NANO 2013 21-23 November, 2013 Sofia, Bulgaria

INFLUENCE OF THERMAL TREATMENT ON THE ELECTROCHROMIC PROPERTIES OF SODIUM INTERCALATED VANADIUM(V) OXIDE XEROGEL THIN FILMS

<u>Sasho Stojkovikj¹</u>, Violeta Koleva², Metodija Najdoski¹

¹Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, Skopje, Macedonia ²Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria

INTRODUCTION

Vanadium(V) oxide xerogels are promising materials for application in different electrochromic devices. The present contribution is focused on the effect of thermal annealing on the electrochromic properties of as-deposited $Na_{0.33}V_2O_5$ ·H₂O thin films.

The deposition of homogenous $Na_{0.33}V_2O_5 H_2O$ thin films on FTO coated glass substrates is performed at temperature of 85 °C from an aqueous solution containing $NaVO_3$ and $(C_2H_5)_2SO_4$. Then the "brown" samples turn "green" after ~ one week.

Both "brown" and "green" samples are annealed at 250 and 400 °C and their electrochromic properties are studied.

STRUCTURAL, CHEMICAL AND MORPHOLOGICAL ANALYSES

The structure and morphology of the annealed films are examined

ELECTROCHEMICAL CHARACTERIZATION

The electrochemical and optical properties are studied in 1M LiClO₄ in propylene carbonate (PC) as electrolyte.

CV curves of thin films annealed at 250 °C.

The observed three redox pairs are related to reversible intercalation/ deintercalation of Li⁺ accompanied with reversible reduction/ oxidation processes between V(V) and V(IV)

by XRD, IR spectroscopy and SEM. The water content in the asprepared $Na_{0.33}V_2O_5 \cdot nH_2O$ precipitates and the annealing process are followed by TG-DTA technique.

TG – DTA curves of "brown" and "green" samples.

As-prepared films: Na_{0.33}V₂O₅·H₂O xerogel

 $xLi^{+}(aq) + Na_{y}V_{z}^{+4}V_{2-z}^{+5}O_{5} \cdot aH_{2}O(s) + xe^{-} \underset{x}{=} Li_{x}Na_{y}V_{z+x}^{+4}V_{2-z-x}^{+5}O_{5} \cdot aH_{2}O(s)$ "brown" "blue-gray"

UV-VIS SPECTRA OF ANNEALED THIN FILMS

The best electrochromic properties are achieved within the thin films annealed at 250 °C.

Annealed at 250 °C: $Na_{0.33}V_2O_5 \cdot 0.3H_2O$ xerogel Annealed at 400 °C: NaV_6O_{15} .

SEM photomicrographs $Na_{0.33}V_2O_5 \cdot 0.3H_2O$ xerogel NaV_6O_{15}

CONCLUSIONS

• The effect of thermal annealing at 250 and 400 °C on the electrochromic properties of as-deposited $Na_{0.33}V_2O_5$ ·H₂O xerogel thin films is studied.

• The cyclic voltammetry shows that the Li⁺ ions are reversibly intercalated/deintercalated within the prepared films.

• The prepared thin films exhibit two-step electrochromism: from orange to green and then from green to blue. The colour changes are related to the transitions between different oxidation vanadium states.

• The best electrochromic properties are obtained for the thin film prepared for 10 min deposition time and annealed at 250 °C. The transmittance variance ΔT at 900 nm for this film is 54 % which is an excellent value for application in different electrochromic devices.