11th Balkan Congress of Nuclear Medicine May 30 to June 02, 2024 Skopje

FEASIBILITY STUDY - A MEAN FOR MULTI-FACETED ASSESSMENT OF THE IDEA OF ESTABLISHING RADIOISOTOPE PRODUCTION AND INTRODUCING NEW RADIOPHARMACEUTICALS INTO CLINICAL PRACTICE

<u>Katerina Kolevska^{1,2*}, Maja Chochevska^{1,2}, Marija Atanasova Lazareva^{1,2},</u> Maja Velichkovska¹, Filip Jolevski¹, Emilija Janevik-Ivanovska², Guenka Petrova⁴, Ana Ugrinska^{1,3}, Bistra Angelovska²

> ¹University Institute of Positron Emission Tomography, Skopje, North Macedonia ²Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia ³Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia ⁴Faculty of Pharmacy, Medical University-Sofia, Bulgaria

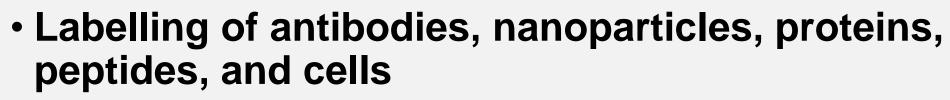

Establishing radiopharmaceutical production in a developing country is challenging, mainly in the economical aspect.

A feasibility study provides an objective insight into many aspects of the feasibility of the idea of introducing new radiopharmaceutical.

North Macedonia

- Developing country in Southeastern Europe
- Centralized production 1 facility for the production of PET radioisotopes and radiopharmaceuticals (University Institute of PET)

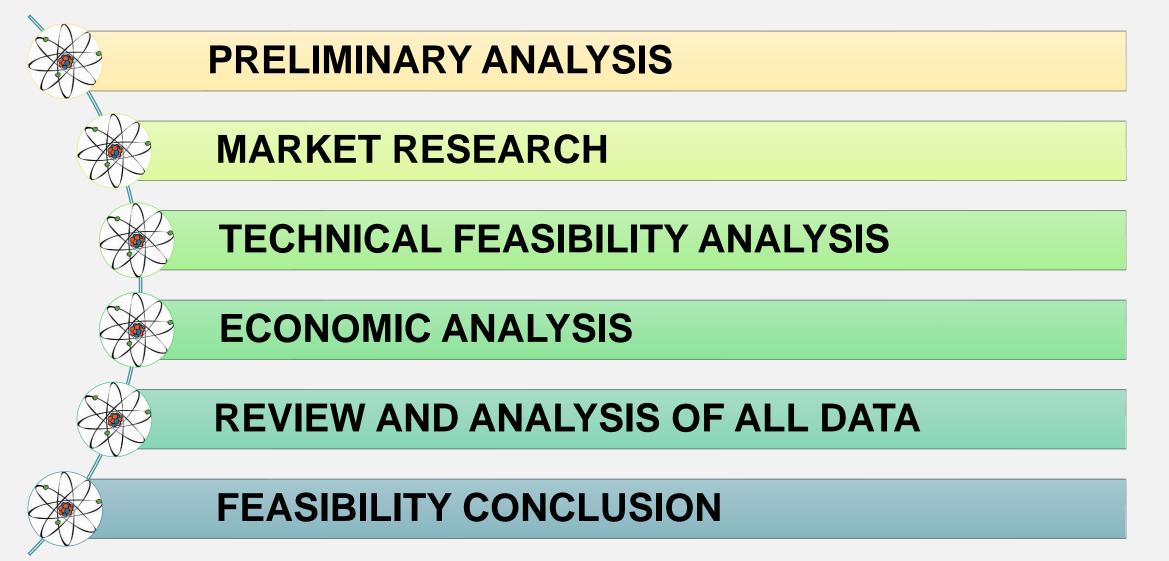
Feasibility study for the establishment of production of zirconium-89 radioisotope and implementation of ⁸⁹Zr-radiopharmaceuticals in clinical practice



ZIRCONIUM-89

- EMERGING PET RADIOMETAL

Zirconium-89 half-life of 78.4 h corresponds to the biological half-life of monoclonal antibodies.


- Half-life 78.4 h
- Immuno-PET radionuclide

DESIGN OF FEASIBILITY STUDY

PRELIMINARY ANALYSIS

Objective: To assess whether the clinical application of ⁸⁹Zr-radiopharmaceuticals in the country is possible and justified.

