nature communications

Article

https://doi.org/10.1038/s41467-023-37520-x

Unintended cation crossover influences CO₂ reduction selectivity in Cu-based zero-gap electrolysers

Received: 5 February 2023	Gumaa A. El-Nagar 1^{1} , Flora Haun ^{1,2} , Siddharth Gupta ^{1,2} , Sasho Stojkovikj 1^{2} Matthew T. Mayer 1^{1}
Accepted: 21 March 2023	
Published online: 12 April 2023	
Check for updates	 Membrane electrode assemblies enable CO₂ electrolysis at industrially relevant rates, yet their operational stability is often limited by formation of
	solid precipitates in the cathode pores, triggered by cation crossover from the anolyte due to imperfect ion exclusion by anion exchange membranes

lies enable CO₂ electrolysis at industrially tional stability is often limited by formation of ode pores, triggered by cation crossover from ue to imperfect ion exclusion by anion exchange membranes. Here we show that anolyte concentration affects the degree of cation movement through the membranes, and this substantially influences the behaviors of copper catalysts in catholyte-free CO₂ electrolysers. Systematic variation of the anolyte (KOH or KHCO₃) ionic strength produced a distinct switch in selectivity between either predominantly CO or C_{2+} products (mainly C₂H₄) which closely correlated with the quantity of alkali metal cation (K⁺) crossover, suggesting cations play a key role in C-C coupling reaction pathways even in cells without discrete liquid catholytes. Operando X-ray absorption and quasi in situ X-ray photoelectron spectroscopy revealed that the Cu surface speciation showed a strong dependence on the anolyte concentration, wherein dilute anolytes resulted in a mixture of Cu⁺ and Cu⁰ surface species, while concentrated anolytes led to exclusively Cu⁰ under similar testing conditions. These results show that even in catholytefree cells, cation effects (including unintentional ones) significantly influence reaction pathways, important to consider in future development of catalysts and devices.