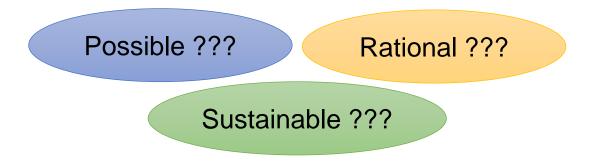


#ISTR2023


IAEA Headquarters, Austria

17 – 21 April 2023

Design of feasibility study for the establishment of ⁸⁹Zr production – tailored approach to introduce new radiopharmaceuticals in a developing country

Establishing radiopharmaceutical production in a developing country is challenging, mainly in the economical aspect.

A feasibility study provides an objective insight into many aspects of the feasibility of the idea of introducing new radiopharmaceutical.

Speaker name Katerina Kolevska

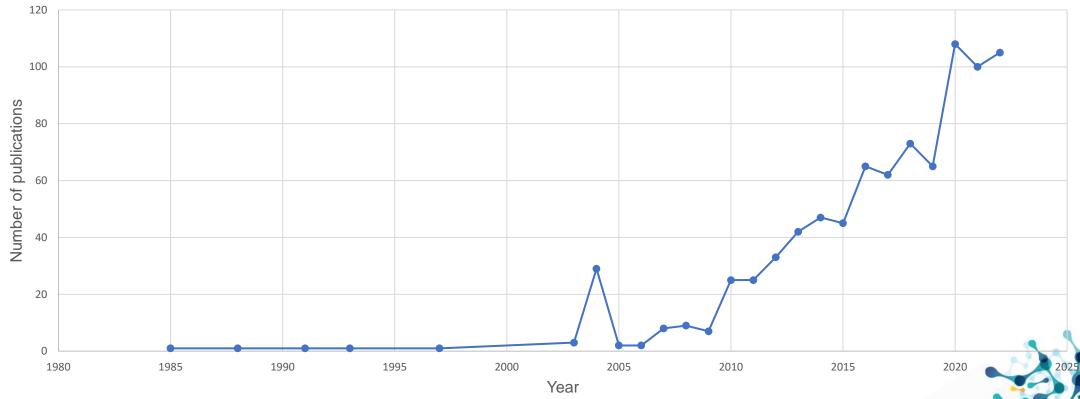
North Macedonia

- Developing country in Southeastern Europe
- Centralized production 1 facility for the production of PET radioisotopes and radiopharmaceuticals (University Institute of PET)

Feasibility study for the establishment of production of zirconium-89 radioisotope and implementation of ⁸⁹Zr-radiopharmaceuticals in clinical practice

- Ongoing study

IAEA-CN310-284


Romania

ZIRCONIUM-89

- EMERGING PET RADIOMETAL

Search: 89Zr

Publications in *PubMed* per year

Zirconium-89

Half-life 78.4 h

Immuno-PET radionuclide

 Labelling of antibodies, nanoparticles, proteins, peptides, and cells

Zirconium-89 half-life of 78.4 h corresponds to the biological half-life of monoclonal antibodies.

DESIGN OF FEASIBILITY STUDY

MARKET RESEARCH

TECHNICAL FEASIBILITY ANALYSIS

ECONOMIC ANALYSIS

REVIEW AND ANALYSIS OF ALL DATA

FEASIBILITY CONCLUSION

1

PRELIMINARY ANALYSIS

Objective: To assess whether the clinical application of ⁸⁹Zr-radiopharmaceuticals in the country is possible and justified.

- Review of statistical data regarding malignant diseases in North Macedonia (frequency and mortality)
 - Reference databases: international (Global Cancer Observatory) and domestic (Mortality Register and Cancer Register of Institute of Public Health)

1-2

Review of clinical applications data of 89Zr-radiopharmaceuticals

Reference database for clinical trials (ClinicalTrials.gov)

Speaker name Katerina Kolevska

Review of statistical data regarding malignant diseases in North Macedonia

Neoplasms (C00-D48) are the **second leading cause of death** in Macedonia, after circulatory system diseases.

