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Abstract 
The wave propagation approach in solving the problem is considered.  The wave 
equation is solved numerically in the domain consisting of the soil, foundation, and 
superstructure using the explicit Lax-Wendroff numerical scheme. An artificial 
boundary is incorporated to simulate the Sommerfeld radiation boundary condition 
at infinity. The velocities and the displacements at the points of the stress-free 
boundaries are updated in each time step using the vacuum formalism approach.   
 

The system consists of rectangular structure having circular foundation embedded in 
nonlinear soil. The aim of this study is to present the permanent strain distribution in 
a soil and to calculate energy distribution in a nonlinear system excited by SH waves 
in form of half-sine pulses. For that purpose, the superstructure and the foundation 
are assumed linear, while the soil as material is non-linear and is allowed to yield. 
Due to the plane waves, the input energy to the system, the hysteretic energy spent 
for creation and development of nonlinear strains, the scattered energy from the 
foundation, and the energy in the building are determined for  half-sine pulses with 
same amplitude but different durations (frequencies). For transient response, we use 
dimensionless frequency, which is ratio between the radius of the semicircular 
foundation and half wavelength of the input pulse. The range of this dimensionless 
frequency in our analyses is from 0.05 (long pulses) to 2 (short pulses). 
 
Keywords: nonlinear soil, permanent strain, energy distribution, SH waves, strong 
ground motion, Lax-Wendroff numerical scheme, flexible foundation. 
 

 
 
1 Introduction 
 
The effects of many earthquakes have provided numerous examples of different 
types of soil failure and permanent deformations caused by strong shaking. Many 
structures settle, tilt, or overturn on liquefied soil. Some of the best-known examples 
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of this occurred during the 1964 Alaska and 1964 Niigata earthquakes [1]. The 
sequence of the soil-structure interaction (SSI) phenomena, which led to the 
overturning of apartment buildings in Kawagishi-cho during the Niigata earthquake, 
is complicated, and its complete modelling and analysis are still a major challenge 
for any nonlinear numerical simulation. It probably started with development of 
nonlinear strain zones in the soil close to the foundation, which in turn expanded the 
trapped nonlinear energy to initiate liquefaction. We are assuming here that the large 
energy of earthquake waves trapped in the zones of strain localization initiated 
liquefaction [2], which then spread all around the foundation, causing the buildings 
to tilt and overturn. Analysis of this sequence is well beyond the scope of this paper, 
however. We will describe only the early stages, which involve the creation of the 
nonlinear zones of soil response. 
 
The analytical solution for interaction of the wall sitting on an embedded semi-
circular rigid foundation was presented in [3]. Wong and Trifunac [4] studied the 
wall-soil-wall interaction, while Abdel-Ghaffar and Trifunac [5] studied the soil-
bridge interaction with a semi-cylindrical rigid foundation and an input plane-SH 
wave. Other studies have been conducted to analyze the influence of the shape of a 
rigid foundation on the interaction. Westermo and Wong [6] studied different 
boundary models for the soil-structure interaction of an embedded, semi-circular, 
rigid foundation. They concluded that without a transmitting boundary all of the 
models develop resonant behaviour and that the introduced damping in the soil 
cannot model the radiation damping. Luco and Wong [7] studied a rectangular 
foundation welded to an elastic half-space and excited by a horizontally propagating 
Rayleigh wave. V.W. Lee [8] solved a 3-D interaction problem consisting of a single 
mass supported by an embedded, hemispherical, rigid foundation for incident plane 
P, SV, and SH waves in spherical coordinates.  
 
The recent publications deal with a flexible foundation. Todorovska et al. [9] solved 
an interaction of a dike on a flexible, embedded foundation, and Hayir et al. [10] 
described the same dike but in the absence of a foundation. Aviles et al. [11] 
analyzed the in-plane motion of a 4-degrees-of-freedom model and Gicev [12] 
studied the soil-flexible foundation-structure interaction for incident-plane SH 
waves with a numerical model using finite differences. 
 
