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Abstract
Polyphenols are a large group of compounds of natural origin, known for their health-promoting effects on the human body. 
In plant materials, they can be present in the form of glycosides or aglycones, to a different extent bounded to the sample 
matrix. Their distribution in different parts of the plant may also vary. The extraction process is one of the most important 
and difficult stages of sample preparation for the analysis of polyphenol compounds. The main goal is to choose the right 
extraction method to isolate polyphenols from plant samples with the highest possible efficiency and in unchanged forms. 
This review summarizes some aspects of different extraction methods for phenolic compounds proposed in the last 5 years. 
Efforts were made to look critically at each of the described extraction methodologies.

Abbreviations
Bmim  1-Butyl-3-methylimidazolium cation
CGA   Chlorogenic acid
CMC  Critical micellar concentration
CP  Cold plasma
DES  Deep eutectic solvent
DPPH  2,2-Difenylo-1-pikrylohydrazyl
EAE  Enzyme-assisted extraction
EGCG   Epigallocatechin gallate
FC  Folin-Ciocalteu assay
FE  Flash extraction
HAE  Homogenizer-assisted extraction
HHPE  High hydrostatic pressure extraction
HPSE  High-pressure solvent extraction
HBA  Hydrogen-bond acceptor
HBD  Hydrogen-bond donor
IL  Ionic liquid
MAE  Microwave-assisted extraction
MCAE  Mechanochemical-assisted extraction
PEFE  Pulsed electric fields extraction
PHSE  Pressured hot solvent extraction

PLE  Pressurized liquid extraction
SFE  Supercritical fluid extraction
SSE  Subcritical solvent extraction
SWE  Subcritical water extraction
UAE  Ultrasound-assisted extraction

Introduction

Phenolic compounds are a large class of plant secondary 
metabolites with different molecular structures containing 
one or more aromatic rings with at least one hydroxyl group. 
They are ubiquitously found in foods and herbal medicines 
and exhibit various biological activities such as antioxidant, 
anti-inflammatory, and anticancer properties (Ashwin et al. 
2021; Çakır and Güzel 2023; Rathod et al. 2023). The most 
commonly occurring classes of these compounds are flavo-
noids and phenolic acids. Increased intake of foods contain-
ing phenolics has been claimed to have beneficial effects in 
preventing cardiovascular, neurological, and liver diseases 
(Rudrapal et al. 2022; Khan et al. 2021; Zhang et al. 2022). 
These potent bioactivities render them powerful alternatives 
for pharmaceutical and medical applications. Due to their 
versatile benefits concerning human health, research studies 
focusing on plant-derived phenolics had been intensively 
performed in recent years (Bitwell et al. 2023; Calderón-
Oliver and Ponce-Alquicira 2021; Ponphaiboon et al. 2023; 
Sridhar et al. 2021; Wiedemair and Zlöbl 2023). Their iso-
lation and recovery from food by-products and wastes have 
also gained growing interest as they decrease the financial 
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and environmental impact (Milczarek et al. 2022; Pagano 
et al. 2021; Ebrahimi and Lante 2022; Patra et al. 2022). 
Plant extracts containing a high content of phenolic com-
pounds have found several applications in the food industry 
as flavors, coloring, antioxidants, preservatives, nutrient 
enhancers, and packing additives (Awad et al. 2022; Bol-
ouri et al. 2022; Nalhiati et al. 2023; Olszewska et al. 2020).

Phenolic compounds can exist in plant materials such as 
aglycones or glycosides, free or matrix-bound compounds, 
and polymerized or monomer structures. Additionally, they 
are not universally dispensed within the different parts of 
plants and exhibit varied stability. These difficulties have 
contributed to challenging extraction processes. Before the 
extraction processes, several unit operations are performed 
to increase the yield, and washing, cutting, milling, grind-
ing, and drying are examples of these pretreatment steps 
(Krakowska-Sierpawska et al. 2023; Ebrahimi et al. 2022; 
Garcìa et al. 2021). These operations can affect the final 
yield of extraction as sample components can undergo irre-
versible chemical changes such as hydrolysis, oxidation, or 
condensation. Drying the plant materials is often suggested 
before extraction to reduce moisture and degradation of bio-
active components. The freeze-drying of sugar beet leaves 
and gridding under liquid nitrogen reduced polyphenol oxi-
dase activity and retained higher amount of polyphenols 
(Ebrahimi et al. 2022).

The choice of the appropriate extraction process is of 
great importance to obtain the highest possible collection of 
analytes. On the other side, high selectivity and enrichment 
of a target analyte are necessary for determination of spe-
cific compounds. Despite some disadvantages, conventional 
solid-liquid extraction methods are still the most commonly 
used due to their simplicity and wide range of applications. 
Several methods, such as maceration, infusion, decoction, 
percolation, and digestion, were used to isolate the bioactive 
phenolics from different parts of plants. Modern extraction 
alternatives represent ultrasound-assisted extraction (UAE), 
microwave-assisted extraction (MAE), pressurized liquid 
extraction (PLE), supercritical fluid extraction (SFE), sub-
critical water extraction (SWE), enzyme-assisted extraction 
(EAE), and pulsed electric fields extraction (PEFE) (Bitwell 
et al. 2023; Chaves et al. 2020; Mastellone et al. 2021).

The selection of solvent relies on the specific nature 
of the targeted polyphenols, type of solvent, and its phys-
icochemical characteristics, such as its polarity, viscosity, 
reactivity and safety concerns, legislature compatibility for 
food usages, and potential reusability. The solvent boiling 
temperature should be as low as possible to prevent deg-
radation by heat. Solvents commonly used for plant mate-
rial extraction are polar (e.g., water, alcohols, acetonitrile), 
intermediate polar (e.g., acetone, dichloromethane), and 
nonpolar (e.g., n-hexane, ether, chloroform) solvents. The 
usage of methanol is often questionable because of its high 

toxicity to humans, so ethanol is more attractive since it has 
similar chemical properties to methanol and is less toxic. As 
an alternative to toxic and volatile organic solvents, ionic 
liquids (ILs), deep eutectic solvents (DES), supercritical and 
subcritical fluids, and enzyme-assisted extraction have been 
proposed (Chemat et al. 2019; García-Roldán et al. 2023; 
Essien et al. 2020).