Deaths in 2020 due to malignant diseases						
1 – 64 years	> 64 years					
24.25 %	12.68 %					

Speaker name Katerina Kolevska

Mortality Register, Institute of Public Health, 2021

2011-2020

The most common cause of death from malignant neoplasms:

average mortality rate in both sexes 180 per 100,000 population

Males: bronchi and lungs cancer

average mortality rate 63.9 per 100,000 men

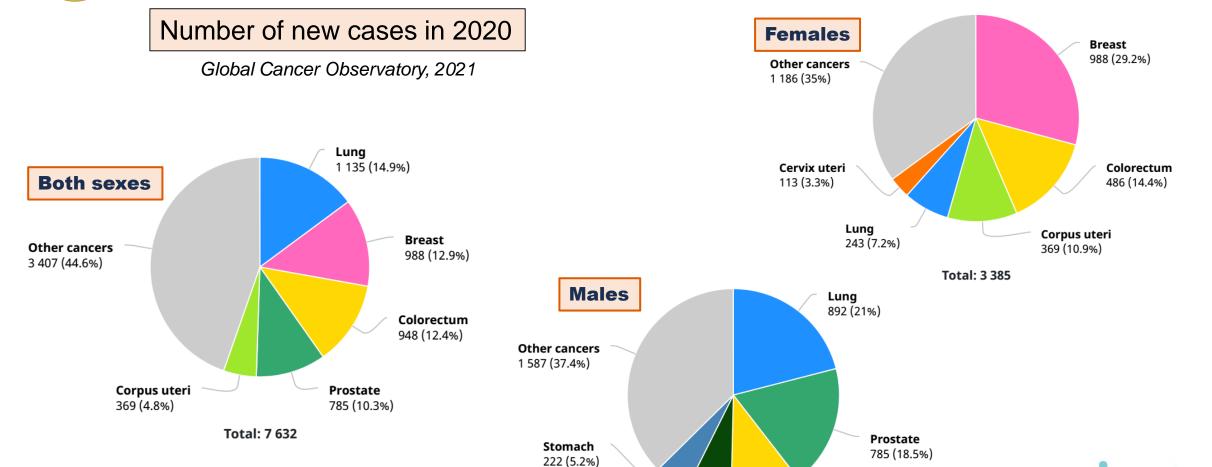
Females: breast cancer

average mortality rate 29.07 per 100,000 women

Cancer Register, Institute of Public Health, 2021

IAEA-CN310-284

10 most common primary cancer sites (N.Macedonia), 2011 - 2020


Total

Males

Females

Code	Primary sites	%	Code	Primary sites	%	Code	Primary sites	%
C34	Bronchus and lung	13.12	C34	Bronchus and lung	18.80	C50	Breast	25.29
C50	Breast	11.59	C61	Prostate	9.77	C44	Other of skin	7.38
C44	Other of skin	8.22	C44	Other of skin	8.90	C54	Corpus uteri	7.30
C18	Colon	6.10	C16	Stomach	7.50	C34	Bronchus and lung	6.16
C16	Stomach	6.06	C18	Colon	6.50	C18	Colon	5.61
C61	Prostate	5.38	C67	Bladder	5.67	C53	Cervix uteri	5.16
C22	Liver and intrahepatic bile ducts	4.20	C22	Liver and intrahepatic bile ducts	5.08	C16	Stomach	4.30
C20	Rectum	4.00	C20	Rectum	4.38	C56	Ovary	3.83
C67	Bladder	3.93	C32	Larynx	3.85	C20	Rectum	3.53
C54	Corpus uteri	3.28	C25	Pancreas	3.10	C22	Liver and intrahepatic bile ducts	3.11
	Other	34.13		Other	26.44		Other	28.33

Review of statistical data regarding malignant diseases in North Macedonia

Total: 4 247

Bladder

299 (7%)

Colorectum

462 (10.9%)

1-2 Review of clinical applications data of 89Zr-radiopharmaceuticals

- Clinical trials in total (until 09.05.2021): 93
- Status completed, terminated, unknown: 48
- Countries: Netherlands 28, USA 16, Belgium 2, China 2, Australia – 1, Sweden – 1, Denmark – 1, Korea – 1, France – 1, Spain – 1
- Radiopharmaceuticals: ⁸⁹Zr-bevacizumab (9), ⁸⁹Zr-trastuzumab (6), 89Zr-Df-IAB2M (3), 89Zr- Cetuximab (3), 89Zr-Pembrolizumab (2), ⁸⁹Zr-J591 (2), ⁸⁹Zr-panitumumab (2), ⁸⁹Zr-Girentuximab (2), 89Zr-DFO-pertuzumab (2), 89Zr-Df-IAB22M2C, 89Zr-KN035, 89Zr-MMOT0530A, 89Zr-AMG211, 89Zr-ABT806, 89Zr-daratumumab, ⁸⁹Zr-Cripec Docetaxel, ⁸⁹Zr-GC1008, ⁸⁹Zr-durvalumab, ⁸⁹Zr-GSK3128349, 89Zr-GSK2849330, 89Zr-BI 754111, 89Zr-GSK2398852, 89Zr-RO5429083, 89Zr-TAK-164, 89Zr-nanocoll, 89Zr-DS-8895a, 89Zr-RO5479599