Review of clinical applications data of ⁸⁹Zr-radiopharmaceuticals

• Reference database for clinical trials (ClinicalTrials.gov)

Review of statistical data regarding malignant diseases in North Macedonia: frequency, mortality, sex distribution, comparative analysis (EU, Southern Europe, world)

 Reference databases: international (Global Cancer Observatory) and domestic (Mortality Register and Cancer Register of Institute of Public Health)

PRELIMINARY ANALYSIS

Review of clinical applications data of ⁸⁹Zr-radiopharmaceuticals

- Clinical trials in total (until 09.05.2021): 93
- Status completed, terminated, unknown: 48
- Countries: Netherlands 28, USA 16, Belgium 2, China 2, Australia – 1, Sweden – 1, Denmark – 1, Korea – 1, France – 1, Spain – 1
- Radiopharmaceuticals: ⁸⁹Zr-bevacizumab (9), ⁸⁹Zr-trastuzumab (6), ⁸⁹Zr-Df-IAB2M (3), ⁸⁹Zr- Cetuximab (3), ⁸⁹Zr-Pembrolizumab (2), ⁸⁹Zr-J591 (2), ⁸⁹Zr-panitumumab (2), ⁸⁹Zr-Girentuximab (2), ⁸⁹Zr-DFO-pertuzumab (2), ⁸⁹Zr-Df-IAB22M2C, ⁸⁹Zr-KN035, ⁸⁹Zr-MMOT0530A, ⁸⁹Zr-AMG211, ⁸⁹Zr-ABT806, ⁸⁹Zr-daratumumab, ⁸⁹Zr-Cripec Docetaxel, ⁸⁹Zr-GC1008, ⁸⁹Zr-durvalumab, ⁸⁹Zr-GSK3128349, ⁸⁹Zr-GSK2849330, ⁸⁹Zr-BI 754111, ⁸⁹Zr-GSK2398852, ⁸⁹Zr-RO5429083, ⁸⁹Zr-TAK-164, ⁸⁹Zr-nanocoll, ⁸⁹Zr-DS-8895a, ⁸⁹Zr-RO5479599

Neoplasms (C00-D48) are the *second leading cause of death* in Macedonia, after circulatory system diseases.

Deaths in 2020	Deaths in 2020 due to malignant diseases						
1 – 64 years	> 64 years						
24.25 %	12.68 %						
	Mortality Register, Institute of Public Health, 2021						
	Males: bronchi and lungs cancer						
2011-2020	average mortality rate 63.9 per 100,000 men						
The most common cause of death							
from malignant neoplasms:	Females: breast cancer						
average mortality rate in both sexes	average mortality rate 29.07 per 100,000 wom						
180 per 100,000 population	Cancer Register, Institute of Public Health, 2021						

10 most common primary cancer sites (N.Macedonia), 2011 - 2020

	Total Males						Females	
Code	Primary sites	%	Code	Primary sites	%	Code	Primary sites	%
C34	Bronchus and lung	13.12	C34	Bronchus and lung	18.80	C50	Breast	25.29
C50	Breast	11.59	C61	Prostate	9.77	C44	Other of skin	7.38
C44	Other of skin	8.22	C44	Other of skin	8.90	C54	Corpus uteri	7.30
C18	Colon	6.10	C16	Stomach	7.50	C34	Bronchus and lung	6.16
C16	Stomach	6.06	C18	Colon	6.50	C18	Colon	5.61
C61	Prostate	5.38	C67	Bladder	5.67	C53	Cervix uteri	5.16
C22	Liver and intrahepatic bile ducts	4.20	C22	Liver and intrahepatic bile ducts	5.08	C16	Stomach	4.30
C20	Rectum	4.00	C20	Rectum	4.38	C56	Ovary	3.83
C67	Bladder	3.93	C32	Larynx	3.85	C20	Rectum	3.53
C54	Corpus uteri	3.28	C25	Pancreas	3.10	C22	Liver and intrahepatic bile ducts	3.11
	Other	34.13		Other	26.44		Other	28.33

Cancer Register, Institute of Public Health, 2021

New cancer cases in 2020, excluding non-melanoma skin cancer, both sexes

World EU-27			Southern Europe		North Macedonia		
Cancer	%	Cancer	%	Cancer	%	Cancer	%
Breast	11.7	Breast	12.1	Breast	12.6	Lung	14.9
Lung	11.4	Prostate	11.4	Lung	11	Breast	12.9
Prostate	7.3	Lung	10.8	Prostate	10.3	Prostate	10.3
Colon	6	Colon	7.4	Colon	8.6	Rectum	6.7
Stomach	5.6	Bladder	5.3	Bladder	6.5	Colon	5.6
Liver	4.7	Rectum	3.9	Rectum	4.1	Corpus uteri	4.8
Rectum	3.8	Melanoma of skin	3.6	Pancreas	3.2	Bladder	4.8
Cervix uteri	3.1	Pancreas	3.2	Stomach	3.2	Stomach	4.3
Oesophagus	3.1	Kidney	2.9	Non-Hodgkin Iymphoma	3	Brain, central nervous system	4
Thyroid	3	Non-Hodgkin lymphoma	2.9	Kidney	2.9	Pancreas	3.6

