
DOI: 10.1177/0003702820905367 

A Comparative Approach to Screen the Capability of Raman and Infrared 

(Mid- and Near-) Spectroscopy for Quantification of Low Active 

Pharmaceutical Ingredient Content Solid Dosage Forms: The Case of 

Alprazolam 

Liljana Makraduli1,2, Petre Makreski3, Katerina Goracinova4, Stefan Stefov2, Maja Aneversuska2, 

Nikola Geskoversuski1* 

1 Institute of Pharmaceutical Technology, Faculty of Pharmacy, Saints Cyril and Methodius 

University, Majka Tereza 47, 1000 Skopje, N. Macedonia 

2 ReplekFarm, Kozle 188, 1000 Skopje, N. Macedonia 

3 Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Saints Cyril and 

Methodius University, Arhimedova 5, 1000 Skopje, N. Macedonia 

4 College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar 

 

OrcID: 

Petre Makreski - https://orcid.org/0000-0003-0662-5995 

Katerina Goracinova - https://orcid.org/0000-0002-8101-6359 

Nikola Geskoversuski - https://orcid.org/0000-0002-2073-5632 

 

*Corresponding author email: ngeskoversuski@ff.ukim.edu.mk 

 

Abstract 

Content uniformity is a critical attribute for potent and low-dosage formulations of active 

pharmaceutical ingredient (API) that, in addition to the formulation parameters, play pivotal role 

during pharmaceutical development and production. However, when API content is low, 

implementing a vibrational spectroscopic analytical tool to monitor the content and blend 

uniformity remains a challenging task. The aim of this study was to showcase the potentials of 

mid-infrared (MIR), near-infrared (NIR) and Raman spectroscopy for quantitative analysis of 

alprazolam (ALZ) in a low content powder blends with lactose, which is used as a common 

diluent for tablets produced by direct compression. The offered approach might be further scaled 

up and exploited for potential application in the process analytical technology (PAT). Partial 
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least square (PLS) and orthogonal PLS (OPLS) methodologies were employed to build the 

calibration models from raw and processed spectral data (SNV, first and second derivatives). The 

models were further compared regarding their main statistical indicators: correlation coefficients, 

predictivity, root mean square error of estimation (RMSEE), and root mean square error of cross 

validation (RMSEEcv). All statistical models presented high regression and predictivity 

coefficients. The RMSEEcv for the optimal models was 1.118, 0.08, and 0.059% for MIR, NIR 

and Raman spectroscopy, respectively. The scarce information content extracted from the ALZ 

NIR spectra and the major band overlapping with those from lactose monohydrate was the main 

culprit of poor accuracy in the NIR model, whereas the subsampling instrumental setup 

(resulting in a non-representative spectral acquisition of the sample) was regarded as a main 

limitation for the MIR based calibration model. The OPLS models of the Raman spectra of the 

powder blends manifested favorable statistical indicators for the accuracy of the calibration 

model, probably due to the distinctive ALZ Raman pattern resulting in the largest number of 

predictive spectral points that were used for the mathematical modeling. Furthermore, the Raman 

scattering calibration model was optimized in narrower scanning range (1700–700 cm–1) and its 

prediction power was evaluated (root mean square error of prediction, RMSEP=0.03%). Thus, 

the Raman spectroscopy presented the most favorable statistical indicators in this comparative 

study and therefore should be further considered as a PAT for the quantitative determination of 

ALZ in low-content powder blends. 

Keywords: Alprazolam, low-content active pharmaceutical ingredient, API, quantification, 

partial least squares, PLS, Raman spectroscopy, mid-infrared, near-infrared 

 

Introduction 

Content uniformity is regarded as a critical attribute in the formulation development of low dose 

and potent active pharmaceutical ingredients (API).1 When developing a low dosage tablet 

formulation, one needs to achieve content uniformity by carefully considering the formulation 

composition and the production method. Direct compression is one of the simplest tablet 

manufacturing protocols that encompass only powder blending and compression. Generally, it is 

feasible in low dose formulations, where the mechanical properties of the powder blend are 

primarily conferred by the tablet diluent. However, the content uniformity of the final tablet will 

rely on an efficient mixing process that should produce a uniform powder blend. Having this in 
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mind, the optimization of the dry powder blending with regard to the API content uniformity is 

of prime importance.2 

 The conventional pharmaceutical manufacturing is performed through a batch process, 

and the quality assessment relies on end-point laboratory tests that are conducted on collected 

samples. Currently, high-performance liquid chromatography (HPLC) is a primary analytical 

method of interest for the determination of powder blend uniformity in dry mixing. It is based on 

a sampling of the powder blend at different levels in the blender using a sample thief, which is 

considered as time-consuming, labor intensive, and associated with possible sampling-based 

errors.3 The improvement of process understanding and reducing the production cycle times by 

using on-, in-, and/or at-line measurements and controls are considered as key benefits of 

introducing process analytical technology (PAT) in the pharmaceutical manufacturing.4 Such 

analytical techniques need to demonstrate a capacity for processing a large amount of data in a 

short period, during the pharmaceutical manufacturing process demands fully satisfied by the 

vibrational spectroscopy techniques. These techniques offer nondestructive and rapid sample 

measurements without sample preparation, and as such could be used for real-time analytical 

monitoring of many processes in pharmaceutical manufacturing. In addition, the ability to 

provide versatile, multivariate, qualitative, and quantitative data regarding the physical and 

chemical characteristics of the samples, is particularly important for their adaptation as a PAT in 

the pharmaceutical processing.5,6  

 Establishing a vibrational spectroscopy technique, that could be further implemented as 

an efficient PAT tool, needs development and implementation of a suitable statistical analysis 

method in the processing of physical and chemical data of multivariate nature, where the 

absorption, transmittance or scattering intensities at different wavelengths are recorded in a 

single spectrum.7 Principal component analysis and partial least squares regression (PLS) are the 

most common multivariate statistical analysis methods for the interpretation of vibrational 

spectroscopy data. These statistical analysis tools are able to handle large amounts of data with 

experimental noise, collinearities, and nonlinearities and can be utilized for the development of 

accurate calibration models, even in the presence of interferences of known or unknown origin.8 