In this paper, in the presence of the interaction, the development of the nonlinear 
zones in the soil is studied for incident pulses representing the near-field destructive 
strong ground motion. The problems that must be addressed in the numerical study 
of the nonlinear soil-structure interaction include heterogeneities and discontinuities 
in the medium, the modelling of the free surface, artificial boundaries, and keeping 
track of the nonlinear constitutive law at each point in the soil. According to Moczo 
[13] and Zahradnik et al. [14], the computational FD schemes used in applications of 
wave propagation can be divided into homogenous and heterogeneous.  Alterman 
and Karal [15] used the homogeneous formulation to solve elastic wave propagation 
in layered media, and Boore [16] proposed the heterogeneous scheme. Tsynkov [17] 
reviewed the existing global and local artificial boundaries.  
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2 Model 
 
During the wave passage, the soil, the foundation, and the superstructure undergo 
nonlinear deformations and permanent strains. Because the aim of this paper is to 
study the nonlinear zones in the soil only, for simplicity, only the soil is modeled as 
nonlinear, while the foundation and the building are assumed to remain linear. The 
model is shown in figure 1.  

 
 
 
The incoming wave is a half-sine pulse of a plane SH wave. A dimensionless 
frequency  

0ds t
aa2
⋅

==
βλ

η         (2.1a)  

is introduced as a measure of the pulse duration, where a is the radius of the 
foundation, λ  is the wavelength of the incident wave, sβ  is the shear-wave velocity 
in the soil, and  0dt  is  duration of the pulse. 
To set up the grid spacing, the pulse is analysed in space domain (s), and the 
displacement in the points occupied by the pulse is 

0ds t
ssinA)s(w

⋅
⋅

=
β

π ,         (2.1) 

where A is the amplitude of the pulse and s is the distance of the considered point to 
the wave front in initial time in the direction of propagation. Using the fast Fourier 
transform algorithm, the half-sine pulse is transformed in wave number domain (k): 
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w(k) = F (w(s)).        (2.2) 
 
The maximum response occurs for k = 0 (rigid-body motion). As k increases, the 
response decreases and goes asymptotically to zero as k approaches infinity. We 
selected the largest wave number, maxkk = , for which the k-response is at least 0.03 
of the maximum response (dashed lines in Figures 2a).  
 

 
 
Then, for this value of maxk , the corresponding frequencies and the corresponding 
wavelengths are computed: 

maxmax
min

2
k
2

ω
πβπλ == .        (2.3) 

It can be seen from Fig. 2a that for 5.0=η , srad /245max ≈ω , while for 2=η , 
srad /980max ≈ω . 

A measure of the numerical accuracy of the grid is related to the ratio between the 

numerical and physical velocity of propagation, 
β
cr = , which ideally should be 1. 

The parameters that influence this accuracy are:  
 

• The density of the grid xm Δ= /λ  (m is the number of points per wavelength 
λ , and xΔ is the spacing between the grid points)  

• The Courant number, /s t xχ β= Δ Δ  
• The angle of the wave incidence, θ .  
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It has been shown in [18], [19], and [20] that the error increases when m decreases, 
χ  decreases, and θ  is close to 0 or 2/π . For ( )22 , xtO ΔΔ  approximation, the 
references above recommend m = 12.  
 
To compare hysteretic energies and the nonlinear zones in the soil, the soil box 
should have the same dimensions for any dimensionless frequency of the pulse, η . 
For that reason, we chose a rectangular soil box with dimensions a10Lm ⋅=  and 

a5
2

L
H m

s ⋅==  (Figure 1). Also, for merely practically reasons, the maximum 

number of space intervals in the grid in the horizontal (x) direction is set at 250 and 
in the vertical (y) direction at 400 (125 in the soil box and 275 in the building). The 
minimum spatial interval for a = 10m and for this setup is 

m4.0
250
100

250
Lx m

min ===Δ . For a finer grid, the computational time increases 

rapidly. Having this limitation in mind, from Equation (2.3) and for 2=η  
( srad /980max =ω ), the shortest wavelength is m603.1min =λ , with the finest grid 

density minmin
min

min m4
4.0

603.1
x

m <≈== λ
Δ
λ  / points .  