Non-extractable phenolic compounds are still overlooked 
in several studies and remain in the plant material after the 
conventional extraction. The polyphenols identified in such 
extracts, named extractable polyphenols, are often used as 
the basis or calculations of dietary intake and bioavailability 
studies. Non-extractable phenolics are high molecular poly-
meric compounds, or single phenolic compounds associated 
with macromolecules, mainly polysaccharide constituents 
of dietary fiber and protein (Carboni Martins et al. 2022; 
González-Sarrías et al. 2017; Ding et al. 2020). They are 
not absorbed and reach the colon, where they are extensively 
fermented by the action of the microbiota, releasing low 
molecular weight phenolics. To enhance the liberation of 
bound phenolic compounds, alkaline hydrolysis, enzymatic 
treatment, or fermentation has been used (Krakowska-Sier-
pawska et al. 2023; Kornpointner et al. 2022).

Polyphenols extraction efficiency is often calculated as 
the total phenolic content using the Folin-Ciocalteu (FC) 
assay. However, FC reagent is not specific only for phenolic 
compounds, and it could simultaneously oxidize several 
non-phenolic organic compounds (e.g., sugars) or some inor-
ganic substances, giving elevated apparent phenolic content 
(Lawag et al. 2023; Pico et al. 2020).

In recent years, several works have been published on 
polyphenol isolation methods, but they usually focus only 
on selected aspects of this process. Some of them relate to 
polyphenol isolation from specific matrices, e.g., tea leaves 
(Shaukat et al. 2023) or plant material in general Hu et al. 
(2022), others on chromatographic separation and detection 
methods (Ponphaiboon et al. 2023). A lot of attention is 
also paid to the recovery of phenolics from food industry 
by-products (Pagano et al. 2021; Ebrahimi et al. 2022; Gil-
Martín et al. 2022).

This overview discusses the main advantages and limita-
tions of the reported analytical procedures regarding extrac-
tion, determination, and separation of polyphenols from dif-
ferent plant materials. The influence of the sample matrix 
and choosing an appropriate solvent was discussed, as this 
aspect has not been brought to light thoroughly.

Water and Conventional Organic Solvents

The conventional extraction techniques of polyphenolic 
compounds apply infusion, decoction, percolation, diges-
tion, and Soxhlet extraction process using the condensed 
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vapors of the solvent (Abubakar and Haque 2020; Gonfa 
et al. 2020). Infusions are generally made from the softer 
parts of plants, including flowers, tops, and leaves, while 
decoctions are applied to prepare an extract from the hard 
or woodier parts, such as bark, lichens, hard fruits, larger 
seeds, and roots. The decoction technique is rather suit-
able for heat-stable compounds as it involves boiling plant 
samples for some period of time. These techniques, how-
ever, need a large volume of solvents, are time-consuming, 
and often involve an organic solvent recovery step via an 
evaporation.

Polyphenols are generally more hydrophilic than lipo-
philic, and their relative lipophilicity depends on the 
number of contained hydroxyl groups. Thus, they can be 
readily extracted by solvents such as methanol, ethanol, 
acetonitrile, acetone, and ethyl acetate or by their mixtures 
with water. The presence of water is helpful in enhanc-
ing the swelling of plant material, which is favorable 
to increasing the contact surface area between the plant 
matrix and a solvent, which increases the extraction yield 
(Plaskova and Mlcek 2023; Dróżdż and Pyrzynska 2018; 
Dobros et al. 2022; Herrera-Rocha et al. 2022). According 
to Nakilcioğlu-Taş and Ötleş, aqueous acetone has been 
generally good for the extraction of higher molecular 
weight flavanols, whereas methanol is more effective for 
lower molecular weight polyphenols (Nakilcioğlu-Taş and 
Ötleş 2020). The most efficient solvent for the extraction 
of phenolics from turmeric, torch ginger, and lemongrass 
turned out to be the one containing 80% acetone, while 
for the recovery of these compounds from curry leaf, 80% 
ethanol was the most appropriate (Sepahpour et al. 2018). 
Solvent containing 80% acetone showed higher values of 
total phenolics and flavonoids as well as antioxidant activ-
ity of Opuntia stricta fruit in comparison to that contain-
ing ethanol (El Mannoub 2023).

High processing temperatures should be avoided as many 
phenolic compounds are subject to degradation or undergo 
undesirable oxidation. It was found that even for the prepa-
ration of a simple tea infusion as a domestic preparation, 
the type of water used for brewing significantly affects its 
sensory properties (Franks et al. 2019). Higher efficiency of 
more bitter catechins was determined using purified bottled 
water or deionized water, in comparison to using tap water 
for extraction.

Glycerol, a cheap, non-toxic, and abundant green solvent, 
can be an alternative in extraction of polyphenols, replacing 
petroleum-derived solvents (El Mannoub 2023; Kowalska 
et al. 2021; Eyiz et al. 2020). As opposed to ethanol, glyc-
erol is not flammable and displays low volatility, and like 
ethanol, it easily mixes with water. In peppermint and nettle 
leaves, glycerol-water systems (30.5% at 50 °C and 12.5% 
at 20 °C, respectively) were better extractants than classical 
solvents such as water or ethanol (Navarro-Baez et al. 2022).

Accelerated Solvent Extraction

High Pressure and Temperature

The extraction technique with common solvents can be 
accelerated using elevated pressure and temperature, and 
thereby increasing the extraction efficiency in a shorter 
time. Pressurized liquid extraction (PLE) involves sample 
treatment with high pressure (usually up to 600 MPa) at 
temperatures from 40 to 200 °C for short periods (5–10 min) 
(Bitwell et al. 2023; Calderón-Oliver and Ponce-Alquicira 
2021; Alara et al. 2021; Navarro-Baez et al. 2022). This 
technique is also known as high hydrostatic pressure extrac-
tion (HHPE), high-pressure solvent extraction (HPSE), 
pressured hot solvent extraction (PHSE), and subcritical 
solvent extraction (SSE), among others. Aqueous methanol 
or ethanol and acidic solutions are mainly used in this tech-
nique. The effects on plant materials depend on the pressure 
level (Navarro-Baez et al. 2022; López-Gámez et al. 2021; 
Grassino et al. 2020). Intensive PLE treatments (> 150 MPa) 
could cause loss of cell integrity and irreversible damage to 
plant materials that enhance the extractability of intracel-
lular components. In addition, it inhibits microorganisms 
and enzymes related to food oxidation. Under mild pressure 
treatment, the biosynthesis of some metabolites could be 
activated, as a plant stress response caused by pressure that 
increases extraction yields (Jacobo-Velázquez et al. 2021).