Top 5 most frequent cancers among new cases in females in 2020, excl. non-melanoma skin cancer

World EU-27		Southern Europe		North Macedonia			
Cancer	%	Cancer	%	Cancer	%	Cancer	%
Breast	24.5	Breast	26.4	Breast	28	Breast	29.2
Colorectum	9.4	Colorectum	11.2	Colorectum	12.2	Colorectum	14.4
Lung	8.4	Lung	8.4	Lung	7.1	Corpus uteri	10.9
Cervix uteri	6.5	Corpus uteri	5.4	Corpus uteri	5.6	Lung	7.2
Thyroid	4.9	Melanoma of skin	3.8	Thyroid	3.9	Cervix uteri	3.3

Top 5 most frequent cancers among new cases in males in 2020, excl. non-melanoma skin cancer

World EU-27		Southern Europe		North Macedonia			
Cancer	%	Cancer	%	Cancer	%	Cancer	%
Lung	14.3	Prostate	20.9	Prostate	18.8	Lung	21
Prostate	14.1	Lung	12.8	Lung	14.1	Prostate	18.5
Colorectum	10.6	Colorectum	11.9	Colorectum	13.6	Colorectum	10.9
Stomach	7.1	Bladder	7.6	Bladder	9.3	Bladder	7
Liver	6.3	Melanoma of skin	3.5	Stomach	3.6	Stomach	5.2

Global Cancer Observatory, 2021

Mortality (deaths of cancer in 2020), both sexes

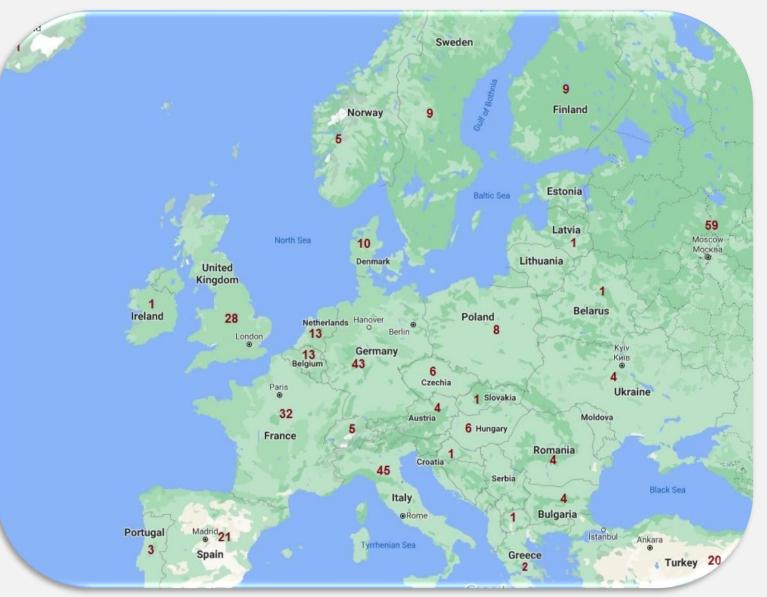
World		EU-27		Southern Europe		North Macedonia	
Cancer	%	Cancer	%	Cancer	%	Cancer	%
Lung	18	Lung	20.3	Lung	20.2	Lung	23.3
Liver	8.3	Colon	8.5	Colon	9.5	Breast	7.5
Stomach	7.7	Breast	7.2	Breast	6.8	Prostate	7.1
Breast	6.9	Pancreas	7	Pancreas	6.7	Stomach	6.6
Colon	5.8	Prostate	5.5	Stomach	5.1	Pancreas	6.4
Oesophagus	5.5	Liver	4.2	Liver	5	Colon	6
Pancreas	4.7	Stomach	4.1	Prostate	4.8	Brain, central	6
						nervous system	
Prostate	3.8	Bladder	3.9	Bladder	4.2	Rectum	5.8
Cervix uteri	3.4	Rectum	3.6	Rectum	3.4	Liver	4.4
Rectum	3.4	Leukaemia	3.4	Leukaemia	3.4	Bladder	3.1

Global Cancer Observatory, 2021

MARKET RESEARCH

Objective: To define the geographical impact of the market.

