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Abstract – Influenza, surpassing all other respiratory 
diseases in both morbidity and mortality, annually 
triggers seasonal epidemics responsible for 
approximately 500,000 global deaths. Mathematical 
epidemic models serve as valuable tools for forecasting 
potential outbreaks and predicting the trajectory of the 
disease. This paper represents a comprehensive 
SEIRVS model tailored to the context of Influenza 
transmission dynamics in North Macedonia. In this 
paper the classical Susceptible- Exposed- Infectious- 
Recovered (SEIR) model is enhanced by incorporating 
vaccination and a death compartment while examining 
their impact on the spread of Influenza through the 
population. Simulations are conducted using data from 
the 2022/2023 season, focusing on a case study of North 
Macedonia. The simulations were conducted utilizing 
both the actual vaccination rate in N. Macedonia for 
that season and an increased vaccination rate to 
observe the influence of vaccination. The simulation 
results emphasize the need to increase the vaccination 
rate. The findings contribute valuable insights for 
public health planning and policy making.  
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1. Introduction

Influenza, commonly referred to as the flu, is a 
highly communicable respiratory illness caused by 
influenza viruses. It impacts the respiratory system 
and spreads primarily through respiratory droplets 
released during coughing or sneezing by an infected 
person. These droplets can either land in the mouths 
or noses of individuals in close proximity (typically 
within a 6-foot range) or potentially be breathed into 
the lungs. Infrequently, one might contract influenza 
by coming into contact with a contaminated surface 
or object and subsequently touching their mouth, 
nose, or even eyes. 

Influenza manifests across a spectrum of severity, 
ranging from mild to severe illness. For individuals 
with compromised immunity or underlying health 
conditions, it can be particularly dangerous, 
potentially resulting in fatal outcomes [1]. 

Influenza commonly manifests with symptoms 
including high fever, headaches, muscle aches, 
fatigue, sore throat, and nasal congestion or a runny 
nose, accompanied by a cough. These symptoms 
persist for several days to a couple of weeks. 
Typically, they emerge around two days after the 
influenza virus infects the respiratory tract, although 
the onset can extend up to four days. Importantly, 
there is a theoretical possibility that an infected 
individual may transmit influenza to others before 
exhibiting symptoms. Some individuals may carry 
the virus without showing symptoms, known as 
asymptomatic cases, yet still have the potential to 
spread the infection to close contacts [2]. 

Influenza viruses are classified in several groups 
depending on their surface proteins hemagglutinin 
(H) and neuraminidase (N).  

mailto:maja.kukuseva@ugd.edu.mk
https://www.temjournal.com/
https://doi.org/10.18421/TEM131-69


 TEM Journal. Volume 13, Issue 1, pages 663-669, ISSN 2217-8309, DOI: 10.18421/TEM131-69, February 2024. 

664                                                                                                                               TEM Journal – Volume 13 / Number 1 / 2024. 

There are three basic types of influenza viruses: 
A, B, and C. Influenza B and C viruses only affect 
humans, so novel antigens are not introduced from 
other species. Only influenza A viruses infect 
nonhuman hosts and a reassortment of genes can 
occur between those subtypes that typically infect 
animals which can infect humans resulting in 
antigenic shift that can lead to potential pandemic. 
The subtypes of influenza A that can cause 
significant epidemic or possible pandemic are H1N1, 
H2N2, H3N, and H5N1 (avian influenza), [3], [4]. 

An influenza pandemic occurs when a new 
influenza A virus, distinct from the current and 
recently circulating human seasonal influenza A 
viruses, spreads globally. The constant evolution of 
influenza A viruses creates the rare potential for 
nonhuman influenza viruses to undergo changes, 
enabling them to infect individuals easily and 
transmit efficiently from one person to another [2]. 