There are many examples of using vibrational spectroscopy techniques in conjunction with a 

PLS model in the monitoring of API content uniformity in various pharmaceutical solid dosage 

forms manufacturing processes (i.e., dry and high shear granulation, fluid bed drying, tableting, 
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etc.).9–12 However, when the API is in low dose and/or low content in the overall powder mass, 

the development of a valid and predictable calibration model for vibrational spectroscopy based 

API quantification still remains a challenging task.  

 Alprazolam (ALZ) is an anxiolytic drug, a 1,4 benzodiazepine compound, indicated for 

the management of anxiety disorder or the short-term relief of symptoms of anxiety and panic 

disorder, with or without agoraphobia.13 ALZ is a potent drug, effective in low plasma 

concentrations, administered perorally as an immediate-release tablet with a low single dose 

range ranging 0.5–3mg. Considering the low dose of ALZ, the immediate release tablet 

formulations are commonly produced by the dry mixing of the ALZ with the excipients (mainly 

diluent), followed by direct compression of the powder blend. The ALZ content uniformity of 

the powder blend is considered as one of the critical attributes in the manufacturing process, thus 

pointing out the need to introduce a suitable tool for in-depth understanding and optimization of 

the dry mixing process.  

 Therefore, the goal of our work was to evaluate the potential of different vibrational 

spectroscopy techniques, near-infrared (NIR), mid-infrared (MIR), and Raman spectroscopy, for 

content uniformity evaluation of low dose formulation of ALZ. For achieving the given task, we 

aimed in performing analysis of ALZ powder blends with lactose, which is used as a common 

diluent for direct compression, using the above-mentioned vibrational spectroscopy techniques, 

and afterward, to develop PLS based calibration models, and compare the key statistical 

outcomes regarding the model fit, prediction ability, accuracy (root mean square error) and 

regression coefficients. The model with the most favorable indicators will be further optimized 

and evaluated for its predictive power on a separate prediction set. 

 

Materials and Methods 

Materials 

The ALZ was purchased from Centaur Pharmaceuticals Private Ltd., India. Lactose monohydrate 

with a trade name Tablettose 80 was obtained from Meggle Group Wasserburg BG Excipients 

and Technology (Germany). 

 

Methods 
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Sample Preparation. The ingredients were sieved through 0.8 mm mesh. The binary powder 

blend (50 g) of ALZ and lactose monohydrate, with varying ALZ content, was prepared by 

carefully administering the weighed quantity of lactose as the bottom and top layer and adding 

ALZ as the middle layer in a laboratory beaker. The powder blend was then mixed with a spatula 

and transferred to a PVC bag for an additional 5 min manual mixing. Afterward, a part of the 

blend was utilized to produce 10 mm flat surface tablets, using 10 tons of load on a hydraulic 

press (Perkin Elmer, USA). The tablets were used for Raman and NIR measurements, whereas a 

sample of the powder blend was directly used to collect the MIR spectra. All the samples were 

further analyzed for ALZ content using a validated HPLC assay. 

 

Mid-Infrared Spectroscopy 

The MIR spectra of the ALZ:lactose monohydrate powder blends were obtained by placing few 

milligrams of the sample onto the attenuate total reflection (ATR) module of an Alpha Platinum 

ATR FT-IR Spectrometer (Bruker Optik, Germany). The scanning resolution was 4 cm–1, the 

scanning region was set to 4000–400 cm–1 and each spectrum averaged from 8 scans. Twenty 

subsamples from each ALZ:lactose monohydrate blend strength were scanned for the 

development of the calibration models. 

 

Near-Infrared Spectroscopy 

The surface of the tablets prepared from the ALZ:lactose monohydrate blend (five tablets per 

each ALZ strength) was scanned with the fiber optic probe of the MPA Fourier transform near-

infrared spectrometer (Bruker Optik, Germany). The scanning resolution was 16 cm–1 while the 

scanning region was set to 12500–4500 cm–1. 

 

Raman Spectroscopy 

The mapping x,y stage coupled to micro-Raman multichannel spectrometer LabRam300 Infinity 

(Horiba JobinYvon, France) was used. The Raman effect was obtained using a 532 nm 

neodymium-doped yttrium aluminum garnet (Nd:YAG) frequency doubled laser without the use 

of a filter (neither laser photodegradation nor burning was obtained). A ×50 objective for 

magnification was selected from an Olympus MPlanN confocal microscope. To focus the laser 

beam and gain more than 96% of the laser intensity, a hole of 500 μm and a slit of 100 μm were 
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used. The laser spot size (~2 μm) on the tablet surface was automatically positioned by the 

motorized x,y  stage for the mapping of a 6x6 grid (spectral points). The points were evenly 

separated 1 mm from each other, to monitor and evaluate tablet uniformity on rather large 5x5 

mm area to properly address and scree the sample homogeneity. The Raman shift was calibrated 

with the Raman peak of a silica wafer positioned at 520.7 cm–1. The acquisition time and the 

accumulation number were set to 5 s and 5 scans, respectively, and each mapping sequence was 

collected in the 4000–100 cm–1 region. The surface of three tablets prepared from each 

ALZ:lactose monohydrate blend strength was mapped using the abovementioned instrumental 

setup. 

