mathcal{G}(\mathbf{R}^n)$ is associated with the classical product f T in . $f \in C^\infty\left(\mathbf{R}^n \right)$ and $T \in \mathcal{D}^{\, \cdot}\! \left(\mathbf{R}^n \right)$ $\left(\mathbf{R}^n\right)$ f \cdot T *f T* \mathbf{R}^n

 \Box *Theorem*: If S and T are two distributions in $\mathcal{D}'(\mathbf{R}^n)$ and their classical product ST in $\mathcal{D}'(\mathbf{R}^n)$ exists, then the product of these two distributions $\mathbf{S} \cdot \mathbf{\hat{T}}$ in $\mathcal{G}(\mathbf{R}^n)$ is associated with their classical product ST. $\begin{pmatrix} ST & \text{in } \mathcal{D}^{\, \prime} \end{pmatrix}$ $S \cdot \hat{T}$ (in $\mathcal{G}(\mathbf{R}^n)$

CIATION IN COLOMBEAU ALGEBRA

- ✓ Two distributions embedded in Colombeau algebra are new (Colombeau) generalized functions
- \checkmark Product of two distributions in $\mathcal G$ is in general new (Colombeau) generalized function (for which there may not exist associated distribution)
- ✓ *If for the product of two distributions in there exists an associated distribution, we say that there exists the Colombeau product of those two distributions*
- ✓ **If the classical product of two distributions exists, then their Colombeau product also exists and is the same with the first one**

RESULTS ON PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

$$
\Box \quad \ln|x| \cdot \delta^{(s-1)}(x) \approx \frac{-1}{s} \delta^{(s-1)}(x) \qquad s = 1, 2, \dots \tag{29}
$$

$$
\Box \qquad x_{+}^{-k} \cdot \delta^{(p)}(x) \approx \frac{(-1)^{k} k \cdot p!}{(p+k+1)!} \delta^{(k+p)}(x) \qquad k = 1, 2, \dots \quad p = 0, 1, 2, \dots
$$

$$
x_{+}^{-r-1/2} \cdot x_{-}^{-k-1/2} \approx \frac{(-1)^{r+k} \pi}{2(r+k)!} \delta^{(r+k)}(x) \qquad r = 0, 1, 2, \dots \qquad k = 0, 1, 2, \dots
$$

RESULTS ON PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

$$
x_{+}^{-r-1/2} \cdot x_{-}^{k-1/2} \approx C_{r,k} \delta^{(r-k)}(x) \qquad r = 0, 1, 2, \dots \qquad k = 0, 1, 2, \dots \qquad r \ge k
$$

$$
C_{r,k} = \frac{(-1)^r (2k-1)!!k!r!\pi}{2(4k-1)!!(2r-1)!!(r-k)!(r+k)!} \sum_{q=0}^{2k} (-1)^q {2k \choose q} {r-k \choose k-q} (2(r+q)-1)!!(2(k-q)-1)!!
$$

$$
x^{-k} \cdot \delta^{(p)}(x) \approx \frac{k \cdot p!}{(p+k+1)!} \delta^{(k+p)}(x) \quad k = 1, 2, ... \qquad p = 0, 1, 2, ...
$$

NEW RESULTS ON PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

$$
\Box \qquad \ln^2 |x| \cdot \delta^{(s-1)}(x) \approx \frac{2}{s^2} \delta^{(s-1)}(x) \qquad \qquad s = 1, 2, \dots \tag{30}
$$

$$
\Box \qquad \ln^3 |x| \cdot \delta^{(s-1)}(x) \approx \frac{-3!}{s^3} \delta^{(s-1)}(x) \qquad s = 1, 2, ... \qquad (31)
$$

$$
\Box \qquad \ln^r |x| \cdot \delta^{(s-1)}(x) \approx \frac{(-1)^r r!}{s^r} \delta^{(s-1)}(x) \qquad s = 1, 2, \ldots \qquad r = 0, 1, 2, \ldots
$$

(32)

□ $f(x) \cdot \delta^{(r)}(x) \approx \sum_{n=1}^{\infty} \left(\frac{(-1)^{r-i}}{r} f^{(r-i)}(0) \delta^{(i)}(x) \right)$ $r = 0, 1, 2, ...$ (33) 0 $1'$ $f^{(1-i)}(0)$ *r r r i i r i i r* $f(x) \cdot \delta^{(1)}(x) \approx \sum |(-1)^{n} f^{(1)}(0) \delta^{(1)}(x)|$ *i* $\delta^{(r)}(x) \approx$ > $|(-1)^{r} f^{(r-1)}(0) \delta$ = (r) $-r \cdot \delta^{(r)}(x) \approx \sum_{i=0}^r {r \choose i} (-1)^{r-i} f^{(r-i)}(0) \delta^{(i)}(x)$ $r = 0,1,2,...$

THANK YOU FOR YOUR ATTENTION