In the 20th century, three global influenza 
pandemics occurred in 1918, 1957, and 1968 [4], [5]. 
The latter two took place during the era of modern 
virology and were extensively studied. Informally 
labeled as Spanish, Asian, and Hong Kong influenza, 
respectively, these pandemics were associated with 
presumed sites of origin. A more recent H1N1 
pandemic, commonly known as swine flu, occurred 
during the 2009/2010 season. In contrast to the 
earlier pandemics, this event had a relatively low 
mortality rate but still resulted in hundreds of 
thousands of deaths worldwide. 

Effective prevention is crucial for managing the 
spread of any infectious disease. Vaccination plays a 
pivotal role by activating the immune system to 
generate antibodies targeted against specific 
influenza viruses, thereby mitigating the severity of 
illness in the event of infection. Due to the capacity 
of influenza viruses to mutate within each subtype, 
resulting in distinct strains, the composition of 
influenza vaccines is revised annually. The influenza 
vaccine is designed to be quadrivalent, offering 
protection against four different influenza viruses, 
encompassing influenza A and two influenza B 
viruses [2]. 

Comparable epidemiological models are under 
consideration for various infectious diseases, 
including but not limited to COVID-19 [9], [10], 
[11], measles [12], [13], [14], and tuberculosis [8]. 

 
2.   Model Description 
 

In this paper SEIRVS+D model has been analysed 
in order to understand the transmission dynamics of 
Influenza. SEIRVS+D model is an extension of 
classical SEIR model that includes an additional 
compartment of vaccinated and death.  

The total population size at any given time t is 
denoted as ( )N t  and is dived into six compartments: 
susceptible ( )S t , exposed ( )E t , infected ( )I t , 
recovered ( )R t , vaccinated ( )V t and death ( )D t . 
Hence the total population at time t is: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t R t V t D t= + + + + +  (1) 
 
Each element in the SEIRVS+D model represents 

a distinct stage of individuals in the disease 
progression. The susceptible compartment 
encompasses all individuals who are vulnerable to 
the disease and could potentially get infected through 
contact with an individual carrying the infection. The 
exposed compartment represents individuals who 
recently have been exposed to influenza but are not 
yet infectious. During the latent period, individuals 
are incubating the virus and are not yet showing 
symptoms and are not able to transmit the disease to 
other individuals in the population. The infected 
compartment signifies individuals presently carrying 
the virus and capable of transmitting it to others. 
These individuals may exhibit symptoms or may be 
asymptomatic carriers. The infectious period 
typically lasts for a certain period ranging from one 
to seven days after developing symptoms. The 
vaccinated compartment represents individuals who 
have been vaccinated against influenza. Vaccination 
provides a level of immunity to the virus reducing 
the likelihood of infection, severity of symptoms and 
the risk of transmission. The recovered compartment 
represents individuals who have recovered from 
Influenza and have gained a level of immunity. 
These individuals after immunity lost can be infected 
again and thereby can contribute to spread of 
Influenza. The death compartment represents 
individuals who have died from Influenza. The 
implemented model with progression from one 
compartment to another is given on Figure 1.  

 
 

Figure 1.  Flow chart of Influenza 
     

The susceptible compartment decreases with 
transmission rate β as the population gets exposed 
and vaccination rate ν when the proportion of 
susceptible individuals gets vaccinated.  
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This compartment increases with birth rate λ, 
immunity loss rate ε when recovered individuals do 
not develop permanent immunity and unsuccessful 
vaccination rate σ. The exposed compartment is 
decreased by exposure rate α when exposed 
individuals get infected and is increased by 
transmission rate β. Infected compartment is 
decreased at recovery rate γ when infected 
individuals recover and mortality rate δ when 
individuals die due to influenza. This compartment is 
increased by exposure rate α. The recovery 
compartment is decreased by immunity loss rate ε 
and increased by rate q when susceptible individuals 
are vaccinated and gain immunity. Also, this 
compartment is increased by recovery rate γ when 
individuals recover from influenza. The vaccination 
compartment is increased by vaccination rate ν and 
decreased by unsuccessful vaccination rate σ and 
vaccination immunity gain q. All compartments 
except death compartment are decreased by natural 
mortality rate μ. Based on the aforementioned 
explanation the SEIRVS+D model for influenza can 
be delineated through the following set of ordinary 
differential equations:  
 

dS SI R V S S
dt N
dE SI E E
dt N
dI E I I I
dt
dR I qV R R
dt
dV S V qV V
dt
dD I
dt