 

HPLC Assay 

Each sample or tablet from the ALZ:lactose monohydrate blends were further analyzed with 

validated HPLC assay to accurately quantify the ALZ content. The whole tablet or 100 mg 

sample was dissolved in 50 ml methanol by means of ultrasonication for 15 min. The methanol 

solution was filtered through a 0.45 RC filter, and 25 ml of the filtrate were transferred to a 150 

ml volumetric flask. The solution was diluted with 75 ml of methanol, and water was added to 

the volume mark of the flask. The quantitative analysis was performed on UHPLC NEXERA 

Lab Solution-2ch (Shimadzu, Japan) using LiChrospher RP Select B (5 µm), 125 x 4 column 

(MerckMilipore, Germany), flow rate of 1.4 ml/min, column temperature at 30 oC, and an 

injection volume of 20 l. The detection and quantification were performed using a DAD 

detector at a wavelength of 220 nm. The mobile phase was prepared from methanol–acetonitrile– 

potassium dihydrogen phosphate buffer (pH 3.0; 15 mM) (10:45:45, v/v/v). The pH of the 

potassium dihydrogen phosphate buffer was adjusted using o-Phosphoric acid. The ALZ content 

was calculated on the basis of ALZ peak areas, relative to the standard calibration curve.  

 

Statistical Analysis 

Partial least squares analysis was used to develop the calibration models of each vibrational 

spectroscopy technique using the spectroscopy skin of Simca 14 (Umetrics, Sweden). In 

addition, the spectra were preprocessed using SNV, first and second derivative with Savitzky–

Golay smoothing (15-points in each sub-model) to eliminate baseline shifts or to enhance the 

quantification of the overlapped bands. Orthogonal PLS was additionally used to eliminate the 
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orthogonal variances and improve the statistical parameters of the model. The correlation 

coefficients for the X and Y matrices, the predictivity coefficient (Q2), root mean square error of 

estimation (RMSEE), and the root mean square error of cross-validation (RMSEEcv) were used 

as the main statistical indicators for the calibration models, while the root mean square error of 

prediction (RMSEP) was used to measure the predictive power of the most optimal model. 

RMSEE and RMSEP were computed using Eqs. 1 and 2, while the RMSEEcv was determined 

by the so-called "leave one out" method. Briefly, a new calibration model is developed (with a 

new RMSEE) with omitting one data point, then in a following new calibration model the data 

point is restored but a different data point is removed. The process continues until all data points 

from the original model are left out one at a time, and the calculated RMSEE values are averaged 

to compute the RMSEEcv. The VIP spectrum plot, the coefficient plot and the observed versus 

predicted regression plots were used for further analysis of the models. The content of ALZ in 

the powder blends, determined by the HPLC assay, was used as Y observed variables in all 

models, while the acquired Raman, MIR, and NIR spectra were used as x variables in the 

appropriate models. The calibration model with the most adequate statistical indicators was 

further optimized for the expected concentration range of ALZ, and its RMSEP calculated with a 

separate prediction set. 

 

RMSEE = √
∑(𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒𝑑)2

𝑁−1
   (1) 

 

in which Yobs – Ypred are the fitted residuals for the observations in the calibration workset and N 

is the number of observations. 

 

RMSEP = √
∑(𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒𝑑)2

𝑁
   (2) 

in which Yobs – Ypred are the predicted residuals for the observations in the prediction set and N is 

the number of observations. 

 Additionally, the relative difference among the observed and predicted data points for 

each sample set for the most optimal models was calculated using Eq. 3. 

Relative difference (%) =
√(𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒𝑑)2

𝑌𝑜𝑏𝑠
× 100 (3) 
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in which Yobs – Ypred are the fitted residuals for the observations in the calibration workset and 

Yobs is the Y-observed variables. 

 

Results and Discussion 

The comparative screening study was performed on small volume powder blends using 

laboratory-based instruments. A validated HPLC method was used as quantification reference 

(ALZ linearity range: 0.15–1.2 mg/ml – R2=0.999, system precision: RSD=0.321%). The lactose 

and ALZ peak were well separated with adequate resolution (Fig. S1). 

 

Development of the MIR Spectra Calibration Model 

Lactose powder blends with various ALZ content (0.5 to 10%) were used to develop the MIR 

spectra calibration model. The MIR spectra of pure ALZ and lactose monohydrate are presented 

in Fig. S2.  

 The weak band at 3053 cm–1 in the ALZ spectrum could be assigned to C–H stretching 

vibrations in the aromatic ring. According to Neville and Shurvell, these vibrations in the 

molecule of diazepam are assigned at 3073 cm–1.14 The aromatic C–H stretching modes in ALZ 

were also observed by Muthu et al. in the 3100–3000 cm–1 region.15 The methylene group at 

Position 3 of the diazepine ring shows six vibrational modes: symmetric and antisymmetric 

stretching, scissoring deformation as well as wagging, twisting, and rocking bending modes. The 

methylene antisymmetric and symmetric C–H stretching vibrations in the ALZ spectrum are 

reflected by the weak and very weak bands at 2947 and 2852 cm–1 whereas the bands from the 

corresponding vibrations from the CH3 group appear at somewhat higher wavenumbers (2980 

and 2930 cm–1). The methylene scissoring mode and the wagging mode could be assigned as 

medium bands at 1447 and 1208 cm–1, while the CH2 twisting and rocking modes are not well 

characterized. These spectral assignments closely correspond to the findings of Neville and 