 
Our numerical scheme is ( )22 , xtO ΔΔ , so from the above recommendations we 
should have at least m = 12 points/ minλ  to resolve for the shortest wavelength, minλ . 
This implies that the pulse should be low-pass filtered. A cut-off frequency 

sradc /200=ω  was chosen, and the pulse was low-pass filtered (Figure 2b). This 
implies that m854.7min =λ and then the grid density is 

 minmin
min

min m6.19
4.0

854.7
x

m >=== λ
Δ
λ  / points .  

 
It can be seen from Fig. 2a (dotted lines) that for 5.0=η  only a negligible amount 
of the total power is filtered out, while for 2=η  a considerable amount is filtered 
out.   
 
Also, it can be seen in Fig. 2b that for 2=η  the amplitude of the filtered pulse is 
smaller than the amplitude of the non-filtered pulse, which is A = 0.05 m, while for 

5.0=η  the amplitude is almost equal with the amplitude of the non-filtered pulse. 
From numerical tests, it has been shown that the viscous absorbing boundary rotated 
toward the centre of the foundation reflects only a negligible amount of energy back 
into the model [12].  For 2-D problems, the numerical scheme is stable if the time 
increment (Mitchell, 1969) is: 

1

22 y
1

x
1mint

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≤

ΔΔ
βΔ .       (2.5) 
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We assume that the shear stress in the x direction depends only upon the shear strain 
in the same direction and is independent of the shear strain in the y direction (and 
vice versa for shear stress in the y direction). The motivation for this assumption 
comes from our simplified representation of layered soil, which is created by 
deposition (floods and wind) into more or less horizontal layers. The soil is assumed 
to be ideally elastoplastic, and the constitutive εσ −  diagram is shown in Figure 3.  
Further, it is assumed that the contacts remain bonded during the analysis and the 
contact cells C, D, E, F, G, and H in figure 4 remain linear, as does the zone next to 
the artificial boundary (the bottom four rows and the left-most and right-most four 
columns of points).  
  
Neglecting the body forces in the z direction (Fz = 0), the wave equation is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

=
∂
∂

yxt
w yzxz ττ

ρ 2

2

.       (2.6) 

Introducing the new variables 
t
wv

∂
∂

= , 
x
w

xz ∂
∂

=ε , and 
y
w

yz ∂
∂

=ε , and dividing (2.6) 

with ρ , the order (of 2.6) is reduced to the system of three first-order partial 
differential equations (PDE) 
 

yxt GFU ,,, += ,         (2.7) 
where 
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The first equation in (2.7) represents the dynamic equilibrium of forces in the z 
direction with neglected body force Fz, while the second and third equations give the 
relations between the strains and the velocity. The Lax-Wendroff computational 
scheme [22] is used for solving Equation (2.7) [12].  
 
 

3 Energy and permanent strain distribution 
 
As a test example, we consider a building with:  
- height H = 18m,  
- width L = 2a = 20m,  

- shear wave velocities in the soil and in the building s/m250bs == ββ ,  

- densities in the soil and in the building
3

b
3

s m/kg300,m/kg2500 == ρρ . 
Majority of the buildings in Macedonia and Turkey have these properties. 