Distribution of medical cyclotrons in Europe

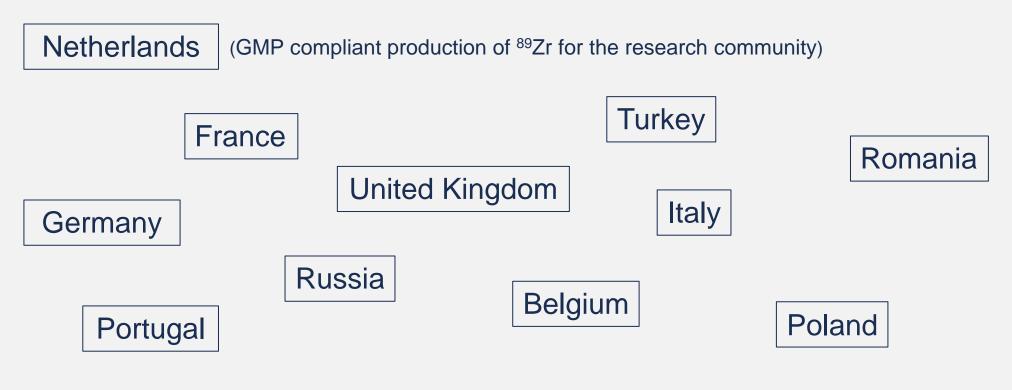

IAEA Cyclotron Distribution Database

Zirconium-89 production sites in Europe

Literature search

MARKET RESEARCH

Distribution of medical cyclotrons in Europe



Europe + Turkey + Russian Federation (including its Asian part): 356

https://nucleus.iaea.org/sites/accelerators/Pages/Cyclotron.aspx (December 2022)

Zirconium-89 production sites in Europe

No zirconium-89 production on the Balkan Peninsula

Analysis of the <u>technical capacities</u> of the production site (University Institute of Positron Emission Tomography) in terms of *space* and *equipment* necessary for the realisation of the production of zirconium-89 radioisotope and ⁸⁹Zr-radiopharmaceuticals.

Objective: To determine what type of additional equipment/apparatus is required.

TECHNICAL FEASIBILITY ANALYSIS

Zirconium-89 radioisotope

Production mode: cyclotron

UI PET technical capacities: → 3 proc

3 production and 2 QC laboratories

⁸⁹Y(p,n)⁸⁹Zr

Cyclotron PETtrace 860 - Beam energy 16.5 MeV

- Maximum current 100 uA on dual beam

- Targets for the production of ¹⁸F, ¹¹C and ¹³N radioisotopes and possibility for the additional embedding of solid targets

Financial analysis

Cost analysis

Objective:

- ✓ To calculate the cost of in-house production of zirconium-89 radioisotope in the UI PET;
- To compare the costs of radioisotope production with the costs of purchasing a readymade product;
- ✓ To calculate the cost of in-house production of ⁸⁹Zr-trastuzumab radiopharmaceutical (three cases: production for 4, 7 and 10 patients).

Pharmacoeconomic analysis

s

Cost-benefit analysis

Objective:

✓ To assess the cost-benefit ratio of either testing patients with ⁸⁹Zrtrastuzumab PET/CT or biopsy as the comparison alternatives (breast cancer testing).

Financial analysis

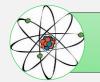
Pharmacoeconomic analysis

Cost-benefit analysis

The production process was simulated based on literature data.

Unit costs sources: intentional marketing analysis, institute data review and analysis of the National Health Insurance Fund tariff costs.

Subject of the pharmacoeconomic analysis – ⁸⁹Zr-trastuzumab (selection on the basis of the results of *the preliminary analysis*)



Cost analysis

Radioisotope	(⁸⁹ Zr-	oxalate) cost (MKD)
Purchased	>	Prepared in-house

The in-house production of zirconium-89 radioisotope is more profitable than its purchase.

Radiopharmaceutical	Case 1	Case 2	Case 3
(⁸⁹ Zr-trastuzumab)	(4 patients)	(7 patients)	(10 patients)
Cost per patient (EUR)	1 382	871	667

Cost-benefit analysis

Case	Alternative	Cost per patient (EUR)	Net benefit	Cost/benefit
	⁸⁹ Zr-trastuzumab	1 382		
	Biopsy	362	1 020	3.8
Case	Alternative	Cost per patient (EUR)	Net benefit	Cost/benefit
	⁸⁹ Zr-trastuzumab	871		
	Biopsy	362	509	2.4
Case	Alternative	Cost per patient (EUR)	Net benefit	Cost/benefit
	⁸⁹ Zr-trastuzumab	667		
	Biopsy	362	305	1.84

S

REVIEW AND ANALYSIS OF ALL DATA

Capacities in terms of space Technical infrastructure GMP production of RPs Profitability of in-house production

There is no established production of ⁸⁹Zr radioisotope in the Balkans Only ¹⁸F PET radiopharmaceuticals in clinical practice in Macedonia National regulation regarding marketing authorisation Required additional equipment (initial financial investment)

Inexperience in the production of radiometals and the preparation of radioimmunoconjugates

Emerging technology, several manufacturers

Epidemics, military conflicts (direct and indirect impact)

FEASIBILITY CONCLUSION

Promoting new clinical strategies at the national level

Development of research potentials Optimisation of UI PET production capacities

... an opportunity to look at the other side