Shurvell.14 The shoulder at 1600 cm–1 in the ALZ spectrum represents C=N stretching vibrations 

in both the triazolic and benzodiazepine ring, whereas the bands at 1425 and 1445 cm–1 arise 

from the CH2 and CH3 in-plane bending modes. ALZ contains two benzene rings, thus giving 

rise to twelve C=C stretching modes which appear in the region 1620–1300 cm–1 – the most 

characteristic being the strong bands at 1612, 1488, 1401, 1322 cm–1, and 1256 cm–1.14 In 

general, the C–H in-plane bending vibrations evolve in the range of 1000–1300 cm–1, while out-



DOI: 10.1177/0003702820905367 

of-plane vibrations are noted in the range 1000–700 cm–1.16 Since ALZ comprises one 

monosubstituted and one tri-substituted benzene ring, eight pairs of in-plane and out-of-plane 

bending vibrations in the molecule are expected. The out-of-plane bending modes of ALZ could 

be assigned to very strong bands at 690 and 745 cm–1, while the in-plane bending modes 

manifest medium band at 1038 cm–1 and shoulder at 1298 cm–1. The chlorine atom at position 

seven of the ALZ benzodiazepine ring shows a distinct C–Cl stretching mode that could be 

assigned to a very strong band at 582 cm–1. 

 The lactose monohydrate MIR spectrum shows a plethora of bands with high intensities 

in the regions 3600–3000 cm–1 and 1200–400 cm–1, that could potentially overlap some of the 

relevant ALZ bands in the MIR spectra of their powder blends, particularly the ones with low 

ALZ content. The O–H stretching vibrations in the lactose molecule could be assigned to the 

very weak bands at 3522 cm–1 and 3318 cm–1. The weak intensity bands from the C–H stretching 

modes of CH2 groups are observed at 2899 and 2933 cm–1. The CH2 in-plane bending vibrations 

occur in the 1500–1400 cm–1 region whereas the bands from the wagging and twisting 

deformations appear at 1340 and 1298 cm–1. The C–H and O–H rocking vibrations could be 

noticed as a weak band at 1259 cm–1. The bands at 1201, 1167, 1140, and 1115 cm–1 are assigned 

to in-plane O–H bending modes and C–O stretching, while the intensive bands at 1031 and 1019 

cm–1 are assigned to C–C and C–O stretching vibrations. Three distinct characteristic bands for 

the α-lactose monohydrate crystalline form appear at 915, 899 and 875 cm–1. Most of the bands 

in the 800–400 cm–1 region are mainly assigned to the in-plane deformation modes of the 

endocyclic OCC, OCO and CCO groups, with the most intensive band at 550 cm–1 originating 

from the in-plane O–C–O deformations. The presented MIR data and bands interpretation for 

lactose monohydrate are related to the tentative band assignment reported by Norris and 

Greenstreet, Wiercigroch et al., and López-Pablos et al.17–19 

 The MIR calibration model was developed by acquiring scans of 20 samples from each 

ALZ:lactose powder blend with various ALZ content (0.5–10%). Higher ALZ content powder 

blends were used to evaluate the effects of the possible overlapping spectral regions and 

simultaneously emphasize the unique ALZ bands that will affect the variability of the response in 

the model. A total of 80 spectra were analyzed in: (i) raw form, (ii) by using standard normal 

variate transformation (SNV), (iii) and in their first and (iv) second derivatives in separate PLS 

and OPLS models (Fig. 1). Four components were extracted for raw data, SNV and first 
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derivative PLS models while three components were extracted for the second derivative PLS 

model. One main component and an additional three orthogonal components were extracted in 

the raw data, SNV, and first derivative OPLS, and one main and two orthogonal components 

were extracted for the second derivative OPLS model. The main statistical outputs are presented 

in Table I. 

 

 

 

Figure 1. MIR spectra of the ALZ:lactose monohydrate blends, colored according to ALZ 

content (%): (a) raw data; (b) SNV transformation; (c) the first derivative; (d) the second 

derivative. 

 

 

Table I. Main statistical descriptors of the PLS and OPLS models of the MIR spectra 

calibration set. 

 PLS OPLS 

 R2

Y 

Q2 R2X RMSE

E 

RMSEEc

v 

R2Y Q2 R2X RMSE

E 

RMSEEc

v 



DOI: 10.1177/0003702820905367 

Raw data 0.

97

5 

0.93

8 

0.60

9 

0.645 1.188 0.97

5 

0.91

7 

0.60

9 

0.645 1.189 

SNV 0.

97

4 

0.93 0.63

1 

0.653 1.354 0.97

4 

0.91

6 

0.63

1 

0.653 1.212 

First 

derivative 

0.

96

5 

0.91

5 

0.56 0.752 1.208 0.96

5 

0.93

3 

0.56 0.752 1.013 

Second 

derivative 

0.

95

2 

0.91

1 

0.43

4 

0.877 1.2 0.95

2 

0.91

3 

0.43

4 

0.877 1.149 

 

 In our case, we employed PLS to correlate two data matrices (X, MIR spectra; Y, ALZ 

content) in a multivariate linear analysis that extracts principal components of both X and Y data, 

which are further employed to build the regression model. In addition, we introduced the OPLS 

to improve the prediction performance of the model by eliminating orthogonal variation in X. 

The orthogonal variation is usually occurring due to sources of variation that are not correlated 

with the measured properties, i.e., it is the non-predictive part of X matrix.20 However, in the 

case of the MIR calibration data, the orthogonal variation showed no significant influence over 

the overall prediction error of the models. 

