ECS Meeting Abstracts

Unintended Cation Crossover in CO₂ Conversion MEA Cells: **Causes and Effects**

Gumaa El-Nagar¹ (D), Flora Haun¹ (D), Siddharth Gupta¹ (D), Sasho Stojkovikj¹ (D) and Matthew T. Mayer² D

© 2023 ECS - The Electrochemical Society

ECS Meeting Abstracts, Volume MA2023-02, 105: Photocatalysts, Photoelectrochemical Cells, and Solar Fuels

<u>13</u>

Citation Gumaa El-Nagar et al 2023 Meet. Abstr. MA2023-02 2388 **DOI** 10.1149/MA2023-02472388mtgabs

+ Article and author information

Abstract

Membrane electrode assemblies in gas diffusion cells enable CO₂ reduction at industrially relevant rates, yet their long-term operational stability is often limited by the formation of solid precipitates (e.g. K_2CO_3) in the cathode pores. This is a consequence of a combination of 1) local alkalization due to the electrochemical reaction, 2) generation of (bi)carbonate by chemical reaction of CO₂ with the alkaline electrolyte, and 3) the presence of alkali metal cations. In catholyte-free, zero-gap cells using anion exchange membranes, the presence of electrolyte cations at the cathode is the result of unintended crossover from the anolyte, and a detailed understanding of the factors enabling this crossover is lacking. Here we show that the anolyte concentration governs the flux of cation migration through the membrane, and this substantially influences the behaviors of copper catalysts in catholyte-free CO₂ electrolysers. Systematic variation of the anolyte ionic strength (using aqueous KOH or KHCO₃) correlated with drastic changes in the observed product selectivity – most notably, at low ionic strength, Cu catalysts produced predominantly CO, in contrast to the mixture of C₂₊ products typically observed on Cu. In this talk, we examine the factors influencing ion crossover and the resulting effects on catalyst structure and activity, under conditions of both CO2 and CO reduction. Operando X-ray absorption spectroscopy and quasi in situ X-ray photoelectron spectroscopy were used to study how the catalyst is affected by operation conditions. Our results show that even in catholyte-free cells, cation effects (including unintended ones) can significantly influence reaction pathways, and this must be considered in future development of catalysts and devices.

Artic	le r	net	rics

6 Total downloads

MathJax

Turn off MathJax

Permissions

Get permission to re-use this article

Share this article

Abstract

You may also like

JOURNAL ARTICLES

Guidance on prevention of unintended and accidental radiation exposures in nuclear medicine

Graphene growth with no intended carbon precursor feeding into the LPCVD process: causes, solutions, and effects

Application Discussion and Inspection on the **Unintended Car Movement Protection** System

Towards human motor augmentation by voluntary decoupling beta activity in the neural drive to muscle and force production

Causes and Effects of **Unintended Cation** Crossover in CO₂ **Reduction Cells**

Analysis of localization methods for unintended emitting sources

El-Nagar, G. A., Haun, F., Gupta, S., Stojkovikj, S. & Mayer, M. T. Unintended cation crossover influences CO2 reduction activity in Cu-based zero-gap electrolysers. Nature Communications14, 2062 (2023) doi: doi.org/10.1038/s41467-023-37520-x

Figure 1		
Export citation and abstract	BibTeX	RIS

Next article in issue >

Senior Scientist for a				
Permanent Position in				
Accelerator Physics				
DESY				

Doctoral research associate (m/f/d) in the field of physics, chemistry, materials science, physical Bundesanstalt für Materialforschung und -prüfung (BAM)

Postdoctoral fellow (f/m) on ID11 in the Structure of Materials group European Synchrotron **Radiation Facility**

More jobs Post a job

Previous article in issue

Journals

Books

IOP Conference Series

About IOPscience

Contact Us

IOP PUBLISHING

Copyright 2024 IOP Publishing

Terms and Conditions

Disclaimer

Privacy and Cookie Policy

PUBLISHING SUPPORT

Authors

Reviewers

Conference Organisers

Developing countries access

IOP Publishing open access policy

Accessibility

This site uses cookies. By continuing to use this site you agree to our use of cookies.