A question arises about how to choose the yielding strain mε  (figure 3) to study 
permanent strain distribution. The displacement, the velocity, and the linear strain in 
the soil during the passage of a plane wave in the form of a half-sine pulse are:  
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

s0d

st
t

sinAw
β

π

,       (3.1) 

0d0d t
tcosA

t
wv ππ

==
,       (3.2) 

0dss

max

t
Av

β
π

β
ε ==

.         (3.3) 
 
Generally, the yielding strain can be written as 

0

max

dss
m t

AC
v

C
β
π

β
ε ==

,       (3.4) 
where C is a constant that controls the yielding stress (strain) in the soil. We then 
consider the following cases of nonlinearity, depending upon C:  
 
1. 2C ≥ : Small nonlinearity. Permanent strain does not occur until the wave 

hits the foundation with any angle of incidence. 
2. 2C1 <≤ : Intermediate nonlinearity. Permanent strain does not occur until 

the wave is reflected from the free surface or is scattered from the 
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foundation, for any angle of incidence. Permanent strain will or will not 
occur after the reflection of the incident wave from the free surface, 
depending upon the angle of incidence. 

3. 1<C : Large nonlinearity. Permanent strain occurs after reflection from the 
free surface. Permanent strain may or may not occur before the wave reflects 
from the foundation surface, depending upon the angle of incidence.  

 
 
 
 
3.1 Energy distribution in the system 
 
The energy flow through a given area can be defined, in terms of a plane-wave 
approximation (Aki and Richards [23]), as:  
 

∫ ⋅⋅⋅=
0dt

0

2
snss

a
in dtvAE βρ

,       (3.5) 
 

where ρs and βs are density and shear-wave velocity in the soil and v is a particle 
velocity (Equation (3.2)). snA  is the normal area through which the wave is passing. 
For our geometrical setting (Figure 1), the area normal to the wave passage is: 
 

( )γγγγ cossinLcosLsinH2A mmssn +⋅=⋅+⋅⋅= .    (3.6) 
Inserting Eqs. (3.2) and (3.6) into (3.5) and integrating, the analytical solution for 
the input wave energy into the model is 

( )
2

t
t

AcossinLE 0d

2

0d
mss

a
in ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
⋅+⋅⋅⋅=

πγγβρ
.    (3.7) 

 
As can be seen from Equation (3.7), the input energy is reciprocal with the duration 
of the pulse and is a linear function of the dimensionless frequency η . Because the 
short pulses are low-pass filtered up to sradc /200=ω  (figure 2b), the analytical 
and the numerical solutions (3.5) for input wave energy do not coincide (figure 5).  
 
Since our system is conservative, the input energy is balanced by: 

• Cumulative energy going out from the model, outE  

∫ ⋅⋅⋅=
T

0

2
Rsnssout dtvAE βρ ,       (3.5a) 

where Rv  is the particle velocity from the outgoing field (scattered-from-foundation 
and radiated-from-building) while T is the time of the termination of the analysis. 
 

• Cumulative hysteretic energy (energy spent for creation and development of 
permanent strains in the soil), computed from: 
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( )∑∑
==

⋅++⋅+⋅=
N

1i
yeiypiyixeixpixi

T

0t
hys )5.0()5.0(tE

end

εΔεΔσεΔεΔσΔ ,  (3.8) 

where  N is the total number of soil points; yixi σσ ,  are the stresses at the point i in 

the x and y directions respectively; t
xpi

tt
xpixpi εεε −=Δ Δ+      is the increment of the 

permanent strain in the x direction at point i; and t
ypi

tt
ypiypi εεε −=Δ Δ+      is the 

increment of the permanent strain in the y direction at point i. 
• Instantaneous energy in the building, consisting of kinetic and potential 

energy, which can be computed from: 

( )∑
=

+⋅+⋅⋅⋅⋅=+=
N

1i

2
y

2
x

2
ibpkb )(vyx5.0EEE εεμρΔΔ .   (3.9) 