 The PLS and OPLS models of the MIR spectra, in all transformation modes, were 

characterized by a high correlation coefficient (R2Y) among the X and Y matrices and high 

predictivity coefficients (Q2). It means that the models are capable of explaining >95% of the 

variations in the Y matrices and, at the same time, are able to predict a new dataset in the matrix. 

However, lower values of R2X indicated that a larger portion of the variation in the X matrices 

could not be explained by the models. In addition, the values of the RMSEE and the RMSEcv 

are rather high. These descriptors stand as an absolute measure of the model accuracy. In all the 

MIR PLS and OPLS models, their values indicated poor accuracy for the quantitative 

determination of ALZ, when present in low content powder blends. Such observations probably 

arise due to specific conditions needed to acquire the ATR-MIR spectra. The low contact area of 
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the ATR crystal tip restricts the scanning volume of the powder blend, thus drastically reducing 

the probability of scanning a representative/uniformed sample in a single step. An additional 

limitation is the thickness of the solid sample with regard to the ATR spectra collection from the 

sample surface that might disturb the good homogeneity. In order to maximum downsize this 

issue, we have performed scans on 20 different subsamples from each powder blend and 

managed to obtain statistically relevant data to build the calibration model. Larger ATR crystal 

would enable scanning of greater sample volumes, obtaining reproducible spectra in a single 

step. However, in that case, there will be an issue with the nonuniformity of the contact among 

the sample and the large area ATR crystal that could affect the scanning precision.21 Diffuse 

reflectance is another scanning mode that could handle larger sample amount by illuminating its 

surface and collecting sufficient scattered radiation with ellipsoids and paraboloids. 

 Nevertheless, the diffuse reflectance MIR spectroscopy is a very limited technique with 

regard to its use for quantitative analysis due to the important role of the physical characteristics 

of the diluent and the analyte (particle size, surface roughness, refractive index, reflectivity, and 

absorption characteristics) over the reproducibility of the results.22 

 Since the raw data PLS model presented the most favorable statistical descriptors, the 

following section narrowly encompasses our discussion only on this MIR based calibration 

model.  

 The coefficient, variable importance in the projection (VIP) and Y observed versus Y 

predicted data plots of the raw data MIR PLS model are presented in Fig. 2. The coefficients (B) 

refer to the linear regression PLS model equation when it is written in its basic form (Eq. 4):  

𝑦 = 𝑦𝑎𝑣𝑔 + 𝐵𝑥 + 𝐹   (4) 

 The size of the coefficient represents the extent of the change in the y variable when the x 

variable varies for one standard deviation while the other variables are kept at their averages. 

These coefficients express how strongly the ALZ content is correlated to the systematic part of 

each wavenumber of the MIR spectrum. On the other hand, the VIP plot summarizes the 

importance of the variables both to explain x and to correlate to y, where VIP values larger than 

one indicate to “important” x variables (wavenumbers), and values lower than 0.5 indicate 

“unimportant” x variables (wavenumbers). The y observed versus the y predicted plot displays 

the correlation among the observed and predicted data. If the data points lie in close proximity of 

the regression line then the model could be perceived as accurate. 
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Figure 2. Analysis of the PLS calibration model of the raw MIR spectra of ALZ:lactose 

monohydrate blends: (a) Coefficient plot, (b) VIP plot, (c) observed versus predicted plot. 

 

 According to the presented results, the ALZ bands at 3100, 2916, 1613, 1538, 1488, 

1444, 1350, 1301, and 832 cm–1 should be considered as the most important quantitative 

determinants in the MIR spectra of the ALZ:lactose blends. The Y observed versus Y predicted 

plots reveal that the model points are scattered around the regression line, thus confirming the 

low model prediction accuracy, discussed previously. The relative difference among the points of 

the predicted (MIR model determined) and observed (HPLC determined) data reveal 

significantly greater discrepancy for the batches with lower ALZ concentration, highlighting the 

subsampling issue of this instrumental setup (Fig. S3a). 

  

Development of NIR Spectra Calibration Model 

The same sample preparation, as described in the Raman spectroscopy part, was used in the 

development of the NIR spectra calibration model. The NIR spectra of the pure substances are 

presented in Fig. S4. 
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 The ALZ NIR spectrum (Fig. S4a) presents a broad band with two shoulders at 8826 and 

8745 cm–1 that originate from the second overtone of the CAr–H stretching and second overtone 

of the C–H stretchings from the CH3 group, respectively.23 The sharp band at 7289 cm–1 could be 

assigned as a combination of the second overtone of the C–H stretchings + C–H deformations, 

while the intensive broad band with maxima at 5966 and 5929 cm–1 and a weak sharp band at 

5782 cm–1 are assigned to the first overtone of the CAr–H stretching vibrations.24 The intensive 

sharp band at 4660 cm–1 could be assigned to the combined benzene ring C–C and C–H 

stretching vibrations.25 

 The lactose monohydrate NIR spectrum (Fig. S4b) is characterized by a distinctive first 

and second overtone of the O–H stretching vibrations at 6870 and 9579 cm–1, and a combination 

band of O–H stretching and deformation mode registered at 5170 cm–1. In addition, the third and 

second overtone of the C–H stretching mode from CH and CH2 groups could be assigned at 

10781 and 8259 cm–1, respectively, where the former band also evolves from the third overtone 

of the ROH mode. The first overtone of the mentioned C–H stretching vibrations from CH2 and 

CH in the monomer units could be assigned to the bands at 5781 and 5676 cm–1, respectively.26 

The band around 5200 cm–1 is attributed to the combination band of the stretching and bending 

H–O–H vibrations (lactose monohydrate).  

