Journal of Colloid and Interface Science 637 (2023) 408-420

Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

journal homepage: www.elsevier.com/locate/jcis

Poly(ionic liquid) nanovesicles *via* polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO₂ electroreduction

Xuefeng Pan^{a,g}, Zdravko Kochovski^a, Yong-Lei Wang^a, Radwan M. Sarhan^{a,d}, Eneli Härk^a, Siddharth Gupta^{b,c}, Sasho Stojkovikj^{b,c}, Gumaa A. El-Nagar^{b,d,*}, Matthew T. Mayer^b, Robin Schürmann^e, Jérôme Deumer^e, Christian Gollwitzer^e, Jiayin Yuan^{f,*}, Yan Lu^{a,g,*}

^a Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

^b Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

^c Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany

^d Chemistry Department, Faculty of Science, Cairo University, Egypt


^e Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany

^f Department of Materials and Environmental Chemistry (MMK), Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden

^g Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

G R A P H I C A L A B S T R A C T

This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO₂ conversion to C₁ products.

ARTICLE INFO

Article history: Received 7 November 2022 Revised 18 January 2023 Accepted 20 January 2023 Available online 21 January 2023

Keywords: Poly(ionic liquid) Nanovesicles Polymerization-induced self-assembly Nanoparticles CO₂ electroreduction

ABSTRACT

Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm *via* one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are *in situ* functionalized with ultra-small (1 ~ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO₂ electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C₁ products (*e.g.*, CH₄), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic

* Corresponding authors.

E-mail addresses: gumaa.el-nagar@helmholtz-berlin.de (G.A. El-Nagar), jiayin.yuan@mmk.su.se (J. Yuan), yan.lu@helmholtz-berlin.de (Y. Lu).

https://doi.org/10.1016/j.jcis.2023.01.097

0021-9797/© 2023 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).