βλ ε σ υ µ

β α µ

α γ δ µ

γ ε µ

υ σ µ

δ

= − + + − −

= − −

= − − −

= + − −

= − − −

=

(2) 

 
The initial conditions of model (2) are assumed to 

be nonnegative given as: 𝑆(0) = 𝑆0 ≥ 0, 𝐸(0) =
𝐸0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0, 𝑉(0) = 𝑉0 ≥
0, 𝐷(0) = 𝐷0 ≥ 0.  

 
Theorem 1. The solution region of model (2) 

which is positively invariant set is given by: 

( ) 6, , , , , : 0 ( )S E I R V D N t λ
µ+

 
Ω = ∈ ≤ ≤ 

 
  

 
 
 
 

Proof: Summation of all differential equations of 
model (2) gives: 

dN dS dE dI dR dV dD
dt dt dt dt dt dt dt
dN N I
dt

λ µ δ

= + + + + +

= − −
 

From where: 
dN N
dt

λ µ≤ −   (3) 

By integration Equation (3) and taking the limit as 
t approaches infinity on both sides, the resulting 
equation is:  

( )N t λ
µ

≤  

From where: 

( ) 6, , , , , : 0 ( )S E I R V D N t λ
µ+

 
Ω = ∈ ≤ ≤ 

 


(4) 
 

Theorem 2. Let the initial values 
( ){ (0), (0), (0), (0), (0), (0) 0}S E I R V D ≥ ∈Ω , 

then the solution set 
{ ( ), ( ), ( ), ( ), ( ), ( )}S t E t I t R t V t D t of the model (2) 
is non-negative for all 0t ≥ . 
 

Proof: From the first equation of model (2) follows: 

          

( ) ( )
( )

,

,

,

,

ln ,

0 ,

0.

I t
N

dS SI R V S S
dt N
dS I S
dt N
dS I dt
S N
dS I dt
S N

IS t
N

S t S e

S t

β
υ µ

βλ ε σ υ µ

β υ µ

β υ µ

β υ µ

β υ µ

 − + + 
 

= − + + − −

 ≥ − + + 
 
 ≥ − + + 
 

 ≥ − + + 
 

 ≥ − + + 
 

≥

≥

∫ ∫                                   

Similar, can be shown that all compartments of 
model (2) are positive for all 0t ≥ . 
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From the second equation of the model (2): 

( )

( ) ( ) ( )

( )

,

,

0 ,

0.

t

dE SI E E
dt N
dE E
dt
E t E e

E t

α µ

β α µ

α µ

− +

= − −

≥ − +

≥

≥                                                    

From the third equation within the system presented 
in Equation (2), follows: 

( )

,

,

dI E I I I
dt
dI I
dt

α γ δ µ

γ δ µ

= − − −

≥ − + +
 

( ) ( ) ( )

( )
0 ,

0.

tI t I e

I t

γ δ µ− + +≥

≥
 

Similarly, the solutions for the others two 
compartments are: 

( ) ( ) ( )0 0q tV t V e σ µ− + +≥ ≥ ,  

( ) ( ) ( )0 0tR t R e µ ε− +≥ ≥ . 

In the theorem it was assumed that (0) 0D ≥ . At 
time instant 1t t= , 1( ) 0I t ≥  since: 

( ) ( )1
1 0

dD t
I t

dt
δ= ≥

 

 from where it can be concluded that ( )1 0dD t + ≥  , 

so that ( ) 0D t ≥   for all 0t ≥ . 

The feasible solution represents region where the 
solution of the system of differential equations are 
epidemiologically meaningful.  Since the region 
given by Equation (4) is a positively invariant for the 
model (2) it can be concluded that the model is 
mathematically and epidemiologically feasible.  