 The NIR spectra of the pure substance evidently exhibit very broad and complex 

structured bands that are significantly overlapped and overlaid, making this spectral part less 

sensitive for analytical considerations. Despite this limitation, the calibration model was built on 

five different NIR scans acquired from each ALZ:lactose monohydrate blend with different ALZ 

content. The spectra were analyzed in their raw form, by using standard normal variate 

transformation (SNV), and in their first and second derivatives (Fig. 3) in a separate PLS and 

OPLS models, respectively. Four components were extracted for the raw data and SNV PLS 

models, while three and two components were used for the first and second derivative PLS 

models, respectively. One main component and an additional three orthogonal components were 

extracted in the raw data and SNV OPLS models, while one main and additional two and one 

orthogonal components were employed in the first and second derivative OPLS models, 

respectively. The main statistical descriptors for the models are given in Table II. 
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Table II. Main statistical descriptors of the PLS and OPLS NIR spectra-based calibration 

models. 

 PLS OPLS 

 R2Y Q2 R2X RMS

EE 

RMS

EEcv 

R2Y Q2 R2X RMS

EE 

RMS

EEcv 

Raw data 0.973 0.951 1 0.336 0.558 0.973 0.946 1 0.336 0.422 

SNV 0.997 0.986 0.999 0.113 0.692 0.997 0.996 0.999 0.113 0.120 

First 

derivativ

e 

0.998 0.997 0.995 0.084 0.373 0.998 0.998 0.995 0.084 0.087 

Second 

derivativ

e 

0.997 0.996 0.979 0.099 0.273 0.997 0.997 0.979 0.075 0.081 

Second 

derivativ

e* 

/ / / / / 0.997 0.996 0.959 0.073 0.08 

* The region 5500–5000 cm–1 was omitted from the calculations. 
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Figure 3. NIR spectra of the ALZ:lactose monohydrate blends, colored according to ALZ content 

(%): (a) raw data; (b) SNV transformation; (c) the first derivative; (d) the second derivative. 

 

 

 The results from the statistical analysis of the PLS and OPLS models point towards high 

regression coefficients and predictivity of the NIR calibrations models, however, their accuracy 

indicators (RMSEE, RMSEEcv) are unfavorable. Raw data models (PLS and OPLS) evidently 

depict large baseline shifts and the substantial NIR band overlapping of the ALZ and lactose 

monohydrate arising as major contributors to the low accuracy of the calibration model. Since 

the baseline shifts affect both the linear and orthogonal variances, the introduction of OPLS 

modeling cannot significantly improve the accuracy of the model. However, the RMSEE and 

RMSEEcv were vastly improved in the models that were generated with spectral pre-processing. 

Considering the above-mentioned interferences, the spectral pre-processing was needed to 

eliminate the effects of the baseline shifting. In addition, pre-processing helped to derivatize the 

wide overlapped bands and point out the spectral parts that are indicative of changes in the ALZ 

content of the scanned samples. OPLS model of the second derivative spectra presented the most 

favorable accuracy, and we have focused on its data analysis. 
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Figure 4. Analysis of the OPLS calibration model of the second derivative NIR spectra of 

ALZ:Lactose monohydrate blends: (a) VIP plot, (b) Coefficient plot, (c) Observed versus 

predicted plot. 

 The VIP and coefficient plots and Y observed versus predicted plot of the OPLS model 

of the second derivative NIR spectra are presented in Fig. 4. As observed from the VIP plot, the 

bands at 6087, 4727, 4651, and 4574 cm–1, distinctive to the second derivative of the ALZ 

spectrum (Fig. S5a), were of utmost importance for the prediction of the ALZ content in the 

ALZ:lactose monohydrate blends. The observation was confirmed by the coefficient plot, where 

the bands with the highest VIP factor, were assigned with the largest coefficients. Furthermore, 

to eliminate possible spectral artifacts due to lactose hygroscopic behavior, which was a random 

(uncontrolled) event in the experiments, the region 5500–5000 cm–1 was omitted from the 

optimal model (OPLS from NIR spectra second derivative). Thus, the “compacted” OPLS model 

demonstrated results with minute improvements in the statistical indicators (Table II).  

 In addition, different NIR scanning modes could be employed for further precision 

improvement. The literature data emphasize that in cases where sample homogeneity is an issue, 

the transmission mode would enable higher precision relative to diffuse reflectance, due to the 

differences in the sample scanning depth and overall sample scanning volume.27,28 In this case, 
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the samples were homogeneous and their whole surface was scanned using the fiber optic probe 

resulting in a high correlation coefficient among the predicted and measured ALZ content and 

satisfactory levels of model predictivity. This could be additionally confirmed by the relative 

difference among the points of the predicted and observed data (Fig. S3b). However, due to the 

poor ALZ NIR spectrum complemented by the overlap of the wide bands from the NIR spectra 

of ALZ and lactose monohydrate (Fig. S4a–b, Fig. S5a–b), the model was built on a lower 

number of points with appropriate importance for ALZ content prediction (VIP coefficient), 

resulting in higher RMSEE and RMSEEcv. 

 

Development of the Raman Spectra Calibration Model 

All analyzed samples from the powder blends prepared with different ALZ content were 

compressed to achieve a flat scanning surface and therefore eliminate irregular surface depth and 

avoid focus misalignments during the Raman mapping scans. The Raman spectra of pure ALZ 

and lactose monohydrate are presented in Fig. S6. 