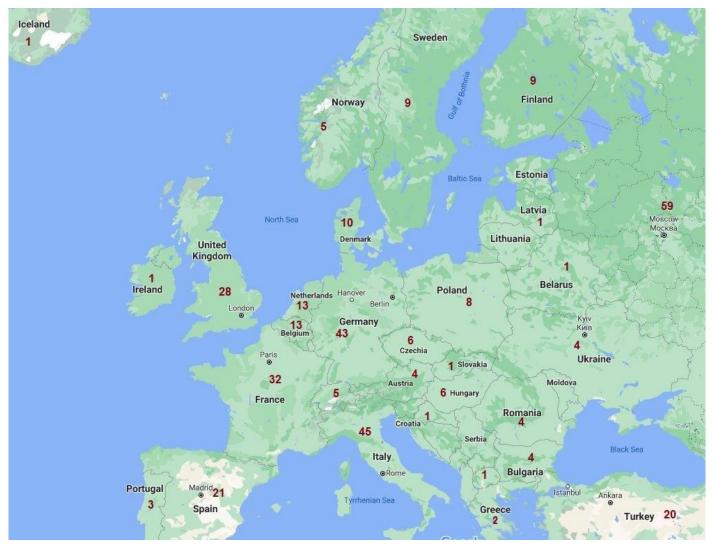
IAEA-CN310-284

MARKET RESEARCH

Objective: To define the geographical impact of the market.

Distribution of medical cyclotrons in Europe

IAEA Cyclotron Distribution Database


Zirconium-89 production sites in Europe

Literary search

Distribution of medical cyclotrons in Europe

Worldwide: 1266

Europe + Turkey + Russian Federation (including its Asian part): 356

https://nucleus.iaea.org/sites/accelerators/Pages/Cyclotron.aspx (December 2022)

Zirconium-89 production sites in Europe

Netherlands (GMP compliant production of 89Zr for the research community)

France

Turkey

Italy

Romania

Portugal

Russia

No zirconium-89 production on the Balkan Peninsula

3

TECHNICAL FEASIBILITY ANALYSIS

 Analysis of the technical capacities of the production site (University) Institute of Positron Emission Tomography) in terms of space and equipment necessary for the realisation of the production of zirconium-89 radioisotope and ⁸⁹Zr-radiopharmaceuticals.

Objective: To determine what type of additional equipment/apparatus is required.

TECHNICAL FEASIBILITY ANALYSIS

Zirconium-89 radioisotope

Production mode: cyclotron

89Y(p,n)89Zr

UI PET technical capacities:

3 production and 2 QC laboratories

- Beam energy 16.5 MeV
- Maximum current 100 uA on dual beam
- Possibility for the additional embedding of solid targets

TECHNICAL FEASIBILITY ANALYSIS

Zirconium-89 radioisotope

Production mode: cyclotron

89Y(p,n)89Zr

UI PET technical capacities:

3 production and 2 QC laboratories

- Beam energy 16.5 MeV
- Maximum current 100 uA on dual beam
- Possibility for the additional embedding of solid targets

ECONOMIC ANALYSIS

Economic feasibility assessment

- 1. Financial analysis
- 2. Pharmacoeconomic analysis

FINANCIAL ANALYSIS

Methodology: Defining and calculating the costs (direct and indirect) - data from literature search and from UI PET (production process simulation).

Objective: To determine the initial investment for the establishment of zirconium-89 radioisotope production; financial investments (costs) in the production of zirconium-89 radioisotope 89**Z**rprocess of radiopharmaceuticals as well as the price of the product (radioisotope and radiopharmaceutical products).

ECONOMIC ANALYSIS

PHARMACOECONOMIC ANALYSIS

Methodology: Cost-effectiveness analysis

Objective: To assess the justification for the implementation of ⁸⁹Zr-radiopharmaceuticals in clinical practice.

Subject of the pharmacoeconomic analysis – 89Zr-trastuzumab.

Selection on the basis of the results of *the preliminary analysis*:

- → ⁸⁹Zr-trastuzumab is one of the most common ⁸⁹Zr-radiopharmaceuticals in clinical trials;
- → on the national level, breast cancer is the most common malignancy and the most common cause of death from cancers in the female population.