In Fig. 6, this balance is shown for a pulse with 5.1=η , for incident angle 030=γ , 
foundation stiffness s/m500f =β , and a yielding strain defined by C = 1.5 (Eq. 3.4). 
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To study the effect of scattering from the foundation only, the building is considered 
to be high enough so that the reflected wave from the top of the building cannot 
reach the building-foundation contact during the analysis. The analysis is terminated 
when the wave completely exits the soil island. In this study, the hysteretic energy in 
the soil and the energy in the building are the subjects of interest.  In Figure 7, these 
two types of energy are presented as functions of the dimensionless frequency η .   
Considering the energy entering the building (dashed lines), the results confirm the 
expectations that as the foundation becomes stiffer, a larger part of the input energy 
is scattered and less energy enters the building. In contrast, the results for hysteretic 
energy in the soil are not so straightforward. For an angle of incidence 060=γ , the 
hysteretic energy of the model with the softest considered foundation reaches the 
maximum value KJ2674E =  at 4.1=η . This is the maximum hysteretic energy for 
all considered cases, while for an angle of incidence 030=γ , the hysteretic energy 
of the model with s/m500f =β  is the largest with maximum value KJ2265E = at 

4.1=η .   
The reason for these irregularities is constructive and destructive interference among 
the incoming, reflected and scattered waves from foundations with different 
stiffness.  
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3.2 Distribution of the permanent strain in the soil 
Considering Figure 8, and starting from dynamic equilibrium of the differential 
body, we can find the principal stress at a point and its direction as: 

 
γτγττ sincos zyzxzp +=

.tan 1

zx

zy

τ
τ

γ −=
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In Figures 9 a, b, c, d  the principal permanent strain in the soil is illustrated for the 
case of small nonlinearity (C = 3 ) for two angles of incidence, 030=θ  and 

060 , and for three foundation stiffness, fβ  = 300 m/s; 500 m/s; and 1000 m/s. This 
value of C guarantees that for angles of incidence 00 6030 ≤≤ γ  there is no 
occurrence of permanent strain until the wave hits the foundation. 
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Figures 10 a, b, c, d  are the same as figures 9 a, b, c, d,  but for the case of 
intermediate nonlinearity (C = 5.1 ). 
In this case, permanent strain occurs before the wave hits the foundation, but after it 
reflects from the free surface. 
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For long pulses, 1.0=η , it can be seen from figure 9a that for an angle of incidence 
030=γ  there is a negligible permanent strain for the stiffest foundation 

smf /1000=β  only, while for softer foundations the soil remains linear. Also, for 

intermediate nonlinearity, shown in Fig. 10a, for an angle of incidence 030=γ  it 
can be seen that in the creation of nonlinear zones the effect of the interaction is 
negligible compared with the effect of interference of the incoming and the reflected 
wave from the free surface. For 060=γ , from figures 9a and 10a, it can be 
concluded that for stiffer foundations the effect of interaction is more dominant than 
the effect of the interference. 
The observations are similar for a five-times-shorter pulse, 5.0=η (figures 9b and 
10b). For intermediate nonlinearity, C=1.5 (figure 10b) and for the stiffest 
considered foundation, smf /1000=β , the permanent strain next to the foundation 
is the largest. 
As the pulse becomes shorter, 1=η , it can be seen that there is creation of nonlinear 
zones behind the foundation as well. This can be explained by the interference of 
waves reflected from the free surface and waves diffracted around the foundation. 
Again, the strain in front of the foundation increases with increasing of the 
foundation stiffness. 
Finally, on figures 9d and 10d the permanent strain distribution is shown for 
dimensionless frequency of pulse 5.1=η  in vicinity of which (see figure 7) the 
hysteretic energies are the highest. It can be seen on figure 10d that for an angle of 
incidence 060=θ and for stiffer considered foundations, 
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s/m1000and,s/m500f   =β , the zones of permanent strain behind the foundation 
migrate bellow the free surface. This comes from the interference of the scattered 
field, which is large for stiff foundation, and the incoming field. This nonlinear zone 
decreases the energy of the incoming field, which is not strong enough to cause 
nonlinear zone close to the free surface. For softer foundation, s/m300f =β  the 
scattered field is not so strong and there is no forming of nonlinear zone below the 
foundation. In this case the nonlinear zone is formed close to the free surface. 
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