ORIGINAL SCIENTIFIC PAPER

Croat. Chem. Acta 2018, 91(4), 567-575 Published online: January 21, 2019 DOI: 10.5562/cca3424

Non–enzymatic Amperometric Sensor for H₂O₂ **Based on MnCO3 Thin Film Electrodes**

Sasho Stojkovikj,^{1,*} Metodija Najdoski,¹ Birhan Sefer,^{1,2} Valentin Mirčeski¹

¹ Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, PO Box 162, 1000 Skopje, Republic of Macedonia

² Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nuremberg, D-91058 Erlangen, Germany

* Corresponding author's e-mail address: sashostojkovikj@gmail.com

RECEIVED: September 24, 2018 * REVISED: December 22, 2018 * ACCEPTED: January 11, 2019

Abstract: The present study describes development of a non-enzymatic amperometric sensor for detection of H₂O₂ based on MnCO₃ thin film electrodes. The film was deposited on electroconductive FTO coated glass substrates using simple chemical bath deposition method. The phase $composition of the thin film was confirmed by X-ray diffraction analysis. The electrochemical properties and the sensor sensitivity towards H_2O_2$ were examined using cyclic voltammetry and chronoamperometry in 0.1 M phosphate buffer solution with pH = 7.5. It was revealed that the sensing mechanism is based on electrocatalytic oxidation of H2O2, involving Mn species as redox mediators. According to the results, the best sensor response towards H₂O₂ was found at E = +0.25 V, with detection limit and sensor sensitivity of 10.0 μ M and 2.64 μ A cm⁻² mM⁻¹ (for the range of 0.09–1.8 mM), respectively, associated with $R^2 = 0.999$.

Keywords: amperometric sensors, hydrogen peroxide, manganese(II) carbonate thin films, electrocatalysis.

INTRODUCTION

HIS research contributes to the application of manganese(II) carbonate (MnCO₃), which already demonstrated interesting behaviour when used for preparing electrochromic materials,^[1] as a precursor for synthesizing perovskites applied in high temperature solid oxide fuel cells,^[2] and especially as an electrode material in supercapacitors.^[3–7] The possibility of controlled deposition of uniform MnCO₃ thin films on FTO-coated substrates,^[1] makes this material eligible to be studied as a working electrode in electrochemical systems for hydrogen peroxide (H₂O₂) sensor applications. H₂O₂ is an important substance that finds a wide use in various fields. Its oxidizing properties enable application in chemical and petro-chemical industry as a strong oxidizer, bleaching agent, disinfectant and propellant. [8-14] H₂O₂ is also used in medicine, pharmacy, cosmetics, food and beverage industry. $^{[10,13-16]}$ Apart from industrial applications, $H_2O_2\,is$ also important for the living cells.[17] It is well established that H₂O₂ is formed as a product in the mitochondria due to

enzymatic reactions that involve free radicals.[17,18] Moreover, the increased mitochondrial production of H₂O₂ causes cytotoxic effects^[11,13,18,19] through activation of several classes essential signalling proteins that compromise the cell reproduction, causing diseases such as cancer, diabetes, cardiovascular and neurodegenerative disorders. $^{\left[17,20,21\right] }$ The presence of $H_{2}O_{2}$ in the cells is significantly detrimental and commonly responsible for proliferation, apoptosis and/or necrosis of the cells, which depends on the cytosolic steady state concentration.[18,20] From this point of view, an accurate and precise quantification of H₂O₂ is substantially important. Hence, an enormous research strive is in progress in order to develop simple, efficient and reliable methods for detection and quantification of H₂O₂ at relatively low concentrations in biological fluids.^[17] There are numerous methods for detection and quantification of H₂O₂. These include redox titrations,^[22] chemiluminescence,^[23-26] fluorescence and fluorimetry,^[27-29] spectrophotometry,^[30-32] chromatography^[33] and electrochemistry.^[13,34] The electrochemical sensors are based on sensing either reduction or oxidation

This work is licensed under a Creative Commons Attribution 4.0 International License.