IAEA-CN310-284

ECONOMIC ANALYSIS

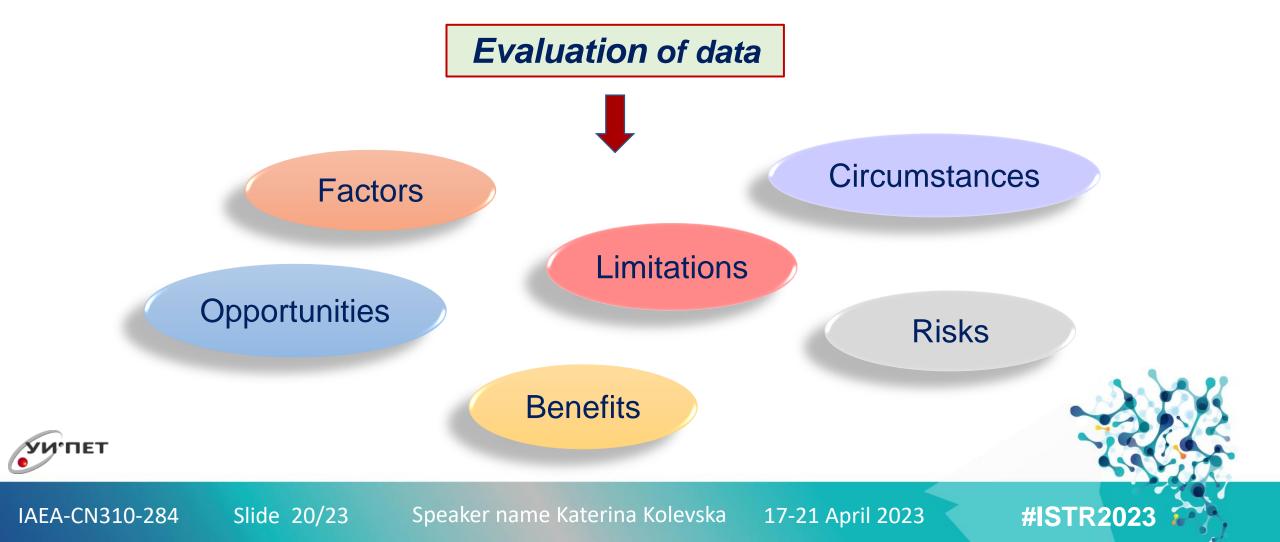
4-2

PHARMACOECONOMIC ANALYSIS

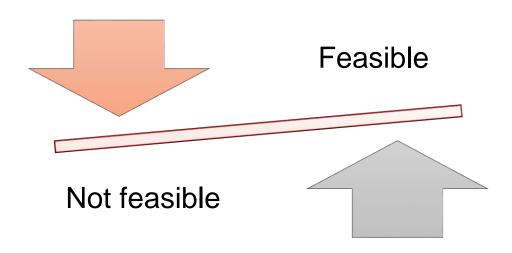
Speaker name Katerina Kolevska

89Zr-trastuzumab

Visualisation and quantification of HER2 status



An individualised approach to breast cancer management



REVIEW AND ANALYSIS OF ALL DATA

FEASIBILITY CONCLUSION

Decision on whether the process of establishing the production of zirconium-89 radioisotope and 89Zr-radiopharmaceuticals at the University Institute of Positron Emission Tomography is feasible.

Speaker name Katerina Kolevska

Imperative - to expand the possibilities in terms of cancer management and research development in North Macedonia

"Invention is the most important product of man's creative brain. The ultimate purpose is the complete mastery of mind over the material world, the harnessing of human nature to human needs."

Nikola Tesla

"Regardless of the beauty of the science involved in the development of the radiotracer, the ultimate goal is not the science, but the ability to improve the quality of life."

Prof. Susan Z. Lever

THANK YOU VERY MUCH FOR YOUR ATTENTION!

University Institute of PET Skopje, North Macedonia

Design of feasibility study for the establishment of ⁸⁹Zr production – tailored approach to introduce new radiopharmaceuticals in a developing country

Katerina Kolevska*, Maja Chochevska, Marija Atanasova Lazareva, Maja Velichkovska, Filip Jolevski, Bistra Angelovska, Ana Ugrinska

* E-mail:

kolevskakaterina@gmail.com katerina.kolevska@ugd.edu.mk