 The main feature of the ALZ Raman spectrum is the strong bands at 1593 and 1604 cm–1, 

which are assigned to the C=N and C=C stretching vibrations.14 In addition, a very strong band 

at 996 cm–1 arising from the benzene ring ‘breathing’ mode is characteristic for the unsubstituted 

phenyl group at Position 5 of the diazepine ring. A specific pattern of bands centered at 678, 

1022, 1033, 1158, 1264, 1330, and 3067 cm–1 that originate from the 1,4 benzodiazepine ring is 

also registered in the ALZ Raman spectrum. The band at 678 cm–1 could be assigned to in-plane 

aromatic ring deformations, while the band at 1022 and 1033 cm–1 are assigned to aromatic in-

plane C–H bending vibrations. The skeletal C–C–N stretching vibration in the benzodiazepine 

ring appears as a strong band at 1158 cm–1, while the aromatic C=C stretching mode gives rise to 

a weak band at 1264 cm–1 and two superimposed medium intensity bands at 1301 and 1306 cm–1. 

The medium band at 3067 cm–1 could be assigned to the aromatic C–H stretching vibration.14 

The lactose monohydrate Raman spectrum is characterized by a set of bands in the region 3000–

2800 cm–1 that originate from the C–H stretching vibration of both glucose and galactose, with 

the most intense band originating at 2883 cm–1. The 1400–1200 cm–1 region is populated by 

weak bands that ascribed to rocking and wagging vibrations of the CH, OH, and CH2 groups, and 

the region 1200–1000 cm–1 is characterized by similar weak bands originating mainly from C–O 

and C–C stretching vibrations. In the region of 910–840 cm–1, there is a group of weak bands 
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that could be ascribed to bending vibrations of the C–C–O and C–H bonds and stretching of the 

C–C bonds. In the remaining part of the spectrum, one weak band positioned at 350 cm–1 is 

ascribed to COHO and HOH twisting vibrations.18 

 The significantly prominent differences between the Raman spectral view of ALZ and 

lactose, especially the richness of the bands in the ALZ spectrum in the region between 1700–

1000 cm–1 and appearance of the bands above 3000 cm–1, as well as the exceptionally sharp 

bands and their narrow FWHM compared to IR spectra, positions Raman spectroscopy ahead of 

IR spectroscopy as superior technique that enable discriminant features between both 

compounds.  

 The calibration model was built on average spectra from 36 scans of each Raman 

mapping of the compressed ALZ:lactose blends with different ALZ content. The mapping was 

performed to overcome the issue of inadequate subsampling due to the small scanning surface of 

the current instrumental setup. Sample rotation during spectral acquisition with temporal 

averaging of the scans, the spatial averaging of the data acquired by scanning different regions of 

the sample (mapping), and simultaneous wide-angle illumination (WAI) are available 

configurations that are able to cope with the subsampling issue.29 Simultaneous WAI is the most 

appropriate configuration that utilizes a wider laser beam for large sample area coverage and 

selective collection of Raman scattering within the covered area. The development of the WAI 

based scheme on dispersive instrumentation resulted in the introduction of the pharmaceutical 

area testing (PhAT) probe.30 This probe provides up to 6 mm diameter laser spot with a focal 

length of 25.0 cm and employs an array of 50 optical fibers both for illumination and collection 

of the scattered Raman signal thus providing enhanced sample representation and reproducibility 

for very short time frame relative to the conventional mapping method employed in our 

experiments. 

 The spectra were analyzed in their raw form, by using standard normal variate 

transformation (SNV), and in their first and second derivatives (Fig. 5) in a separate PLS and 

OPLS models, respectively. Four components were extracted for each PLS model while one 

main component and an additional three orthogonal components were extracted in the case of 

OPLS. The main statistical descriptors for the models are given in Table III. 
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Table III. Main statistical descriptors of the PLS and OPLS based Raman spectra 

calibration models.  

 PLS OPLS 

 R2Y Q2 R2X RMSE

E 

RMSEEc

v 

R2Y Q2 R2X RMSE

E 

RMSEEc

v 

Raw 

data 

0.99

8 

0.97

7 

0.99

8 

0.093 0.459 0.99

8 

0.98

4 

0.99

8 

0.093 0.235 

SNV 0.95

9 

0.72

3 

0.98

6 

0.46 1.174 0.95

9 

0.85

4 

0.98

6 

0.46 0.704 

First 

derivativ

e 

0.99

9 

0.99

8 

0.94

6 

0.038 0.232 0.99

9 

0.99

9 

0.94

6 

0.038 0.059 

Second 

derivativ

e 

0.99

9 

0.99

8 

0.90

1 

0.041 0.341 0.99

9 

0.99

9 

0.90

1 

0.041 0.065 
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Figure 5. Raman spectra of the ALZ:lactose monohydrate blends, colored according to ALZ 

content (%): (a) raw data; (b) SNV transformation; (c) the first derivative; (d) the second 

derivative.  

 The presented results indicate high regression coefficients and predictivity of both PLS 

and OPLS models, which means that the models could explain the variations in the acquired 

Raman spectra and correlate them to the ALZ content. Since the correlation coefficient (R2) 

among the predicted and observed ALZ content (%) for all models was close to 1, the RMSEE 

was quite low. However, the cross-validated RMSEE indicated subtle spectral interferences that 

might affect the model accuracy. The effect of the interferences was suppressed with the 

application of appropriate spectral pre-processing, which was evident by the significant reduction 

of RMSEEcv in the PLS models of the derivatived spectra relative to the model that analyzed the 

raw data. Photon shot noise, fluorescence background, and externally generated noise (i.e., 

cosmic rays) are considered as common noise sources in the Raman scattering.31 Therefore, in 

this case, spectral pre-processing was needed to improve the signal/noise ratio and eliminate the 

interferences that are not correlated to the dependent variables and could affect the model 

correlation, predictivity, and accuracy. Additionally, the employment of OPLS, significantly 

increased the accuracy of the models, regardless of the spectral preprocessing, thus confirming 

the importance of the so-called ‘orthogonal’ variances on the PLS model performance. Taking 

into account that the calibration models of first-order derivative Raman spectra demonstrated the 

most favorable statistical descriptors, further part of the work encompasses PLS and OPLS data 

analysis.  