Despite the disadvantages of PLE, such as low analytes 
selectivity and the need for costly advanced instrumentation, 
this technique had been utilized for the extraction of poly-
phenolic compounds from different plant matrices (López-
Gámez et al. 2021; Grassino et al. 2020; Jacobo-Velázquez 
et al. 2021; Gonçalves et al. 2018; Dobroslavić et al. 2022; 
Liu et al. 2016; Jin et al. 2023). The PLE conditions applied 
yielded different breaking matrix-analyte interactions lead-
ing to an increase in the number of compounds. Gonçalves 
et al. evaluated the extraction yield and composition of phe-
nolic compounds from fruit and vegetable residues and have 
found that the highest phenolic acids content was achieved 
at high temperatures (200 °C, 50% ethanol), while lower 
temperatures (40–63 °C) with the same solvent composition 
were more efficient for extraction of flavonoids (Gonçalves 
et al. 2018). Low-pressure treatment of Lonicera caerulea 
berry for a long period of time (400 MPa/20 min) demon-
strated higher contents of anthocyanins and phenolics than 
that with higher pressure for a shorter time (600 MPa/10 
min) (Liu et al. 2016).

The PLE technique makes better use of water, a cheap, 
nontoxic, easily available solvent with tunable selectivity, 
due to the involvement of high temperature and pressure 
(Bitwell et al. 2023; Jin et al. 2023; Deans et al. 2020; Essien 
et al. 2020). As the temperature rises above the water boil-
ing value, its dielectric constant decreases, which allows the 
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extraction of less polar compounds. Additionally, due to the 
decrease in the viscosity, better penetration into matrices 
could be obtained. The pressure of 5 MPa ascertains a liq-
uid water state in the temperature range of 100–250 °C (Jin 
et al. 2023). This technique, also called subcritical water 
extraction (SWE), was used for the extraction of phenolics, 
hydrolysable tannins, and flavonoids from Phyllanthus tenel-
lus plant at 121°C (Mohd Jusoh et al. 2019), polyphenolic 
compounds from Stevia rebaudiana leaves at 160 °C (Bursać 
Kovačević et al. 2018), garlic phenolics (Krstić et al. 2023), 
and rutin from the aerial parts of common buckwheat at 120 
°C (Kim and Lim 2019).

Ultrasounds and Microwaves

To improve solvent penetration within the sample, water or 
organic solvents are also supported by the action of ultra-
sounds or microwaves. In ultrasound-assisted extraction, 
mechanical effect of acoustic cavitation disrupts the plant 
cell wall and facilitates the release of compounds (Korobi-
jchuk et al. 2023; Venkateswara Rao et al. 2021; Vinatoru 
et al. 2017; Abi-Khattar et al. 2022). Ultrasonic treatment 
promotes mass transfer not only by releasing intracellular 
substances into the extraction medium but also by strength-
ening the diffusion of the solvent within the cells due to 
thermal and chemical changes (Bitwell et al. 2023). The 

benefits of ultrasound assisted extraction (UAE) are mainly 
the reduction of extraction time and solvent consumption. 
However, the formation of free radicals at irradiation higher 
than 20 kHz may affect the extraction of heat-labile com-
pounds (Calderón-Oliver and Ponce-Alquicira 2021).

Dobros et al. investigated the effect of different extrac-
tion techniques—maceration: 1 g of the plant was soaked 
in 20 mL of 50% EtOH for 30 min at room temperature 
without mixing; decoction: 1 g of the plant was boiled with 
10 mL of water for 30 min; and UAE: 1 g of the plant was 
sonicated with 20 mL of 50% EtOH for 30 min—on the 
content of the prominent phenolic compounds (e.g., caffeic 
and rosmarinic acids, ferulic acid glycoside, morin, cou-
marin, and its derivative herniarin) from different cultivars 
of lavender (Dobros et al. 2022). The results are presented 
in Fig. 1 for one type of Lavendula angustifolia (cultivar 
Betty’s Blue) as an example. Similar contents of caffeic acid 
were determined in all prepared extracts. However, for other 
individual phenolic compounds, statistically significant dif-
ferences were found between the extraction methods. The 
maceration procedure gave a much lower amount of ros-
marinic acid than decoction and application of ultrasound. 
Using these two techniques, similar results were obtained. 
The content of ferulic acid glucoside after ultrasound extrac-
tion was twice higher than in the case of a decoction or 
maceration process, while the efficiency of morin extraction 

Fig. 1  The content of phenolic compounds and coumarins found in 
the extracts of lavender plant using water–ethanol (80:20, v/v) for 
maceration and UAE techniques, and water for decoction. The con-

tent of ferulic acid glucoside was expressed as ferulic acid equivalents 
(Dobros et al. 2022)
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decreased in the order: maceration < UAE < decoction. The 
efficiencies for coumarin extraction using maceration and 
UAS were similar and higher than for decoction. On the 
contrary, herniarin (a methoxy derivative of coumarin) was 
best extracted with sonication, while decoction and macera-
tion gave similar results. For other cultivars of Lavendula 
angustifolia and Lavandula × intermedia, similar associa-
tions were reported. The presented results indicate that the 
best extraction method should be chosen considering the 
specific compounds and not the whole groups.