Corollary 1. The total population ( )N t  is 
nonnegative wherever the initial conditions of the 
Influenza model represented with (2) are nonnegative 
since 

( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t R t V t D t= + + + + +  and  
from Theorem 2, ( ) 0S t ≥ , ( ) 0E t ≥ , ( ) 0I t ≥  

( ) 0R t ≥ , ( ) 0V t ≥  and ( ) 0D t ≥ . 

Theorem 3. The population has equilibrium 
point:  

( )* * * * * * *, , , , ,X S E I R V D=  
 
Proof: The equilibrium point is obtained when all 

equations of model (2) are equal to zero: 
 

0dS dE dI dR dV dD
dt dt dt dt dt dt

= = = = = =  

 
An infection-free population implies that both the 

number of infected and exposed individuals is zero. 
Setting the right side of the equation in model (2) to 
zero: 

 

0

0

0
0
0

0

SI R V S S
N

SI E E
N
E I I I
I qV R R
S V qV V
I

βλ ε σ υ µ

β α µ

α γ δ µ
γ ε µ
υ σ µ
δ

− + + − − =

− − =

− − − =
+ − − =
− − − =
=

 

 
Solving the system, the equilibrium point is obtained: 

* ( )( )
( )[( )( ) ]

qS
q q

λ σ µ ε µ
ε µ υ µ σ µ συ ε ν

+ + +
=

+ + + + − −
 

*

*

0
0

I
E
=

=
 

*

( )[( )( ) ]
qR

q q
λν

ε µ υ µ σ µ συ ε ν
=

+ + + + − −
 

* ( )
( )[( )( ) ]

V
q q

λν ε µ
ε µ υ µ σ µ συ ε ν

+
=

+ + + + − −
 

* 0D =  
 

The basic reproduction number is a crucial factor 
in mathematical models, providing the count of 
secondary infections resulting from a single infected 
individual within the entire population. The 
reproduction number for the model defined by 
Equation (2) is:  
 

0 ( )( )
( )( )

( )[( )( ) ]
q

q q

αβµ
α µ γ δ µ

σ µ ε µ
ε µ υ µ σ µ συ ε ν

ℜ = ⋅
+ + +

+ + +
+ + + + − −
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The reproduction number is obtained using next 
generation matrix that is a square matrix where each 
element represents the rate of transmission from one 
compartment to another This matrix is derived from 
two matrices: matrix ( )xℑ  that gives the rate of 
appearance of new infection in the population and 
matrix ( )xϒ  that gives the rate of progression in and 
out of the compartments for the individuals in the 
population. Let ( , , , , , )TX S E I R V D= then model 
(2) is: 

( ) ( )dX x x
dt

= ℑ − ϒ  

Where: 
 

( )

0

0
0
0
0

SI
N

X

β
 
 
 
 
 ℑ =  
 
 
 
  

 

and 

( )
( )
( )

( )

SI S R S V
N

E

I EX
R R I qV

q V qS
I

β ν ε µ σ λ

α µ

γ δ µ α
µ ε γ
σ µ
δ

 + − + − − 
 

+ 
 + + −ϒ =  
 + − −
 

+ + − 
 − 

 

 
The infectious compartments in this model are 

infected and exposed compartments. If  F  is matrix 
that represents infection transmission in exposed and 
V is the matrix that presents infected compartments, 
then the matrixes F and V are the Jacobian matrix of 
order 2 × 2.  These two matrixes at equilibrium point 
(DFEP) transform as: 

( )* 0

0 0

S
F X N

β 
 =
  
 

 

 
And 

( )* 0
V X

α µ
α σ γ µ
+ 

=  − + +   
 

With Theorem 1 it was proven that the total 

population is N λ
µ

≤ , so that:   

( )* 0

0 0

S
F X

βµ
λ

 
 =
  
 

 

 
 

The next generation matrix is: 
 