 The analysis of both PLS and OPLS calibration models of the first derivative spectra are 

presented in Fig. 6. Both models depicted nearly the same results patterns, regarding all analyzed 

parameters. However, the OPLS model demonstrated a reduced VIP score for the spectral parts 

that were not correlated to the ALZ content. Even though the VIP score reduction was relatively 

small, when considering the enormous volume of spectral data points that were treated as 

"orthogonal" variance, it is logical to assume that such intervention will affect the model 

accuracy. According to the coefficient and VIP score plots (Figs. 6a–d), the most dominant 

bands indicative to the presence and absence of the ALZ content were: (i) 2880, 2890, 2941, 

2972, and 2976 cm–1, originating from the first derivative of the lactose monohydrate spectrum 

(Fig. S7b), and (ii) 1129, 1155, 1297, 1309, 1590, 1593, 1601, and 1608 cm–1 selected from the 



DOI: 10.1177/0003702820905367 

first derivative of the ALZ spectrum (Fig S7a). The regression coefficients of the observed 

versus predicted plots for both models, was 0.999 (Figs. 6e–f), and along with the low relative 

difference among observed and predicted data points (Fig. S3c), highlighted the Raman 

spectroscopy as a promising tool in the quantification of low-API content (alprazolam) that 

might be further considered as an on-line/in-line PAT tool. 

 

 

Figure 6. Analysis of PLS and OPLS calibration models of the first derivative Raman spectra of 

ALZ:lactose monohydrate blends: Coefficient plots (a) PLS, (b) OPLS; VIP plots (c) PLS, (d) 

OPLS; observed versus predicted plots (e) PLS, (f) OPLS. 

 

 

Optimization of the Raman Spectra Calibration Model 
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The OPLS Raman spectra model provided the most favorable statistical indicators, and its 

optimization was further processed regarding the scanning time and performance verification in 

the target ALZ concentration range (<1%). With the insight that most of the variables with a VIP 

score above 1 were in the 1700–700 cm–1 range, where the majority of the characteristic bands 

attributed to the specific ALZ bands occurred, the model was further optimized using this 

spectral region. Narrowing of the scanning range significantly shortened the scanning time (from 

≈50 s to ≈25 s per scan), while the model statistical indicators were unaffected (R2X=0.899, 

R2Y=0.999, Q2=0.936, RMSEE=0.026%, RMSEEcv=0.057%) for the calibration set in the 

tested ALZ concentration range (0.1–1%). A separate prediction set of 19 random samples was 

used to evaluate the predictive power of the optimized model and the results were presented in 

Fig. 7. The obtained RMSEP for the prediction set was 0.03%, which demonstrates the capability 

of Raman spectroscopy for ALZ (low-API) content monitoring in solid dosage forms production.  

 

 

 

Figure 7. Observed versus predicted plot for the prediction set of the Raman spectra model. 

 

Conclusion 
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The vibrational spectroscopy techniques are considered as vital sources for monitoring the API 

content uniformity in pharmaceutical processing. However, when processing low-API contend 

solid forms, establishing a valid model still remains quite a challenge. Here, we have analyzed 

the feasibility of the development of a calibration model for the quantitative determination of 

Alprazolam in a low content API form using near- and mid-infrared and Raman spectroscopy in 

conjunction with multiple regression analysis. The experiments were performed in a comparative 

manner to highlight the main advantages and imperfections of each technique and instrumental 

setup. All statistical models presented high regression and predictivity coefficients. The 

insufficient information content extracted from the ALZ NIR spectra and the major band 

overlapping with those from lactose monohydrate was the main culprit of poor accuracy in the 

NIR model, whereas poor sampling due to scanning of the low-volume sample was regarded as a 

main deficiency in the MIR based calibration model. The statistical models of the Raman spectra 

of the powder blends scanned in multiple points, presented favorable statistical indicators of the 

accuracy of the calibration model, probably due to the distinctive ALZ Raman scattering pattern, 

which resulted in the largest number of predictive spectral points being used for the 

mathematical modeling. Further, the calibration model was optimized regarding the Raman 

spectral range (1700–700 cm–1) manifesting appropriate predictive capability for the ALZ low-

concentration interval. Overall, Raman spectroscopy provided favorable statistical indicators and 

if used in an appropriate setup, could be further developed into a PAT for the quantitative 

determination of ALZ in low-content powder blends. 
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Figure S1. Representative chromatograms of ALZ standard solution (black line) and ALZ:lactose 

monohydrate blend (red line).  

 

Figure S2. MIR spectra of: (a) ALZ, (b) lactose monohydrate. 
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Figure S3. Relative difference among observed (from HPLC determination) and predicted data 

points for each sample set of the most optimal models for: (a) MIR, (b) NIR, and (c) 

Raman spectroscopy. The error bars represent one standard deviation. 

 

Figure S4. NIR spectra of (a) ALZ and (b) lactose monohydrate. 
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Figure S5. Second derivative of the NIR spectra of: (a) ALZ and (b) lactose monohydrate. 

 

Figure S6. Raman spectra of (a) ALZ and (b) lactose monohydrate. 
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Figure S7. First derivative of the Raman spectra of: (a) ALZ and (b) Lactose monohydrate. 

 