The use of microwave-assisted extraction (MAE) can 
also facilitate the phenolics extraction process from vari-
ous plant materials (Bitwell et al. 2023; Chaves et al. 2020; 
Kaur Kla et al. 2016; Raghunath et al. 2023; Alchera et al. 
2022; Araújo et al. 2020; Rodsamran and Sothornvit 2019). 
This technique utilizes the direct effect of microwave energy 
to facilitate the partition of analytes from the sample into 
the solvent. The synergistic combination of heat and mass 
transfer, working in the same direction, is the primary cause 
of the process acceleration and an increase in the extraction 
yield. The efficiency of MAE depends on several factors, 
such as solvent properties, sample material, the components 
being extracted, power, and time of microwave application. 
Solvents with high dielectric constant, such as water, metha-
nol, and ethanol, rapidly absorb microwave energy resulting 
in a faster process. Considering solvent affinity to phenolic 
compounds and its microwave energy absorption capacity, 
aqueous ethanol up to 70% usually increases extraction effi-
ciency (Calderón-Oliver and Ponce-Alquicira 2021). The 
MAE technique has been useful for phenolic acids and flavo-
noids, but tannins and anthocyanins may be degraded due to 
the high temperature (Calderón-Oliver and Ponce-Alquicira 
2021; Pico et al. 2020).

Applications of mathematical and statistical methods 
to the analysis of chemical data, like experimental design, 
response surface analysis, and principal component analysis, 
have been often used for determining the optimum extraction 
conditions (Sridhar et al. 2021; Tomasi et al. 2023; Nguyen-
Kim et al. 2021).

A comparison of the extraction efficiency from Passiflora 
fruit for some flavones (orientin, isoorientin, and isovitoxin) 
was reported using homogenizer-assisted extraction (HAE), 
USE, and MAE techniques with 70% ethanol as a solvent (da 
Silva et al. 2020). As can be seen from Fig. 2, HAE using 5 
mL of solvent and the mixer at the rotation of 15.360 rpm 
for 2 min, gave the highest extraction efficiency for these 
compounds. Alcántara et al. also showed that conventional 
extraction with 50% ethanol impacted higher flavonoids 
from olive leaves and total phenolics from fig leaves, while 
UAE extracted more carotenoids compared to conventional 
extraction (Alcántara et al. 2020). Although the benefits 
of ultrasound-assisted extraction are underlined in several 
reviews, the results described above show that ultrasound 

application is not efficient for every plant equally, as well as 
for the extraction of certain compounds.

Supercritical Fluids

The properties of supercritical fluid are between gases and 
liquids. This combination of gas-like mass transfer prop-
erties and liquid-like solvating power makes supercritical 
fluid a good candidate for extraction. Water at a temperature 
above 374 °C and a pressure above 22.1 MPa is considered 
to be in the supercritical state. However, supercritical water 
extraction (SWE) was mostly applied to cellulosic and lignin 
materials (Marcus 2019).

Carbon dioxide is the most widely used in supercritical 
fluid extraction (SFE) due to its mild critical temperature 
(31.1 °C) and non-oxidative medium that allows extrac-
tion of thermally unstable and easily oxidized compounds. 
It is also cheap and easy to obtain and lacks solvent resi-
due after extraction. Unlike SWE, where temperature is the 
critical factor, variations in pressure have a significant effect 
using  CO2. An increase in pressure increases the fluid dif-
fusion coefficient enabling higher solvent penetration into 
the samples (Essien et al. 2020; Alara et al. 2021; Uwin-
eza and Waskiewicz 2020). Thus, there is the possibility 
to choose different pressure-temperature combinations for 
better extraction conditions. However, low polarity of  CO2 
is more suitable for the extraction of non-polar compounds. 
In the case of polar compounds such as polyphenols, a small 
percentage of polar co-solvents (methanol, ethanol, acetone, 
ethyl acetate, and lactate) is added (Alara et al. 2021).

The maximum extraction of phenolic compounds from 
rosehip flowers was achieved using supercritical  CO2 with 
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Fig. 2  Comparison of extraction efficiency for flavone compounds 
from Passiflora fruit samples using different techniques and 50% 
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25% ethanol as a co-solvent at a temperature of 60 °C and 
pressure of 28 MPa (Kasapoĝlu et  al. 2023). Da Porto 
extracted polyphenols from white grape seeds at 40 °C, 8 
MPa, and 20% ethanol (Da Porto and Natolino 2017). The 
results presented by Atwi-Ghaddar et al. showed that while 
the temperature was an insignificant parameter, a higher 
percentage of water (up to 20% in ethanol) favored the 
extraction of catechins from Camellia sinensis leaves (Atwi-
Ghaddar et al. 2023). The SFE results were compared with 
ultrasound-assisted extraction in equivalent conditions such 
as 30% of modifier and 15 min of extraction time. Three 
ratios of ethanol to  H2O in the mixtures were explored: 
80:20, 50:50, and 0:100. The results presented in Fig. 3 show 
that different yields were obtained from both techniques; 
SFE provided higher extraction yields for caffeine, epigal-
locatechin gallate (EGCG), and total catechins compared 
with UAE. In addition, SFE affords a lower water content 
that favors compound stability.

On the other side, in a recent study comparing the effi-
ciency of SFE and HPLE in screening phenolic compounds 
in sweet cherry stems, supercritical  CO2 fluid (at optimal 
conditions of 30 MPa, 15% ethanol, 40 °C for 1 h) was found 
to be less efficient than HPLE (10.3 MPa in 15% ethanol at 
176 °C for 20 min) (Nastić et al. 2020). HPLE recovered 
37.3% of phenolic acids and flavonoids with different polari-
ties compared to only 4.4% in SFE.

Ionic Liquids

Over the last few years, ionic liquid solvents (ILs) have 
received great interest as alternatives to traditional organic 
solvents (Ventura et al. 2017; Gong et al. 2023; Usuki and 
Yoshizawa-Fujita 2019). They are a class of chemicals with 
melting points lower than 100 °C and composed entirely of 
an asymmetric large-size organic cation with an anion of 
weak coordination properties. The unique physicochemi-
cal properties of ILs include very low to negligible vapor 
pressure, high thermal stability, and conductivity as well as 
those which can be changed by proper cat-ion-anion com-
bination or by incorporating different functional groups in 
their structures, such as density, viscosity, hydrophobicity, 
polarity, and acid-base properties. ILs can interact with 
bioactive compounds via hydrogen bonding, π-π interac-
tions, ion-dipole, ion-induced dipole, and permanent dipole 
interactions as well as dispersion forces (Zhang et al. 2021). 
Many studies have demonstrated the ability of ILs for the 
extraction of polyphenolic compounds from plant materials, 
in either simply solid-liquid extraction or MAE and USE 
(Sentkowska and Pyrzynska 2021; Guo et al. 2019a, 2019b; 
Dróżdż and Pyrzynska 2019; Ettoumi et al. 2022; Hao et al. 
2020; Wang et al. 2019; Mastellone et al. 2020). The recent 
applications of ILs for the extraction of poly-phenolic com-
pounds from plant materials are shown in Table 1.