*

1 0

0 0

1 0

1
( )( )

S
FV

βµ
λ

α µ
α

α µ γ µ δ γ µ δ

−
 
 =   
 

 
 + 
 − + + + + + 

  (13) 

 
Hence, the reproduction number is: 

 

0
( )

( )( )
( )

( )( ) ( )

q

q q

βµ σ µ
α µ γ δ µ

ε µ
υ µ σ µ σν ε µ ε υ

+ +
ℜ = ⋅

+ + +
+

+ + + − + −

 (14) 

 
3. Results 

 
The parameters of Influenza SEIRVS+D model 

were obtained from Institute of Public Health of 
North Macedonia for season 2022/2023 [7]. This 
season a total of 10216 cases of Influenza had been 
reported, which means that the incidence is 556.2 per 
100000 individuals. During Influenza that season, 
five deaths have been reported. According to [7] a 
total of 57375 individuals have been vaccinated. 

Simulation scenarios of Influenza were performed 
in software AnyLogic® [6]. AnyLogic® is a 
powerful simulation tool that allows creation of 
dynamic simulation model for various fields 
including epidemic spread. The first simulation was 
performed with the set of parameters’ values given in 
Table 1.  

 

Table 1.  Description and values of parameters 
 

Parameter Description Value 
β Transmission rate   0.6 
α Exposure rate 0.5 
γ Recovery rate 0.071 
δ Mortality rate 0.03 
ν Vaccination rate 0.027 
q Immunity development rate 0.9 
μ Natural mortality rate 0.013 
λ Natural birth rate 0.00932 
ε Immunity lost rate 0.001 
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 The simulation results shown in Figure 2 
illustrate that the count of infected individuals 
reaches a peak at 13,000 and subsequently undergoes 
a substantial decline. Also, the results show that the 
number of deceased individuals from Influenza is 
very low due to low mortality rate. The number of 
exposed individuals also rises to a maximum value 
and then starts to decrease. 

 
 

 Figure 2.  Simulation with parameter from Table 1 
 

In the second simulation the vaccination rate 
significantly increased up to value of 0.75. 
Additionally, the transmission rate of influenza has 
been reduced to a value of 0.285. The values of the 
remaining parameters are specified in Table 1, and 
the simulation results are presented in Figure 3. 

 
 

Figure 3.  Simulation results for vaccination rate 0.75 and 
transmission rate 0.285 

 
The simulation outcomes shown in Figure 3 

indicate that the count of infected individuals rises to 
a maximum of 260 and subsequently declines. The 
number of deceased individuals is notably low. A 
higher vaccination rate has resulted in a substantial 
reduction in the number of infected individuals. 
 
4. Conclusion 

 
In this paper an enhanced SEIR model of 

Influenza was analyzed. In addition, a compartment 
of vaccination individuals was introduced. The 
vaccination is a preventive measure in which an 
individual is administered a vaccine to stimulate their 
immune system to develop immunity against 
Influenza. When vaccinated individual is exposed to 
Influenza the immune system recognizes the 
pathogen of Influenza and can quickly and 
effectively respond to the virus. SEIRVS+D model 
have played a pivotal role in this regard, providing 
insights into transmission dynamics that will lead to 
public health interventions and vaccination 
campaigns.  

 

The simulation results of Influenza using different 
vaccination rates emphasize the need of higher 
vaccination rate. Higher vaccination rate of the 
population helps to control and prevent the spread of 
Influenza. Also, when a significant portion of the 
population is vaccinated the transmission of pathogen 
is interrupted reducing the likelihood of Influenza 
outbreak.  

It is important to note that despite the positive 
trends observed, Influenza remains a threat and 
potential future pandemics may occur. Continuous 
monitoring, evaluation of management strategies, 
and adaptation of evolving nature of Influenza are 
crucial. The study of Influenza modeling and 
transmission dynamics will continue to play a vital 
role in guiding public health responses and 
mitigating the impact of Influenza outbreak.   
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