

NRF2 in Noncommunicable Diseases: from Bench to Bedside

PROGRAM AND ABSTRACTS

Smolenice Castle, Slovakia June 26—30, 2023

WELCOME

BenBedPhar Training School 2023

NRF2 in noncommunicable diseases: from bench to bedside

Dear BenBedPhar colleagues,

One of the most relevant COST tools is the implementation of training schools. Three training schools will be organized by BebBedPhar as part of our "capacity building objectives". The end goal is to promote a timely scientific community of NRF2 basic, pharmacological, and clinical researchers and entrepreneurs and to develop a "sense of belonging" to the EU scientific community. Our first training school is possible thanks to the positive and enthusiastic temper of Dr. Iveta Bernatova and the local organizers in Slovakia. They will make this training school a very successful vehicle for multidisciplinary training and international interaction of trainers and trainees.

Antonio Cuadrado

Chair of COST Action CA20121, BenBedPhar

0

VENUE

ria 🤉

BenBedPhar Training School 2023

NRF2 in noncommunicable diseases: from bench to bedside

Smolenice Castle

Congress Centre of the Slovak Academy of Sciences, Zamocka 18, Smolenice, Slovakia

Information

kcsmolenice.sav.sk/en/

CONTENTS

BenBedPhar Training School 2023 NRF2 in noncommunicable diseases: from bench to bedside

9	
Welcome from CA20121 Chair	2
Welcome from local organizers	3
Local organizers	4
Venue	5
Contents	6
Program overview	8
Detailed program on June 26, 2023	9
Detailed program on June 27, 2023	9
Detailed program on June 28, 2023	10-
Detailed program on June 29, 2023	11
Detailed program on June 30, 2023	11
Posters session I	13
Posters session II	14
Trainers' lectures	15
Antonio Cuadrado	16
Gina Manda	19
Albena T. Dinkova-Kostova	21
Anna Grochot-Przeczek	23
Manuela G. Lopez	24
Ioannis Trougakos	26
Iveta Bernatova	28
Practical presentations	29
Trainees' abstracts	31
Ivana Kuntic	32
Eduardo Cazalla Ibanez	33
Shara Natalia Sosa Cabrera	34
Lucia Viqueira Diaz-Alejo	35
Yang Luo	36

CONTENTS

BenBedPhar Training School 2023

NRF2 in noncommunicable diseases: from bench to bedside

	27
van Lucic	37
rancesca Prestia	38
Arif Kamil Salihogiu	39
Maria Jose Caballero Herrero	40
Georgios Psarias	41
Margarida Pedro	42
Miroslav Novak	43
Viktorija Maksimova	44
Jose Jimenez-Villegas	45
Fatma Yapıcı	46
Andrea Micurova	47
Marina Oskomic	48
Patricia Pavelkova	49
Thomas Dixon	50
Lucrezia Romana Rolfi	51
Valentina Sophia Rumanova	52
Iza Oblak	53
Adriana Martiskova	54
Daniel Carnicero-Senabre	55
Hatice Esenkaya	56
Mercedes Vallejo Mudarra	57
Michal Kluknavsky	58
Livia Gajdosova	59
Louisa Watt	60
Acknowledgements	64

Viktorija Maksimova

Affiliation: Department of applied pharmacy, Faculty of Medical Sciences, Goce Delcev University, Shtip, North Macedonia

Position: Associate Professor

Email: viktorija.maksimova@ugd.edu.mk

Viktorija Maksimova is an associate professor in pharmaceutical botany and pharmacognosy at the Department of applied pharmacy, Faculty of Medical Sciences at the University of Goce Delcev in Shtip, North Macedonia. She is a Master of Pharmacy and defended her PhD thesis in the topic of Antioxidative and cytotoxic effect of capsicinoids, in 2016 at the same University. Currently, she's working on medicinal plants, and she is interested in researching small bioactive molecules as a novel superior antioxidant and cytotoxic agents among polyphenols and alkaloids. Recently she has become interested in studying plant bioactive molecules as NRF2 modulators.

Background: Piperine is the major alkaloid represented in *Piper nigrum* (black pepper) showing different pharmacological properties that are still extensively studied. Piperine's ability to activate the protein expression levels of NRF-2 and HO-1 and inhibit the protein expression levels of Keap-1, is directly influencing the antioxidative capacity of the cells and ROS homeostasis.

Results: Activation of NRF2 by piperine has triggered an antioxidant response cell system (HO-1, GSH, CAT, SOD) scavenging ROS, and decreasing lipid peroxidation in colon cancer cells. These results indicate that piperine may be an effective molecule in prophylactic aims of colon carcinogenesis by targeting the NF-κB/NRF-2/Keap-1/HO-1 pathway. The novel effects of piperine in attenuating the oxidative stress in lung epithelial cells were shown recently. Treatment with piperine enhanced the NRF2 expression and reversed changes induced by cigarette smoke extract. Increased NRF2 levels promoted anti-inflammatory effect in the same cells. Piperine has shown protective effects against Aβ-induced neuronal damage and oxidative stress, in the SH-SY5Y cell model. Activation of NRF2 pathway can also lead to inhibition of LPS-induced inflammatory response in microglial cells. In addition, a novel piperine derivative, HJ105, obtained through structure-based design and optimization was revealed in 2021, as a potent small molecule for treatment of Alzheimer disease. This structure promoted effective suppression of Keap1-NRF2 complex formation, and additional neuroprotective mechanisms of HJ105 underlying apoptotic cell death, oxidative stress response and neuro-inflammation.

Conclusions: Piperine and even more its derivatives are attracting increasing attention for their anti-apoptotic, anti-inflammatory, anti-antioxidant, cytoprotective and cognitive enhancing effects.

ria e