According to Zhang et al., promising ILs can be found 
within five cation-based IL classes such as ammonium, 
imidazolium, pyridinium, pyrrolidinium, and phosphonium 
(Zhang et al. 2019). Among them, imidazolium ionic liquids 
are the most frequently used due to their greater ability to 

Fig. 3  Comparison between 
supercritical fluid extraction 
(SFE) and ultrasound-assisted 
extraction (UAE) for green tea 
leaf compounds (total catechins 
represent all the catechins 
including EGCG) (Atwi-Ghad-
dar et al. 2023)
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dissolve cellulose and break the cell wall. Thus, the target 
components within the cell could be effectively dissolved. 
Besides the effect on the disruption of plant matrix structure, 
the aromatic structure of imidazolium cation allows strong 
interactions with polarizable and aromatic analytes (Ventura 
et al. 2017).

The type of anion of ionic liquid may also significantly 
influence the extraction yields (Zhang et al. 2021; Dróżdż 
and Pyrzynska 2019; Berthod et al. 2018). Usually, small 
inorganic or organic anions (e.g., tetrafluoroborate, hex-
afluorophosphate, chloride, and bromide) are combined with 
organic cations. The 1-butyl-3-methylimidazolium (Bmim) 
cation with three different types of anions (Clˉ,  BF4ˉ, and 
 PF6ˉ) was studied for extraction from the heather flower 
(Dróżdż and Pyrzynska 2019). The differences in the total 
flavonoid content were apparent and increased in the order: 
 [Bmim]PF6 <  [Bmim]BF4 < [Bmim]Cl. The results with 
Clˉ and  BF4ˉ anions significantly increased with the increase 

of ionic liquid concentrations, while those obtained for all 
studied concentrations of  [Bmim]PF6 were not statistically 
different. The result using [Bmim]Cl was higher (156.9 ± 
4.1 μmol/g as catechin equivalent) than reported for 60% 
ethanol (145.0 ± 4.5 μmol/g) and ethyl acetate (144.0 ± 1.5 
μmol/g) under similar conditions (Dróżdż et al. 2017).

Faster extraction of bioactive compounds using ionic 
liquids can be achieved through ultrasound-assisted extrac-
tion. The mixture of ethanol and water (60:40, v/v) was 
compared with [Bmim]Cl and  [Bmim]BF4 ionic liquids for 
the extraction of chlorogenic acid (CGA) from different 
plant matrices such as green tea leaves, heather flowers, 
and blueberry fruits (Sentkowska and Pyrzynska 2021). 
The results are depicted in Fig. 4. Using a 60% EtOH 
aqueous solution the highest CGA content was obtained 
in heather and green tea, while [Bmim]Cl ionic liquid 
proved to be a good solvent for blueberry fruits with statis-
tically insignificant differences (p <0.05) with prolonged 

Table 1  Recent applications of ILs for the extraction of phenolic compounds from plant materials

Materials Analytes Type of ILs Extraction conditions Ref.

Blueberry fruits Chlorogenic acid [Bmim]Cl 60 min at room temperature, sonication for 5–20 min 85
Tea Total phenolic content [C3mim]FeCl4 7 min with microwaves (200 W) 86
Heather flowers Total phenolic content [Bmim]Cl 30 min, room temperature 87
Carya cathayensis husk Total phenolics and flavonoids [C4C1im]BF4 30 °C, ultrasonic power (350 W), for 9 min 88
Glycyrrhiza uralensis Isoliquiritigenin [Bmim]Br 60 °C, sonication for 120 min 89
Chrysanthemum spp. Luteolin, acacetin, chlorogenic acid [Hmim]BF4 65 °C for 30 min 90
Vitis vinifera leaves Quercetin, rutin, quercetin-3-O-glucoside [C16C4im]Br 30 min at 70 °C and microwaves (50 W) 91

Fig. 4  Effect of sonication time on the content of chlorogenic acid using different extractants (Sentkowska and Pyrzynska 2021)
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ultrasonic time. However, a significant decrease using 60% 
EtOH and  [Bmim]BF4] for these samples was recorded. 
HPLC analysis showed that CGA under these conditions 
was degraded to caffeic acid (Nastić et al. 2020).

Guo et al. compared the extraction efficiency for green 
tea polyphenols using magnetic  [C3mim]FeCl4 ionic liquid 
assisted with MAE and USE [Guo et al. 2019a, 2019b]. 
The highest value of total phenolic in microwave-assisted 
mode was obtained (159.8 mg/g) when the solid to liquid 
ratio was 1:20, microwave power was 200 W, and extrac-
tion time was 7 min. Compared with ultrasonic-assisted 
extraction (185.4 mg/g), its extraction efficiency was 
lower, but extraction time was shortened significantly from 
300 to 7 min.

It should be mentioned that ionic liquid derivates, like 
IL-based surfactants, are capable of forming micellar aggre-
gates when dissolved in water above their critical micellar 
concentration (CMC); thus, they present the inherent proper-
ties of ILs but with improved solvation properties due to the 
formation of micelles. CMC values are lower than conven-
tional surfactants with similar structures and small amounts 
can be used to take advantage of their surface-active proper-
ties (El Seoud et al. 2021). For the extraction of flavonoids 
from several samples of Passiflora sp. and Mangifera sp. 
leaves, only 525 μL of the low cytotoxic decylguanidinium 
chloride solution at 930 mM concentration and microwave 
irradiation at 30 °C and 50 W for 10.5 min was required 
(Hao et al. 2020). Considering this interesting set of char-
acteristics, the applications of IL-based surfactants in ana-
lytical extraction strategies have been proposed (Mastellone 
et al. 2020; Moučková et al. 2020).

One drawback is the difficulty in recovering extracted 
compounds because of the negligible vapor pressure of ILs. 
As a result, a back-extraction of the analytes from the IL 
phase is required before their analysis (Mai et al. 2014; Xiao 
et al. 2018). The difficulty in recycling and recovering ILs on 
an industrial scale is also a critical issue. Although ILs were 
originally considered to be green chemicals, some concerns 
about their toxicity and potential environmental impact have 
started to arise as most of them show poor degradability 
(Cho et al. 2021; Gonçalves et al. 2021).

Deep Eutectic Solvents

An alternative to ILs is using deep eutectic solvents (DESs). 
DESs are usually obtained by mixing a hydrogen-bond 
acceptor (HBA) and a hydrogen-bond donor (HBD) mol-
ecules in specific molar ratios to form a homogenous liquid 
(Martin et al. 2019; Huang et al. 2019; Serna-Vázquez et al. 
2021; Mannu et al. 2021; Tang et al. 2021; Florindo et al. 
2019). For their preparation elevated temperature (40–60 
°C), freeze-drying, and gridding methods are mostly used 
(Huang et al. 2019; Meneses et al. 2019). DESs are charac-
terized by a much lower melting point than the individual 
components. A small amount of water in these solvents is 
involved in the formation of a network of hydrogen bonds. A 
large number of compounds have been used to prepare deep 
eutectic solvents. At this time, the most common DESs are 
based on cholinium, phosphonium, or tetraalkylammonium 
halide salts mixed with carboxylic acid, urea, ethylene gly-
col, or carbohydrates of different types. The examples of the 

Fig. 5  The chemical structures of common HBAs and HBDs for the composition of DESs
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common HBA and HBD molecules for the composition of 
DESs are presented in Fig. 5.

The majority of DESs that have been prepared and stud-
ied so far are classified in different ways. They are typi-
cally classified based on the nature of the HBD used as a 
combination of an ammonium or phosphonium salt with a 
metal chloride (type I), with a metal chloride hydrate (type 
II), and with alcohols, amides, or carboxylic or amino acids 
(type III). Type IV combines all the deep eutectics com-
posed of only non-ionic, molecular HBAs and HBDs (Huang 
et al. 2019; Serna-Vázquez et al. 2021; Ijardar et al. 2022). 
In addition, there have been some debatable information 
appearing in the literature concerning the new classification 
for distinguishing different types of DESs as more non-ionic 
(hydrophobic) compounds were used as HBA in the synthe-
sis of new DESs (Florindo et al. 2019; Cao and Su 2021; 
van Osch et al. 2020). Thus, the classical DESs contain-
ing choline chloride and urea (1:2) can be considered ionic 
(hydrophilic) DESs due to the presence of ionic HBA. Some 
special branches have also attracted significant attention and 
a new subclass of DESs has been proposed called natural 
deep eutectic solvents (NADESs). They are composed of 
two or more compounds that are generally plant-based pri-
mary metabolites such as sugars, alcohols, carboxylic acids, 
and amino acids (Cao and Su 2021; van Osch et al. 2020). 
Regardless of the type, the prevailing opinions hold that 
DESs are formed through self-associated intermolecular 
interactions, most likely caused by van der Waals interac-
tions, hydrogen bonding, and/or ionic bonding.

Alhadid et al. proposed a simple approach for selecting 
possible substances sharing the same functionality and melt-
ing temperature based on their melting entropy and enthalpy 
(Alhadid et al. 2020). It was demonstrated for six hydropho-
bic eutectic systems composed of l-menthol and monocar-
boxylic acids with linear and cyclic structures. For similar 
melting temperatures, the melting enthalpy of cyclic acids 
with more rigid structures could form deeper eutectics.

Deep eutectic solvents have similar physical properties 
to ionic liquids, and they are practically non-volatile and 
non-flammable. In addition, they are cheaper and usually 
much easier to synthesize, and they are less toxic and often 
biodegradable (Lomba et al. 2021). Additionally, hydrogen 
bonding between DESs and phenolic compounds prevents 
their oxidative degradation DESs could stabilize them and 
prevent oxidative degradation (Lomba et al. 2021; Barbieri 
et al. 2020; Zannou et al. 2020; Dai et al. 2016).

DESs have been extensively studied for the extraction 
of polyphenolic compounds from different plants and food-
processing waste (Mansur et al. 2019; Oomen et al. 2020; 
Wojciechowski et al. 2021; Vo et al. 2023; Zhang et al. 2022; 
Guo et al. 2019a, 2019b; Alrugaibah et al. 2021; Panic et al. 
2019). Mansur et al. investigated the efficiency of 18 dif-
ferent choline chloride-based DESs on the extraction of 

flavonoids from buckwheat sprouts coupled with the UAE 
technique (Mansur et al. 2019). ChCl/triethylene glycol with 
20% (v/v) of water extracted significantly higher amounts of 
flavonoids than other DESs. The extracted flavonoids were 
recovered from DES extracts (yields >97%) by using solid-
phase extraction with C18 microcolumn.

Several DESs were evaluated to extract phenolic com-
pounds from rosemary (Rosmarinus officinalis L.) leaves 
by heating at 30 °C for 15 min (Vo et al. 2023). The extract-
ants were prepared using choline chloride as the HBA and 
various HBD such as acetic acid, lactic acid, oxalic acid, 
1,2-propanediol, ethylene glycol, glycerol, xylitol, sorbitol, 
xylose, and zinc chloride. For pure DESs, phenolic content 
was found only in four DESs, namely those composed of 
acetic and lactic acids, ethylene glycol, and 1,2-propanediol 
allowed the successful extraction. The addition of water 
(30%) allowed the use of all DESs with higher extraction 
yields than 70% ethanol but significantly lower extraction 
yields than pure ethanol. The best extraction conditions were 
obtained for ChCl/1,2-propanediol composition at 65 °C, 
with a 50% aqueous DES, resulting in the highest total phe-
nolic yield of 78 mg GAE/g (Zannou et al. 2020).

Guo et al. found that efficiency for extraction of antho-
cyanins from mulberry utilising NADES with high-speed 
homogenization and cavitation-burst extraction decreased 
in the following order: Ch/citric acid, Ch/tartaric acid > 
Ch/lactic acid > Ch/glycerol > Ch/xylitol > Ch/mannitol 
> Ch/glucose > Ch/fructose, thus DESs with organic acids 
as the HBDs than those with sugars or sugar alcohols (poly-
ols) (Guo et al. 2019a, 2019b). Among mixtures containing 
three components, the NADES comprising ChCl/citric acid/
glucose (with 30% of water) showed the best extraction effi-
ciency of anthocyanins as compared to traditional ethanol/
water mixture. Similarly, Panic et al. extracted anthocyanins 
from grape pomace on a larger scale using ChCl/citric acid 
composition with 30% of water under simultaneous ultra-
sound/microwave-assisted extraction (MW power at 300 W, 
US power 50 W), for 10 min (Panic et al. 2019).

The recent applications of DESs for the extraction of 
polyphenolic compounds from plant materials are presented 
in Table 2.

Enzymes

An interesting approach that allows the release of polyphe-
nolics, particularly those localized intracellularly or bound 
with components of cell walls, is the use of enzymes for the 
destruction of cell wall integrity (Bitwell et al. 2023; Nadar 
et al. 2018; Krakowska-Sieprawska et al. 2020) and facili-
tates the diffusion of phenolics from plant cells to the sol-
vent. Enzymes, such as cellulase, glucanase, β-glucosidase, 
and pectinase, are mainly used for these purposes. The 
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effectiveness of enzyme-assisted extraction (EAE) depends 
largely on the type of enzyme or enzyme mixture used as 
well as the selection of optimal conditions for their opera-
tion (pH, ionic strength, temperature). In particular, extrac-
tion temperature plays an important factor since the enzyme 
activity may decrease at low or high temperatures (Calderón-
Oliver and Ponce-Alquicira 2021).

Pretreatment of plant material of interest after the 
enzymes detach the phytochemicals from plant material is 
followed by other extraction methods. For example, flavo-
noids were obtained from pomelo peels by first treating the 
peels with 4.5% pectinase and then extraction of these phy-
tochemicals was done using the USE method at a reduced 
optimal temperature of 30 °C (Anh et al. 2021). Similarly, 
pretreating of rosemary leaves with pectinolytic enzymes for 
1 h before a 24-h conventional extraction with 50% ethanol 
was provided to obtain an extract with higher radical scav-
enging activity evaluated by DPPH assay than that without 
the enzyme pretreatment (Pontillo et al. 2021). It also led to 
increased extractability of phenolic compounds from olive 
pomace followed by MAE (Macedo et al. 2021). Using 
EAE, non-extractable polyphenols have been also recov-
ered at relatively low temperatures from sweet cherry fruits 
(Domínguez-Rodríguez et al. 2021), citrus peels (Zarate 
Vilet et al. 2020), corn cob (Fernandez-Aulis et al. 2019), 
and green yerba mate (Heemann et al. 2019).

The comparison of three extraction techniques—mac-
eration, supercritical fluid extraction (both for 120 min at 
50 °C with 96% ethanol), and combination of enzymatic 
pretreatment with SFC, under the same conditions with the 
addition of 2.9% of Kenzyme® (commercially available 
enzyme mixture) and incubated at 45 °C for 90 min—was 
recently reported for evaluation of their efficiency to release 

polyphenolic compounds from yerba mate leaves (Kra-
kowska-Sieprawska et al. 2020). The extracts from yerba 
mate macerated with 96% ethanol had a much higher con-
tent of total phenolic compounds (135.5 mg GA/g DM) in 
comparison to the SFE technique (51.95 mg GA/g DM). The 
chromatographic analysis performed using HPLC-MS/MS 
of all studied extracts showed that SFE method combined 
with enzymatic degradation used allowed for a significant 
increase in the content of quercetin, caffeic acid, chlorogenic 
acid, and 4-hydroxybenzoic acid (4-HBA), in comparison 
with maceration and SFE extracts, which is shown in Figs. 5 
and 6. A significant increase in rutin and chlorogenic acid 
was also observed for yellow lupine plant after enzymatic 
treatment (Krakowska-Sieprawska et al. 2020).

Table 2  Recent applications of DESs for the extraction of polyphenolic compounds from plant materials

Materials Analytes Type of DESs Extraction conditions Ref.

Buckwheat (Fagopyrum 
esculentum Möench) 
sprouts

Rutin, vitexin, isovitexin, 
orientin, isoorientin

Choline chloride/triethylene 
glycol

40 min at 57 °C, ultra-
sounds (700 W)

Mansur et al. 2019

Baikal skullcap (Scutellaria 
baicalensis) bark

Baicalein, scutellarin, 
wogonin, oroxylin, and 
their glycosides

Proline/citric acid (1:1) Stirring at 50 °C Oomen et al. 2020

Rosemary (Rosmarinus 
officinalis L.) leaves

Total phenolics Choline chloride/triethylene 
glycol (1:2)

150 min at 120 °C Pontillo et al. 2021

Mangosteen (Garcinia 
mangostana L.) rinds

Total phenolic and flavo-
noid contents

Lactic acid/1,2-propanediol 9 min at 57.5 °C, ultra-
sounds (300 W)

Vo et al. 2023

Siberian ginseng (Acantho-
panax senticosus)

Total flavonoids Lactic acid/glycerol (1:1) 73 min at 55 °C, ultra-
sounds (500 W)

Zhang et al. 2022

Mulberry (Fructus mori) 
leaves

Total anthocyanins Choline chloride/citric acid/
glucose (1:1:1)

30 min, at 45 °C and nega-
tive pressure (−0.08 MPa)

Guo et al. 2019a, 2019b

Grape pomace (Vitis vinif-
era cv. Plavac mali)

Total anthocyanins Choline chloride: citric acid 
(1:1)

Simultaneous ultrasounds 
(50 W) and microwaves 
(300 W) for 10 min

Panic et al. 2019

Fig. 6  Concentration of the main polyphenolic compounds extracted 
from yerba mate using different techniques (Krakowska-Sieprawska 
et al. 2020). Chlorogenic and 4-hydroxybenzoic (4-HBA) acids were 
not detected in macerated extracts
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It is worth mentioning that the changes in the structure of 
the evaluated plant materials and the functional aspects of 
the quality of the extracts after enzymatic hydrolysis were 
rarely studied. Rafińska et al. found that enzymes not only 
acted on a plant surface but efficiently penetrated inside the 
fragments of tissue (Rafińska et al. 2022). Pectinase turned 
out to be particularly efficient in obtaining high-quality 
Medicago sativa extract with a low content of interfer-
ing compounds such as reducing sugars or short chains of 
polysaccharides.

Other Innovative Extraction Techniques

Various novel thermal and non-thermal extraction techniques 
have been recently investigated. These advanced techniques 
are more efficient in comparison to methods used so far in 
terms of solvent consumption, extraction time, and energy 
cost (Zia et al. 2022). Thus, these novel methodologies pre-
sent the principles of green chemistry, as their application 
provides a positive environmental and social impact. They 
are particularly attractive to the food and pharmaceutical 
industries (Belwal et al. 2020).

Pulsed electric field (PEF) is used as a pretreatment tech-
nique to improve the extraction and preservation of bioactive 
compounds followed by a subsequent traditional or novel 
extraction step (Ranjha et al. 2021; Bocker and Silva 2022). 
PEF uses short and intense pulses of electricity to create 
pores in the cell membranes of plant tissues, allowing the 
release of intracellular substances and enhancing the mass 
transfer of solvents. In addition to increasing the yield of 
the extraction process, the PEF technique promotes mini-
mal changes to the sensory and nutritional properties of the 
products as it is associated with the low temperatures used 
during the process (30–40 °C). It also inactivates microor-
ganisms and enzymes that cause spoilage and degradation 
of food quality. There is increasing interest in the prepara-
tion of extracts using PEF from plant material, such as the 
extraction of polyphenols from onion bulbs (Liu et al. 2018a, 
2018b), aromatic plant leaves (Carpentieri et al. 2022), cin-
namon (Pashazadeh et al. 2020), and herbs (Athanasiadis 
et al. 2022).

Cold plasma (CP) is a new technology with promising 
potential to be used (López-Gámez et  al. 2021; 
Pogorzelska-Nowicka et  al. 2021; Kumar et  al. 2023). 
The cellular damages and surface modifications of plant 
materials caused by plasma increase the extractability 
of hydrophilic compounds, which can facilitate phenolic 
recovery. Bao et al. investigated the effect of different gases 
(air, argon, helium, and nitrogen) on phenolic extraction 
from CP-treated tomato pomace (60 kV for 15 min) (Bao 
et al. 2022). It was found that plasma composition was 
more relevant than treatment time for extracting phenolic 

content, and helium and nitrogen caused the most intensive 
disruption of cells. Application of CP increased the amount 
of caffeic acid for argon, helium, and nitrogen as well 
as for chlorogenic acid by argon, helium, and nitrogen 
plasmas. However, the concentrations of gallic acid, 
rutin, isoquercetin, and ferulic acid remained similar to 
untreated samples. Hou et al. mentioned the importance of 
CP treatment exposure time since the antioxidant potential 
of blueberry juice declined when the operation time was 
extended from 2 to 6 min (Hou et al. 2019). Cold plasma 
treatment has also been applied to improve the extraction 
of phenolics from green tea leaves (Keshavarzi et al. 2020) 
and apple cubes (Farias et al. 2020), as well as to improve 
the shelf life of food (Heydari et al. 2023; Subrahmanyam 
et al. 2023).

Methodologies, such as flash extraction (FE) and 
mechanochemical-assisted extraction (MCAE), could also 
be mentioned among the innovative techniques for the 
extraction of phenolic compounds. The high efficiency 
achieved by FC is mainly due to the ultrahigh-speed rotation 
of the specially designed cutter head and other effects caused 
by this, such as very rapid dynamic molecular permeation, 
drastic stir, and strong vibration (Qin and Xi 2022; Fan 
et al. 2022). It is not only able to achieve high yields in a 
very short time (about 1 min) with a simple operation but 
also possesses better industrial acceptability. Ethanol and 
methanol, and their mixtures with water are mostly used 
as solvents (Mo et al. 2020). MCAE applies high-energy 
mechanical force acting on the raw materials to enhance 
the release of intracellular molecules and dissociate the 
target components from natural products in aqueous media 
avoiding or considerably reducing the organic solvent 
consumption (Fan et  al. 2022). Moreover, this green 
pretreatment method is performed under relatively low 
temperatures; it can reduce or avoid the loss of thermolabile 
compounds. Chemat et al. summarized the application of 
MCAE for the extraction of bioactive compounds, including 
phenolics (Chemat et al. 2020).

Conclusions

Due to their properties, phenolic compounds are widely 
used in the food, pharmaceutical, and cosmetics industries. 
The classic extraction methods such as maceration, Soxhlet 
extraction, and percolation still dominate, particularly on 
an industrial scale. Novel methods that apply ultrasounds, 
microwaves, supercritical fluids, or enzymes are becom-
ing more popular because they allow the reduction of sol-
vents and extraction time, as well as guarantee less thermal 
degradation of phenolic compounds. However, they also 
have some challenges as operational costs limit their wide 
applications.
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The choice of extraction technique hinges on the plant 
matrix, targeted compounds, economic viability, and envi-
ronmental impacts. Due to the importance of phenolic com-
pounds, it should be expected that searching for innovative 
procedures for their extraction will be intensively developed 
in the coming years to achieve appreciable recovery yields 
from the plant materials.

In some cases, the combination of different extraction 
methods can be applied as a single extraction technique to 
obtain high phenolic yield from the source material. The 
simultaneous use of high-pressure extractions and hydrolysis 
with enzymatic assistance, as well as the combination of 
ultrasound and microwave, may promote the development 
of efficient technical and economic systems. Cold extrac-
tion techniques are also a viable alternative for the pheno-
lics extraction from natural sources, preferable regarding the 
extraction of thermolabile compounds. That may overcome 
the disadvantages of individual techniques and provide ben-
efits specifically related to specific compounds, matrices, 
or applications. The combination of novel extraction tech-
nologies to achieve synergistic effects, minimal degradation 
of active components, and enhanced extraction yields will 
probably be a topic in future research.
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